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Information flow and optimal control

In many financial optimal control problems, one can think of
moments where significant new information is known to become
available:

I interest rate decisions by central banks, elections, referendums

I publication of data on GDP growth, job market statistics,
trade balances

I price jumps, e.g., at opening of exchanges, from earning
announcements, . . .

I trading algos scanning limit order books for signals of new
demand/supply for shares of stock

Before these moments, investors will form an opinion and take
precautionary actions: proactive trading.
Afterwards, when the news are fully revealed, further measures
may have to be taken: reactive trading.
How to describe such information flows mathematically?
How to do optimal control with them?
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Illustrative control problem: Irreversible investment

I Classic problem: Dixit and Pindyck (1994), Bertola (1998),
Riedel and Su (2011), Ferrari (2015), . . .

I A firm manager has to decide about the level of installed
capacity Ct at any time t � 0. With installed capacity c , she
gets a unit price �t(c) for the current demand dDt ; expanding
capacity at time t by dCt costs ⇠t dCt ; investment is
irreversible, i.e., C is increasing.
Hence, her expected net proceeds are
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I
Typical assumptions: ⇠ > 0 super-martingale deflator;
� exhibits decreasing returns to scale, e.g., �t(c) = e

�rt log c ;
dDt ⌧ dt, e.g., dDt = dt



Solution via representation theorem

If dD is atomless with full support and �t(`) 2 L

1(P⌦ dt) then a
deflator ⇠ of class (D) with ⇠1 = 0 can be written in the form
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, t � 0,

for a suitable optional L � 0; cf. B.-El Karoui (2004).
Hence, the optimal left-cont. control is Ĉt , supv2[0,t) Lv
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What if dD allows for point masses: “demand surges”?
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E
h

Z

[0,1)

�u(Cu) dDu �
Z

[0,1)

⇠t dCt

i

= E
h

Z

[0,1)

n

�u(Cu)�
Z

[0,u)
@c�u( sup

v2[t,u)
Lv

| {z }

 ˆCu

) dCt

o

dDu

i

 E
h

Z

[0,1)

{�u(Cu)� @c�u(Ĉu)Cu}
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Capacity expansions with jumps: action vs. reaction

I A demand surge �Dt > 0 gives an incentive to have an
increased capacity at time t to collect

�t(Ct)�Dt .

Taking into account possible price changes are expected,
expanding capacity at this point may make sense: Ct > Ct�

I The actual demand/price change may only be fully known
afterwards and may incentivize a further capacity expansion:
Ct+ > Ct

 Possibly two capacity expansions – at possibly di↵erent prices:

⇠t dC
c
t + ⇠t(Ct � Ct�) + ⇠t⇤(Ct+ � Ct) =: ⇠t ⇤dCt

with ⇠t⇤ := lim infu#t ⇠u; cf. Lenglart (1980),
Campi-Schachermayer (2006), Guasoni et al. (2012)



Same toy model - Di↵erent information flows

Example: demand: dDt = 1
[0,2](t)dt + �

1

(dt)  surge in t = 1;
capacity prices (⇠t) are at level 60 on [0, 1] and then
I continue to be 60 on (1, 2] in worst price scenario !

1

;
I jump to and stay at 40 on (1, 2] in OK price scenario !

2

;
I jump to and stay at 30 on (1, 2] in best price scenario !

3

;

Right-cont. observation filtration (Ft) is naturally generated by ⇠.
But capacity controls C can be restricted to be . . .

. . . predictable: capacity expansion at time 1 with no knowledge

of next prices
. . . optional: capacity expansion at time 1 with full knowledge of

next prices

. . . “in between”: capacity expansion at time 1 with some

knowledge of next prices:
I
either “Will prices remain high?” - Yes/No

I
or “Will the best price become available?” - Yes/No

I
or “Will the OK level price obtain afterwards?” - Yes/No

Unifying framework: Meyer �-fields ⇤ with P ⇢ ⇤ ⇢ O
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Meyer �-fields ⇤: Definition and some properties

A �-field on ⌦⇥ [0,1) is called a Meyer �-field if
I it is generated by càdlàg processes;
I it contains all deterministic Borel-measurable events;
I it is stable with respect to stopping: with Z also (Zs^t)s�0

is
⇤-measurable for any t � 0.

A Meyer-�-field induces . . .

. . . a set of stopping times: S ⇤ 3 S i↵ [S ,1[2 ⇤;

. . . a filtration via F⇤

S := �(ZS | Z ⇤-measurable), S 2 S ⇤;

Meyer’s section theorem applies: For any B 2 ⇤ and any " > 0,
there is S 2 S ⇤ with

(!, S(!)) 2 B whenever S(!) < 1

and
P[S < 1] � P[proj

⌦

(B)]� ".

Moreover, there are ⇤-projections, super-martingales, tests for
path properties. . .



