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Joint work with Klébert Kentia (Goethe Univ. Frankfurt a.M.)

CIRM Workshop, Luminy

13.-17. Nov. 2017



Motivating example

How to hedge and value a put option X = (K − HT )+

on a non-traded asset

dHt = Ht

(
γdt + β(ρdB1

t +
√

1− ρ2dB2
t )
)

if there is only a correlated tradable asset

dSt = Stσ
S(ξdt + dB1

t )

available for partial hedging : ?

non-perfect correlation: −1 < ρ < 1.
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How to hedge and value a put option X = (K − HT )+

on a non-traded asset

dHt = Ht

(
γdt + β(ρdB1

t +
√

1− ρ2dB2
t )
)

if there is only a correlated tradable asset

dSt = Stσ
S(ξdt + dB1

t )

available for partial hedging : ?

non-perfect correlation: −1 < ρ < 1.

; Superreplication (a.s.-hedging) is prohibitively expensive!
Hedge would be extreme but trivial (don’t trade even if ρ = 99%)!
Uncertainty on drift&volatilitiy matters for any alternative...
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Introduction

Aspect I: incomplete vs complete

Complete market: unique price obtained by replication

X = EQ [X ]︸ ︷︷ ︸
replication cost

+

∫ T

0

φtdSt︸ ︷︷ ︸
gain/loss from trading

a.s., for Me(S) = {Q}.

Incomplete market: infinitely many martingale measures Me(S),
upper NA-bound is seller’s super-replicating price

sup
Q∈Me(S)

EQ [X ] = inf
{
m : ∃φ s.t. m +

∫ T

0

φtdSt ≥ X P-a.s.
}
.

But: Superreplication is too expensive, a.s.-hedge is too extreme !

Aim: less expensive valuations, less extreme than a.s.-hedging.
How? Exclude not just arbitrage but also ”too good deals”

; hedging error distribution matters, hence uncertainty on P!
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Introduction

Ansatz for no-good-deal valuation and hedging

Valuation: Use only subset Qngd ⊂Me with economic meaning

Choose Qngd so that “too good deals” are excluded for any market
extension

(
St ,E

Q
t [X ]

)
for any contingent claim X when Q ∈ Qngd.

Define upper and lower good-deal valuation bounds

πu
t (X ) := esssup

Q∈Qngd

EQ
t [X ], πl

t(X ) := −πu(−X ).

Hedging Strategy:minimizes a-priori coherent risk measure ρ over all
strategies φ for optimal risk sharing with the market:

πu
t (X ) = ρt

(
X −

∫ T

t

φ̄sdSs

)
= essinf

φ∈Φ
ρt

(
X −

∫ T

t

φsdSs

)
∀t ∈ [0,T ].

Solution for dominated uncertainty, solely about drift, via
(standard) BSDE, g -expectations: [ B., Kentia, MMOR 2017]
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Introduction

Aspect II: non-dominated vs dominated uncertainty

For super-replication price v only non-dominated uncertainty matters,
but not drift (or market price of risk) uncertainty:

Example:
Black-Scholes-type model dSt = Stσt(ξtdt + dWt)

Black-Scholes pricing pde :

σ2s2vss + vt = 0
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Introduction

Aspect II: non-dominated vs dominated uncertainty

For super-replication price v only non-dominated uncertainty matters,
but not drift (or market price of risk) uncertainty:

Example:
Black-Scholes-type model dSt = Stσt(ξtdt + dWt)
with (non-dominated) volatility uncertainty

0 < σ2 ≤ σt(ω)2 ≤ σ2

Black-Scholes-Barenblatt pricing pde (fully non-linear):

(σ21{vss≥0} + σ21{vss<0})s
2vss + vt = 0

BSDE-context: more general path-dependent claims, non-Makovian
setup ; 2nd order BSDE or G -expectation

For any given σ > 0 model is complete here. But what to do in
generically incomplete models if superreplication is too expensive?
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Formulation in the absence of ambiguity No-good-deal restriction

Financial market and no-good-deal pricing measures

Fixed (Ω,F ,F,P), W n-dimensional P-Wiener process, F = FW
P

.

Discounted (r = 0) prices of d traded stocks S = (S i )di=1:

dSt = diag(St)σt(ξtdt + dWt), t ∈ [0,T ],

market price of risk ξ ∈ Imσtr, volatility σ of maximal rank d < n.

