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Multiplicative price impact model

One risky asset, interest rate = 0;

Unaffected (fundamental) price process

dS t = µS t dt + σS t dWt , S0 = s.

Price impact by a large trader
I (Θt)t≥0 - holdings in the risky asset, (bounded) càdlàg process;
I market impact process: for Lipschitz h : R→ R, h(0) = 0, h(x)sgn(x) ≥ 0,

dY Θ
t = −h(Y Θ

t ) dt + dΘt , Y0− = y ∈ R;

I Current ‘affected’ price of the risky asset

St = SΘ
t := f (Y Θ

t )S t

with price impact function f (y) := exp
( ∫ y

0
λ(u) du

)
for λ : R→ [0,∞)

Key features: transient impact, positive prices.
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Proceeds from trading
For continuous finite-variation strategies

Consider a block trade at time t: ∆Θt 6= 0; price of the asset before the
trade = f (Y Θ

t−)S t , after the trade = f (Y Θ
t− + ∆Θt)S t .

Issue: f (Y Θ
t−)S t 6= f (Y Θ

t )S t

How to define proceeds for block trades or càdlàg strategies?

Starting point: For a continuous finite variation Θ, proceeds from trading are

LT (Θ) := −
∫ T

0

f (Y Θ
u )Su︸ ︷︷ ︸
Su

dΘu.

Goal: extend definition of L continuously to semimartingales/càdlàg processes
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Asymptotically realizable proceeds

t

Θ

...
Θn-1Θn

Θn+1

Figure: A block trade approximated by a sequence of abs. continuous trades.

Remark: The Skorokhod M1 topology captures this approximation.

Todor Bilarev (HU Berlin) Luminy, November 2017 4 / 14



Asymptotically realizable proceeds

t

Θ

...
Θn-1Θn

Θn+1

Figure: A block trade approximated by a sequence of abs. continuous trades.

Remark: The Skorokhod M1 topology captures this approximation.

Todor Bilarev (HU Berlin) Luminy, November 2017 4 / 14



Proceeds for semimartingale strategies

Proceeds from bounded semimartingale strategies Θ

L(Θ) =−
∫ ·

0

f (Y Θ
t−)S t dΘt −

1

2

[
f (Y Θ)S ,Θ

]c − 1

2

∫ ·
0

σS t f (Y Θ
t )d[Θ,W ]t

−
∑

∆Θt 6=0
t≤·

S t

(∫ ∆Θt

0

f (Y Θ
t− + x)dx − f (Y Θ

t−)∆Θt

)

Proceeds from a block trade of size ∆Θt are −S t

∫ ∆Θt

0
f (Y Θ

t− + x)dx

Self-financing condition for portfolios (β,Θ): βt = β0− + Lt(Θ), t ≥ 0;

Instantaneous liquidation wealth process

V liq
t (Θ) := βt + S t

∫ Θt

0

f (Y Θ
t − x)dx .

D. Becherer, T. B., P. Frentrup, Stability for gains from large investors’ strategies
in M1/J1 topologies, arXiv:1701.02167 (2017)
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Proceeds for semimartingale strategies
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Superhedging in illiquid markets

Definition

European option is specified by the maturity T and the payoff (g0, g1) with
measurable g0, g1 : R+ ×R→ R g0/1(S ,Y ) represents the cash/physical settle-
ment, where S is the (affected) price and Y is the market impact, evaluated at T .

Admissible self-financing (β,Θ) is a superhedging strategy for the
European claim with maturity T and payoff (g0, g1) if

I Θ0− = 0
I ΘT = g1(SΘ

T ,Y
Θ
T ) and βT ≥ g0(SΘ

T ,Y
Θ
T )

Superhedging price is

inf{β0− | self-financing superhedging (β,Θ) exists}

Remark: Initial and terminal impact are included.
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Admissible strategies

Trading strategies ΓN for N ≥ 1:

Θt = Θ0− +

∫ t

0

as ds +

∫ t

0

bs dWs +
N∑
i=1

δi1{τi≤t},

where τ1, . . . , τn are stopping times, δi ∈ [−N,N] is Fτi -measurable, a and b
and Θ are predictable and bounded by N

Admissible strategies: Γ :=
⋃

N≥1 ΓN .

