## Proactive and reactive trading: Optimal control with Meyer $\sigma$ -fields

Peter Bank



joint work in progress with David Beßlich

Advances in Stochastic Analysis for Risk Modeling Centre International de Rencontres Mathématiques Luminy, November 13–17, 2017

#### Information flow and optimal control

In many financial optimal control problems, one can think of moments where significant new information is known to become available:

- interest rate decisions by central banks, elections, referendums
- publication of data on GDP growth, job market statistics, trade balances
- price jumps, e.g., at opening of exchanges, from earning announcements, ...
- trading algos scanning limit order books for signals of new demand/supply for shares of stock

#### Information flow and optimal control

In many financial optimal control problems, one can think of moments where significant new information is known to become available:

- interest rate decisions by central banks, elections, referendums
- publication of data on GDP growth, job market statistics, trade balances
- price jumps, e.g., at opening of exchanges, from earning announcements, ...
- trading algos scanning limit order books for signals of new demand/supply for shares of stock

Before these moments, investors will form an opinion and take precautionary actions: *proactive trading*.

Afterwards, when the news are fully revealed, further measures may have to be taken: *reactive trading*.

#### Information flow and optimal control

In many financial optimal control problems, one can think of moments where significant new information is known to become available:

- interest rate decisions by central banks, elections, referendums
- publication of data on GDP growth, job market statistics, trade balances
- price jumps, e.g., at opening of exchanges, from earning announcements, ...
- trading algos scanning limit order books for signals of new demand/supply for shares of stock

Before these moments, investors will form an opinion and take precautionary actions: *proactive trading*.Afterwards, when the news are fully revealed, further measures may have to be taken: *reactive trading*.How to describe such information flows mathematically?How to do optimal control with them?

#### Illustrative control problem: Irreversible investment

- Classic problem: Dixit and Pindyck (1994), Bertola (1998), Riedel and Su (2011), Ferrari (2015), ...
- A firm manager has to decide about the level of installed capacity C<sub>t</sub> at any time t ≥ 0. With installed capacity c, she gets a unit price γ<sub>t</sub>(c) for the current demand dD<sub>t</sub>; expanding capacity at time t by dC<sub>t</sub> costs ξ<sub>t</sub> dC<sub>t</sub>; investment is irreversible, i.e., C is increasing. Hence, her expected net proceeds are

$$\mathbb{E}\left[\int_{[0,\infty)} \gamma_t(C_t) \, dD_t - \int_{[0,\infty)} \xi_t \, dC_t\right] \to \max_{C \ge c_0 \nearrow \text{ l.c., adapted}}.$$

Typical assumptions: ξ > 0 super-martingale deflator;
 γ exhibits decreasing returns to scale, e.g., γ<sub>t</sub>(c) = e<sup>-rt</sup> log c;
 dD<sub>t</sub> ≪ dt, e.g., dD<sub>t</sub> = dt

#### Solution via representation theorem

If dD is atomless with full support and  $\gamma_t(\ell) \in L^1(\mathbb{P} \otimes dt)$  then a deflator  $\xi$  of class (D) with  $\xi_{\infty} = 0$  can be written in the form

$$\xi_t = \mathbb{E}\left[\int_{(t,\infty)} \partial_c \gamma_u(\sup_{v \in [t,u)} L_v) dD_u \middle| \mathscr{F}_t\right], \quad t \ge 0,$$

for a suitable optional  $L \ge 0$ ; cf. B.-El Karoui (2004). Hence, the optimal left-cont. control is  $\hat{C}_t \triangleq \sup_{v \in [0,t)} L_v$ 

#### Solution via representation theorem

If dD is atomless with full support and  $\gamma_t(\ell) \in L^1(\mathbb{P} \otimes dt)$  then a deflator  $\xi$  of class (D) with  $\xi_{\infty} = 0$  can be written in the form

$$\xi_t = \mathbb{E}\left[\int_{(t,\infty)} \partial_c \gamma_u(\sup_{v \in [t,u)} L_v) dD_u \middle| \mathscr{F}_t\right], \quad t \ge 0,$$

for a suitable optional  $L \ge 0$ ; cf. B.-El Karoui (2004). Hence, the optimal left-cont. control is  $\hat{C}_t \triangleq \sup_{v \in [0,t)} L_v$ :

$$\mathbb{E}\left[\int_{[0,\infty)} \gamma_u(C_u) dD_u - \int_{[0,\infty)} \xi_t dC_t\right]$$
  