Choose Qngd(P) consisting of Q ∈Me(P) with Z := dQ
dP satisfying

EP
τ

[
− log

Zσ
Zτ

]
≤ EP

τ

[
1

2

∫ σ

τ

h2
sds

]
, for all τ ≤ σ ≤ T ,

for h > 0  bounds cond. reverse rel. entropy of Q wrt. P.
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Formulation in the absence of ambiguity No-good-deal restriction

Economic meaning of no-good-deals

This yields a bound on Girsanov kernels of pricing measures:

Qngd(P) =
{
Q ∈Me(P) : dQ/dP = E (λ ·W ) , and |λ| ≤ h

}
.

which equivalently corresponds to imposing bounds on

instantaneous Sharpe ratios: SRt(N) := mean excess return(t)
standard deviation (t) ≤ ht ,

i.e. SRt(N) = µN
t /σ

N
t for return dNt/Nt = µN

t dt + σN
t dWt ,

optimal P-expected growth rate of returns:

EP
τ

[
log

Nσ
Nτ

]
≤ EP

τ

[
− log

ZQ
σ

ZQ
τ

]
≤ EP

τ

[
1

2

∫ σ

τ

h2
sds

]
, ∀τ ≤ σ,

for all Q ∈ Qngd and Q-local martingales N > 0, i.e. in any financial
market extension by additional derivatives.
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Formulation in the absence of ambiguity Valuation and hedging

Admissible trading strategies

Trading strategy ϕ as amount invested into stocks  wealth process

dVt := ϕtr
t

dSt
St

= ϕtr
t σt(ξtdt + dWt)

Convenient to re-parameterize strategies as φ := σtrϕ ∈ Imσtr:

dVt = φtr
t (ξtdt + dWt) =: φtrt dŴt .

Denote the set of P-admissible trading strategies by Φ(P).

Dirk Becherer (Humboldt U. Berlin) Hedging under Drift & Volatility Uncertainty 11/2017 10



Formulation in the absence of ambiguity Valuation and hedging

Good-deal hedging: minimize coherent risk

a-priori dynamic coherent time-consistent risk measure ρP :

ρPt (X ) := esssup
Q∈Pngd(P)

EQ
t [X ], t ∈ [0,T ],

for Pngd(P) :=
{
Q ∼ P : dQ/dP = E (λ ·W ) , with |λ| ≤ h

}
.

Qngd(P) = Pngd(P) ∩Me(P).

Hedging objective: Find strategy φ̄ = φ̄P ∈ Φ(P) s.t.

πu,P
t (X ) = ρPt

(
X −

∫ T

t

φ̄trs dŴs

)
= essinf
φ∈Φ(P)

ρPt

(
X −

∫ T

t

φtrs dŴs

)
.

Good deal bounds πu as market-based risk measures from minimizing
coherent risk ρ, hedging as optimal ’risk-sharing’ with the market,
valuation & hedging ’to aceptability’ [cf. Barrieu et al, Madan et al...]
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Formulation in the absence of ambiguity Valuation and hedging

Hedging error and its supermartingale characterization

For strategy φ ∈ Φ(P), its tracking (or hedging) error is

Lφt (X ) := πu,P
t (X )− πu,P

0 (X )︸ ︷︷ ︸
variation of capital requirement

− (V φ
t − V φ

0 ),︸ ︷︷ ︸
P&L from dyn.trading by φ

t ∈ [0,T ].

Tracking error Lφ̄ of the good-deal hedging strategy φ̄P is
Q-supermartingale for any Q ∈ Pngd(P).
(sufficient and necessary condition)

 Hedging strategy φ̄P is at least mean-self-financing
under any Q ∈ Pngd(P).
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Valuation and hedging under ambiguity about drift and volatility Framework for drift and volatility uncertainty

Motivation

Problem:
market prices of risk ξ (drift) and volatilities σ are not known:
we do not know the objective real world measure P precisely...

There is ambiguity  Knightian model uncertainty.

Instead of single reference measure P, consider set R of plausible
reference priors capturing ambiguity about both drift and volatility.

Aim: Robust good-deal valuation and hedging w.r.t. uncertainty
about ξ and σ.
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Valuation and hedging under ambiguity about drift and volatility Framework for drift and volatility uncertainty

Local martingale measures on canonical space

Ω := C0([0,T ],Rn), B coordinate process, P0 Wiener measure,
F := (Ft)t≤T filtration generated by B, F+ right limit of F.

PS : collection of all local martingale measures Pα for B with

Pα := P0 ◦ (Xα)−1, where Xα
t :=

∫ t

0
α

1
2
s dBs , P0-a.s. t ∈ [0,T ],

with positive-definite-valued α, F-prog. meas.,
∫ T

0
|αs | ds <∞, P0-a.s..

E.g. Black-Scholes model with different volatilities.

Karandikar ’95: The stochastic integral
∫ ·

0 BsdB
tr
s can be defined

ω-wise such that it coincides with Itô integral P-a.s. for all P ∈ PS .

Then quadratic variation 〈B〉t and density ât := d〈B〉t
dt are also defined

ω-wise.
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Valuation and hedging under ambiguity about drift and volatility Framework for drift and volatility uncertainty

Non-dominated measures - quasi-sure analysis

Note: The probability measures in PS may be mutually singular.