Todor Bilarev (HU Berlin) Luminy, November 2017 7 / 14



The superhedging problem as stochastic target problem

State process:

Z t,z,γ := (S t,z,γ ,Y t,z,γ ,Θt,z,γ ,V liq,t,z,γ),

where (t, z) = (t, s, y , θ, v) ∈ [0,T ]×R+ ×R×K ×R and γ ∈ Γ.

Target set for the state process:

G := {(s, y , θ, v) ∈ R+×R×R×R : θ = g1(s, y), v−s F (y)−F (y−θ)
f (y) ≥ g0(s, y)}.

Superhedging strategies:

G(t, s, y , θ, v) := {γ ∈ Γ : Z t,s,y ,θ,v ,γ
T ∈ G}.

Minimal superreplication price:

w(t, s, y) := inf{v : G(t, s, y , 0, v) 6= ∅}.
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Pricing pde

Theorem (Pricing equation)

Let F (x) =
∫ x

0
f (u)du and

G (s, y) := inf
{
g0

(
s f (y+θ)

f (y) , y + θ
)

+ s F (y+θ)−F (y)
f (y) | θ = g1

(
s f (y+θ)

f (y) , y + θ
)}
.

Under assumptions on f , h, (g0, g1), the minimal superreplication price w is the
unique viscosity solution of

−wt −
1

2
σ2s2wSS + h̃(t, s, y)

(
wY + sλ(y)wS + s − s f̃ (t,s,y)

f (y)

)
= 0,

with boundary condition w(T , ·) = G (·), where for (t, s, y) ∈ [0,T )×R+ ×R

h̃(t, s, y) := h ◦ F−1
(
f (y)wS(t, s, y) + F (y)

)
,

f̃ (t, s, y) := f ◦ F−1
(
f (y)wS(t, s, y) + F (y)

)
.
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Remarks

If h ≡ 0 (permanent impact), minimal superreplication price for large investor
is the Black-Scholes price for the payoff G .

If f (x) = exp(λx) with constant λ, then for typical options pricing pde
simplifies to Black-Scholes pde

For sufficiently regular solutions of the pricing pde, optimal replicating
strategies can be constructed: with YΘ = Y Θ −Θ, for t ∈ [0,T )

Θt = F−1
(
f (YΘ

t )wS(t,S(St ,Y
Θ
t ,Θt),YΘ

t ) + F (YΘ
t )
)
− YΘ

t

For covered options (no initial and terminal impact), the pricing pde is of
qualitatively different nature (gamma constraints appear).
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Numerical example - call option with physical delivery

Figure: Parameters: f (x) = 1 + arctan(x)/10, K = 50, T = 0.5, σ = 0.3, h(y) = y
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How to derive the pde: New coordinates

Recall: w(t, s, y) := inf{v : G(t, s, y , 0, v) 6= ∅}

Problem: Dynamic programming principle for w does not hold per se: we have
assumed zero initial holdings.

Way out: (adapted from Bouchard, Loeper and Zhou, F&S 2016)

effective price process S(SΘ,Y Θ,Θ) := Sf (Y Θ −Θ)

effective impact process YΘ := Y Θ −Θ

Interpretation:

S(s, y , θ) is the price of the asset that would prevail after θ risky assets have
been sold with a block trade, with s (resp. y) being the price (resp. impact)
just before the trade.
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Geometric Dynamic Programming Principle

Proposition (Geometric DPP - Part 1)

Fix (t, s, y , v) ∈ [0,T ]×R+ ×R×R.

(1) Let v > w(t, s, y). Then there exists γ ∈ Γ and θ ∈ K such that

V liq,t,z,γ
τ ≥ w(τ,S(S t,z,γ

τ ,Y t,z,γ
τ ,Θt,z,γ

τ ),Y t,z,γ
τ −Θt,z,γ

τ )

for all stopping times τ ≥ t, where z = (S(s, y ,−θ), y + θ, θ, v).
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Conclusion

Multiplicative price impact does not yield negative prices

Impact is transient

Wealth process derived via continuity arguments

Pricing equation for European options is non-linear Black-Scholes pde where
non-linearity is mainly due to resilience
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