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Information flow and optimal control

In many financial optimal control problems, one can think of
moments where significant new information is known to become

available:
» interest rate decisions by central banks, elections, referendums
» publication of data on GDP growth, job market statistics,
trade balances
> price jumps, e.g., at opening of exchanges, from earning
announcements, . ..

» trading algos scanning limit order books for signals of new
demand /supply for shares of stock
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trade balances
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announcements, ...
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Before these moments, investors will form an opinion and take
precautionary actions: proactive trading.

Afterwards, when the news are fully revealed, further measures
may have to be taken: reactive trading.

How to describe such information flows mathematically?

How to do optimal control with them?



lllustrative control problem: lrreversible investment

» Classic problem: Dixit and Pindyck (1994), Bertola (1998),
Riedel and Su (2011), Ferrari (2015), ...

» A firm manager has to decide about the level of installed
capacity C; at any time t > 0. With installed capacity c, she
gets a unit price :(c) for the current demand dD;; expanding
capacity at time t by dC; costs & dC;; investment is
irreversible, i.e., C is increasing.

Hence, her expected net proceeds are

C:)dD; — dCi| — max :
/[O,oo) fYt( t) ‘ /[O,OO) ft t:| C>cop " l.c., adapted

» Typical assumptions: & > 0 super-martingale deflator;

v exhibits decreasing returns to scale, e.g., 7:(c) = e " logc;
dD; < dt, e.g., dD;y = dt

E




Solution via representation theorem

If dD is atomless with full support and v:(¢) € L}(P @ dt) then a
deflator & of class (D) with &, = 0 can be written in the form

& =E /( )(9(_-%( sup L,)dD,
t,00

ve(t,u)

%}, t >0,

for a suitable optional L > 0; cf. B.-El Karow (2004).
Hence, the optimal left-cont. control is C; £ Sup,cpo,t) Lv
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What if dD allows for point masses: “demand surges””?



Capacity expansions with jumps: action vs. reaction

» A demand surge AD; > 0 gives an incentive to have an
increased capacity at time t to collect

/Yt(Ct)ADt-

Taking into account possible price changes are expected,
expanding capacity at this point may make sense: C; > C;_

» The actual demand/price change may only be fully known

afterwards and may incentivize a further capacity expansion:
Ciy > C

~+ Possibly two capacity expansions — at possibly different prices:
§edCy +&e(Cr — Gio) + Eex(Crp — C) =: &6 4d Gy

with &x = liminf, | £,; cf. Lenglart (1980),
Campi-Schachermayer (2006), Guasoni et al. (2012)



Same toy model - Different information flows

Example: demand. dD; = 1j 5(t)dt + 01(dt) ~ surge in t = 1,
capacity prices (&) are at level 60 on [0, 1] and then

» continue to be 60 on (1,2] in worst price scenario wi;

» jump to and stay at 40 on (1, 2] in OK price scenario wo;

» jump to and stay at 30 on (1, 2] in best price scenario ws;
Right-cont. observation filtration (.%#;) is naturally generated by &.
But capacity controls C can be restricted to be . ..

predictable: capacity expansion at time 1 with no knowledge

of next prices
. optional: capacity expansion at time 1 with full knowledge of

next prices
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Unifying framework: Meyer o-fields A with & C A C &



Meyer o-fields A: Definition and some properties

A o-field on Q2 x [0,00) is called a Meyer o-field if
» it Is generated by cadlag processes;
» it contains all deterministic Borel-measurable events;

> it is stable with respect to stopping: with Z also (Zsat)s>0 is
A-measurable for any t > 0.

A Meyer-o-field induces . ..
. a set of stopping times: .7\ 5 S iff [S, co[€ A;
. a filtration via #2 := 0(Zs | Z A-measurable), S € ./

Meyer’s section theorem applies: For any B € A and any € > 0,
there is S € . with

(w,S(w)) € B whenever S(w) < oo

and
P[S < oo] > P[proja(B)] — €.

Moreover, there are A-projections, super-martingales, tests for
path properties. ..