For fixed a, a ∈ S>0
n (set of positive-definite matrices), consider

subclass P ⊂ PS defined by

P :=
{
P ∈ PS : a ≤ â ≤ a, P ⊗ dt-a.s.

}
.

a ≤ â ≤ a  confidence region for volatilities scenarios.

Def: A property holds Q-quasi-everywhere (shortly Q-q.e.) for family
Q of measures if it holds outside a set which is Q-negligible ∀Q ∈ Q.
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Valuation and hedging under ambiguity about drift and volatility Market models and worst-case bounds

Financial market with uncertainty

Risky asset prices S = (S i )di=1 modeled as

dSt = diag(St) (bdt + σdBt), P-q.s., S0 ∈ (0,∞)d ,

with σ ∈ Rd×n (d < n) and σâ
1
2 P ⊗ dt-q.e. of maximal rank d .

W P :=
∫ ·

0 â
− 1

2
s dBs is a P-Brownian motion, for each P ∈ P.

Volatility uncertainty: σâ
1
2 plays the role of volatility matrix for

stock prices S under each P ∈ P, since dBt = â
1
2
t dW

P
t .

σâ
1
2 of maximal rank d < n  incomplete market under each P ∈ P.

(Minimal) market prices of risk in each model P ∈ P given by

ξ̂t := â
1
2
t σ

tr(σâtσ
tr)−1b, t ≤ T , P-a.s..
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Valuation and hedging under ambiguity about drift and volatility Market models and worst-case bounds

Plausible reference measures

Consider candidate market prices of risk and volatilities

ξP,θt = ξ̂t + θt and σP,θt = σâ
1
2
t ,

for θt in some ellipsoidal confidence region Θt ⊂ Im
(
σt â

1
2
t

)tr
, t ≤ T .

Corresponding set of reference priors for drift & vol. uncertainty is

R :=
{
Q = QP,θ

∣∣∣ Q ∼ P,
dQ

dP
= (P)E(θ·W P), for some P ∈ P, θt ∈ Θt ∀t

}
.

For each P ∈ P holds Me(QP,θ) =Me(P) for any θ ∈ Θ.

Set of no-good-deal pricing measures for each prior QP,θ ∈ R :

Qngd(QP,θ) =
{
Q ∈Me(P)

∣∣∣ dQ
dP

= (P)E(λ ·W P), |λ+ θ| ≤ h
}
.
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Valuation and hedging under ambiguity about drift and volatility Market models and worst-case bounds

Uncertainty: Worst-case bounds and a-priori risk measure

For each QP,θ ∈ R, consider the sets Qngd(QP,θ) and Pngd(QP,θ).

For model QP,θ, good-deal bound and risk measure are

πu,P,θ
t (X ) =

P
esssup

Q∈Qngd(QP,θ)

EQ
t [X ] , ρP,θt (X ) =

P
esssup

Q∈Pngd(QP,θ)

EQ
t [X ], P-a.s..

Robust worst-case good-deal bound under uncertainty:

πu
t (X ) :=

P
esssup

P′∈P(t+,P)

P
esssup
θ∈Θ

πu,P′,θ
t (X ), P-a.s., ∀P ∈ P

where P(t+,P) =
{
P ′ ∈ P : P ′ = P onF+

t

}
.

a-priori risk measure to be minimized by dynamic hedging:

ρt(X ) :=
P

esssup
P′∈P(t+,P)

P
esssup
θ∈Θ

ρP
′,θ

t (X ), P-a.s., ∀P ∈ P.
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Valuation and hedging under ambiguity about drift and volatility Second-order BSDEs

2BSDE formulation and wellposedness

For a measurable generator F : [0,T ]× Ω× R× Rn × S>0
n → R,

Lipschitz in (y , z), denote F̂t(y , z) := Ft(B·∧t , y , z , ât).

For FT -measurable X , define second-order BSDE (2BSDE)

Yt = X −
∫ T

t

F̂s(Ys , â
1
2
s Zs)ds −

∫ T

t

ZsdBs + KP
T − KP

t , P-q.s.

Solution triple (Y ,Z , (KP)P∈P), satisfies minimum condition

KP
t =

P

essinf
P′∈P(t+,P)

EP′

t [KP′

T ], P-a.s., t ∈ [0,T ], ∀P ∈ P.

Wellposedness under suitable measurability and integrability
properties on X and F (Possamai/Tan/Zhou)
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Valuation and hedging under ambiguity about drift and volatility Robust valuation and hedging via 2BSDEs

Good-deal valuation via 2BSDEs

For each a ∈ S>0
n and t ∈ [0,T ], consider the orthogonal projections

Πa
t : Rn → Im

(
σta

1/2
)tr

and Π⊥,at : Rn → Ker
(
σt a

1/2
)
.