General irreversible investment problem

Maximize

E
"

Z

[0,1)

�t(Ct) dDt �
Z

[0,1)

⇠t ⇤dCt

#

over ⇤-measurable increasing (only làdlàg) controls C where

I
dD optional measure possibly with random atoms, not
necessarily with full support; e.g., dDt = 1

[0,2](t)dt + �
1

(dt)

I ⇠ is ⇤-measurable with ⇠S = 0 if dD([S ,1)) = 0 a.s.,
S 2 S ⇤; e.g., ⇠ from above toy example

I (t,!) 7! �t(c)(!) progressively measurable, c 7! �t(c)
concave, suitable Inada conditions; e.g., �t(c) = log c

Solution via stochastic representation theorem. . .
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Assumptions and some terminology

The process D = (Dt) is right-continuous and adapted;
g = gt(!, `) : ⌦⇥ [0,1)⇥ R ! R (think �@c�t(`)) is
progressively measurable in (!, t) for any fixed ` 2 R with
E
R

[0,1)

|gt(`)|dDt < 1 and continuous and strictly increasing

from �1 to +1 in ` for any fixed (!, t) 2 ⌦⇥ [0,1).

A ⇤-measurable process X (think �⇠) is called . . .

. . . of class(D

⇤

) if {XS | S 2 S ⇤} is uniformly integrable;

. . . dD-upper-semicontinuous if

lim sup
n

E[XSn ]  E[XS ]

for any sequence of stopping times (Sn) such that
I
either each Sn is predictable with Sn " S on {S > 0},

I
or each Sn is in S ⇤([S ,1]) with dD([S , Sn)) ! 0;



Representation Theorem

Theorem
Any dD-upper-semicontinuous ⇤-measurable process X of

class(D

⇤

) such that XS = 0 for S 2 S ⇤

with dD([S ,1)) = 0 a.s.

is of the form

XS = E
"

Z

[S ,1)

gt( sup
v2[S ,t]

Lv )dDt
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#

, S 2 S ⇤,

for some ⇤-measurable process L such that g(supv2[S ,.] Lv )1[S ,1)

is

P⌦ dD-integrable for any S 2 S ⇤

. The maximal such process is

LS = ess inf

T2S ⇤

((S ,1])

`S ,T , S 2 S ⇤,

where `S ,T 2 F⇤
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Illustration in toy example

Figure: Price evolution of ⇠ in worst, OK, and best scenario, respectively.

Figure: Solution L

O for full knowledge of next prices: optional case
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Figure: Price evolution of ⇠ in worst, OK, and best scenario, respectively.

Figure: Solution L

⇤ for some knowledge of next prices: Meyer case
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Figure: Price evolution of ⇠ in worst, OK, and best scenario, respectively.

Figure: Optimal policy with full knowledge of next prices: optional case



Illustration in toy example

Figure: Price evolution of ⇠ in worst, OK, and best scenario, respectively.

Figure: Optimal policy with no knowledge of next prices: predictable
case



Illustration in toy example

Figure: Price evolution of ⇠ in worst, OK, and best scenario, respectively.

Figure: Optimal policy with knowledge whether prices will improve:
Meyer case



Illustration: prices driven by compound Poisson process

E
"

Z

[0, ˆT )

⇠t
⇤
dCt �

Z

[0, ˆT )

�t(Ct) dDt

#

! max
C increasing from C

0�=c
0

I
Dt , Nt , t � 0, standard Poisson process with parameter �

1

I . . . counting the jumps of price process

⇠t , ⇠
0

+
Nt
X

n=1

Yn, t � 0,

with i.i.d. Y
1

,Y
2

, . . . > 0 ind. of N with m , EY
1

< 1
I �t(c) =

1

2

c

2, c 2 R, T̂ ⇠ Exp(�
2

) independent time horizon
I observation filtration (Ft) filtration generated by ⇠ and T̂

I sensor warns about impending jumps if they are large enough:

P ⇢ ⇤⌘ ,P _ �(�⌘) ⇢ O

where, for some detection threshold ⌘ � 0,

�⌘
t ,

Nt
X

n=1

Yn1{Yn>⌘}, t � 0.



Illustration: prices driven by compound Poisson process
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I e↵ective cost process for controller with information ⇤⌘:

⇠⌘t , ⇤
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⇠t = ⇠t� + YNt1{�⇠t>⌘}, t � 0

I solution to representation problem for ⇠⌘:

L

⌘
t = (⇠⌘t �m

�
1

�
2

) ·

8

>

>

>

>

>

<

>

>

>

>

>

:

0, ⇠⌘t � �
1

�
2

m,�⇠t > ⌘
�
2

�
1

, ⇠⌘t � �
1

�
2

m,�⇠t  ⌘
1

1+

�
1

�
1

+�
2

p

�
2

�
1

+�
2

, ⇠⌘t < �
1

�
2

m,�⇠t > ⌘

1

p
�
2

�
1

+�
2

, ⇠⌘t < �
1

�
2

m,�⇠t  ⌘

where p , P[Y
1

 ⌘] is sensor’s “failure-to-alert”-probability



Illustration: prices driven by compound Poisson process

Price evolution ⇠
and threshold m�

1

/�
2

optimal optional control optimal predictable control optimal Meyer control



Conclusions

I Information for control policies described by Meyer �-fields
I Account in a very flexible manner for possible signals on

information shocks and avoid delayed filtrations
I Illustration by general irreversible investment problem with

signals on demand shocks
I Solution constructed from representation theorem for

su�ciently regular Meyer processes
I Optimal controls are just ladlag in general: proactive and

reactive control
I Explicit solutions in toy example and with some compound

Poisson process
I Future work: explicit solutions with (more) general Lévy

processes; signals with expected jumps; di↵erent target
functionals like optimal order execution with stochastic
liquidity; trading with transaction costs . . .

Thank you very much!
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