General irreversible investment problem

Maximize

1D / ’Yt(Ct) dD; — / Et *dCt:|
[0,00) [0,00)

over \-measurable increasing (only ladlag) controls C where

» dD optional measure possibly with random atoms, not
necessarily with full support; e.g., dD; = 19 5)(t)dt + d1(dt)

» ¢ is A-measurable with £ = 0 if dD([S,00)) =0 a.s.,
Se.7N eg., & from above toy example

> (t,w) — v¢(c)(w) progressively measurable, ¢ — ~:(c)
concave, suitable Inada conditions; e.g., 7:(c) = log ¢
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Solution via stochastic representation theorem. ..



Assumptions and some terminology

The process D = (D) is right-continuous and adapted,;

g =gi(w,l): Qx[0,00) x R — R (think —0c7:(¢)) is
progressively measurable in (w, t) for any fixed ¢ € R with
Ef[O,oo) |g:(¢)|dD; < oo and continuous and strictly increasing

from —oo to +00 in £ for any fixed (w, t) € Q x [0, 00).

A A-measurable process X (think —¢) is called ...
of class(D") if {Xs | S € .#"} is uniformly integrable;

. dD-upper-semicontinuous if

limsup E[Xs | < E[Xs]

for any sequence of stopping times (S,) such that

» either each S, is predictable with S,, TS on {S > 0},
» oreach S, is in .Z([S, oo]) with dD([S, S,)) — 0;



Representation Theorem

Theorem

Any dD-upper-semicontinuous \-measurable process X of

class(D") such that Xs = 0 for S € . with dD([S,00)) =0 a.s.
Is of the form

Xs =F

/ gt( sup L,)dD;
[S,00) vels,t]

yg} , Se. o
for some N-measurable process L such that g(suva[Sr] Ly)1lis o) is
P © dD-integrable for any S € .. The maximal such process is

Ls = essinf /{5, Se. oM
Te.sM(S,00])

where (s T € FL2 solves

E[XT—X5|9*5A} _E

gzg} |

/ gt(f)th
[S,T)



lllustration in toy example
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Figure: Optimal policy with no knowledge of next prices: predictable
case



lllustration in toy example

Figure: Price evolution of £ in worst, OK, and best scenario, respectively.
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Figure: Optimal policy with knowledge whether prices will improve:
Meyer case



lllustration: prices driven by compound Poisson process

/ ) ft*dCt—/ A %(Ct) dDy
[0,7) [0,7)

D; = N;, t > 0, standard Poisson process with parameter \;
» ...counting the jumps of price process

® — max

C increasing from Cyp_ =c¢p

v

N
ftéfo—i-zyn, t >0,
n=1

with i.i.d. Y7, Ya,... > 0ind. of N with m 2 EY; < o

> vi(c) = %cz, ccR, T~ Exp(A2) independent time horizon

> observation filtration (.%;) filtration generated by ¢ and T
» sensor warns about impending jumps if they are large enough:

PCNEPVo(X"YC O

where, for some detection threshold 1 > 0,
N

X? = Z Yn]—{Yn>77}7 t > 0.
n=1



lllustration: prices driven by compound Poisson process

E

MmaxXx
CEA"™ increasing from Cp_ =y

/ ) 6?*dCt—/ A fyt(Ct) th
[0,T) [0,T)

» effective cost process for controller with information A":

n A /\nft gt— —I_ YNtl{A§t>n}7 t Z O

» solution to representation problem for £7:

0, &> 8m AL >
L?z(f?—mﬁ)-<§_§71 N ng§m,A€t§ﬁ
Ao +A1+1>\2 POYEDYE §r < pvRil Al >

et &< m A& <

where p = P[Y; < 1] is sensor's “failure-to-alert” -probability



lllustration: prices driven by compound Poisson process

Price evolution & -
and threshold mA1/ )\,
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Conclusions

» Information for control policies described by Meyer o-fields

» Account in a very flexible manner for possible signals on
information shocks and avoid delayed filtrations

> |llustration by general irreversible investment problem with
signals on demand shocks

» Solution constructed from representation theorem for
sufficiently regular Meyer processes

» Optimal controls are just ladlag in general: proactive and
reactive control

» Explicit solutions in toy example and with some compound
Poisson process

» Future work: explicit solutions with (more) general Lévy
processes; signals with expected jumps; different target
functionals like optimal order execution with stochastic
liquidity; trading with transaction costs . ..
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Thank you very much!