Let F be the generator function defined by

Ft(z , a) := inf
θ∈Θ

(
ξ̂ tr
t Πa

t (z)−
√
h2
t − |ξ̂t + θt |2

∣∣Π⊥,at (z)
∣∣)

For suitable X , there exists a unique (in a suitable space) solution
(Y ,Z , (KP)P∈P) to 2BSDE with parameters (F ,X ).

Worst-case good-deal bound process is given by

πut (X ) = Yt , P-a.s., ∀P ∈ P

.
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Valuation and hedging under ambiguity about drift and volatility Robust valuation and hedging via 2BSDEs

Good-deal hedging via 2BSDEs

Again trading strategy as amount of wealth invested in S
 wealth process

V φ = V0 +

∫ ·
0
φtr
s

(
â

1
2
s ξsds + dBs

)
, with φ ∈ Imσtr.

Set Φ of R-admissible strategies φ ∈ Φ such that trading gains{
(P)
∫ ·

0
φtr
s dBs , P ∈ P

}
aggregate into single process

∫ ·
0
φtr
s dBs .

Aggregation condition is not needed under additional set-theoretical
axioms. Otherwise it holds e.g. if φ is càdlàg.

Hedging problem under drift and vol. uncertainty: Find φ̄ ∈ Φ s.t.

πu
t (X ) = ρt

(
X −

(
V φ̄
T − V φ̄

t

))
= essinf

φ∈Φ
ρt

(
X −

(
V φ
T − V φ

t

))
.
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Valuation and hedging under ambiguity about drift and volatility Robust valuation and hedging via 2BSDEs

Good-deal hedging via 2BSDEs (cont.)

Denote Π̂t := ΠIm (σt â 1/2)tr and Π̂⊥t := ΠKer (σt â 1/2), and recall

(Y ,Z , (KP)P∈P) solution to the 2BSDE for πu· (X ).

Given trading gains
{

(P)Z · B, P ∈ P
}

aggregate, then for some

worst-case θ̄ ∈ Θ the hedging strategy is given by

â
1/2
t φ̄t(X ) = Π̂t

(
â

1/2
t Zt

)︸ ︷︷ ︸
Non-speculative component

+

∣∣Π̂⊥t (â 1/2
t Zt

)∣∣√
h2
t −

∣∣ξt + θ̄t
∣∣2 (ξt + θ̄t

)
.

︸ ︷︷ ︸
Speculative component

Robust tracking error Lφ̄ = πu· (X )− πu0 (X )− (V φ̄
T − V φ̄

· ) is a
Q-supermartingale for any Q ∈ Pngd(QP,θ) for all P ∈ P, θ ∈ Θ

. . . at least mean-self.fin. wrt. drift & volatility uncert.
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Valuation and hedging under ambiguity about drift and volatility Robust valuation and hedging via 2BSDEs

a particular (rare) example with an explicit solution:

Market with two Black-Scholes-type assets (d = 1, n = 2):

dSt = Stσ
SdB1

t , dHt = Ht

(
γdt + β(ρdB1

t +
√

1− ρ2dB2
t )
)
, P-q.s.,

for ρ ∈ [−1, 1], â = (â ij)i ,j=1,2 ∈ [a, a],
no drift uncertainty, market price of risk ξ = 0.

Put option X = (K−HT )+ on non-traded asset H, and h ∈ [0,∞).

Valuation at maximum vol. level a, for worst-case model Pa ∈ P :

πu
t (X ) = πu,Pa

t (X ) = C∗Black-Scholes-Put-price
(

spot Ht , strike
K
C
, vol. β̄

)
,

for some C , β̄ ∈ (0,∞).

Hedging strategy: φ̄t(X ) = Lt Ht

(
ρ+

â 12
t

â 11
t

√
1− ρ2, 0

)tr

for some Lt < 0.

Incompleteness (|ρ|6= 1)  Good-deal hedging 6= Super-replication!
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Valuation and hedging under ambiguity about drift and volatility Robust valuation and hedging via 2BSDEs

Summary

Valuation and hedging under combined drift and volatility uncertainty.

1 Good-deal approach yields less expensive valuations and less extreme
hedges than (quasi-sure) superreplication.

2 Hedging strategies are at-least-mean-self-financing, uniformly over all
a-priori valuation measures wrt. all (uncertain) reference priors.

3 Valuations and Hedges are characterized by the solution to a
2nd-order BSDEs, for general measurable claims (no continuity
conds), by building on wellposedness from D.Possamai,X.Tan,C.Zhou
for 2BSDE, where generator needs not to be convex or continuous.

4 Combined uncertainty about drift and volatility is complicated
but it matters !
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