=  $\mathbb{E}\left[\int_{[0,\infty)} \left\{\gamma_u(C_u) - \int_{[0,u)} \partial_c \gamma_u(\sup_{\substack{v \in [t,u) \\ \leq \hat{C}_u}} L_v) dC_t\right\} dD_u\right]$   
$$\leq \mathbb{E}\left[\int_{[0,\infty)} \underbrace{\{\gamma_u(C_u) - \partial_c \gamma_u(\hat{C}_u) C_u\}}_{\leq \text{ same with } C_u \text{ replaced by } \hat{C}_u} dD_u\right]$$

#### Solution via representation theorem

If dD is atomless with full support and  $\gamma_t(\ell) \in L^1(\mathbb{P} \otimes dt)$  then a deflator  $\xi$  of class (D) with  $\xi_{\infty} = 0$  can be written in the form

$$\xi_t = \mathbb{E}\left[\int_{(t,\infty)} \partial_c \gamma_u(\sup_{v \in [t,u)} L_v) dD_u \,\middle|\, \mathscr{F}_t\right], \quad t \ge 0,$$

for a suitable optional  $L \ge 0$ ; cf. B.-El Karoui (2004). Hence, the optimal left-cont. control is  $\hat{C}_t \triangleq \sup_{v \in [0,t)} L_v$ :

$$\mathbb{E}\left[\int_{[0,\infty)} \gamma_u(C_u) dD_u - \int_{[0,\infty)} \xi_t dC_t\right]$$
  
=  $\mathbb{E}\left[\int_{[0,\infty)} \left\{\gamma_u(C_u) - \int_{[0,u)} \partial_c \gamma_u(\sup_{v \in [t,u)} L_v) dC_t\right\} dD_u\right]$   
 $\leq \mathbb{E}\left[\int_{[0,\infty)} \frac{\{\gamma_u(C_u) - \partial_c \gamma_u(\hat{C}_u) C_u\}}{\leq \text{ same with } C_u \text{ replaced by } \hat{C}_u} dD_u\right]$ 

What if *dD* allows for point masses: "demand surges"?

#### Capacity expansions with jumps: action vs. reaction

► A demand surge ΔD<sub>t</sub> > 0 gives an incentive to have an increased capacity at time t to collect

 $\gamma_t(C_t)\Delta D_t.$ 

Taking into account possible price changes are expected, expanding capacity at this point may make sense:  $C_t > C_{t-}$ 

The actual demand/price change may only be fully known afterwards and may incentivize a further capacity expansion: C<sub>t+</sub> > C<sub>t</sub>

→ Possibly two capacity expansions – at possibly different prices:

 $\xi_t \, dC_t^c + \xi_t (C_t - C_{t-}) + \xi_{t*} (C_{t+} - C_t) =: \xi_{t*} dC_t$ 

with  $\xi_{t*} := \liminf_{u \downarrow t} \xi_u$ ; cf. Lenglart (1980), Campi-Schachermayer (2006), Guasoni et al. (2012)

#### Same toy model - Different information flows

**Example:** demand:  $dD_t = 1_{[0,2]}(t)dt + \delta_1(dt) \rightsquigarrow$  surge in t = 1; capacity prices  $(\xi_t)$  are at level 60 on [0,1] and then

- continue to be 60 on (1, 2] in worst price scenario  $\omega_1$ ;
- jump to and stay at 40 on (1, 2] in OK price scenario  $\omega_2$ ;
- jump to and stay at 30 on (1, 2] in best price scenario  $\omega_3$ ;

Right-cont. observation filtration  $(\mathscr{F}_t)$  is naturally generated by  $\xi$ . But capacity controls *C* can be restricted to be ...

- ... predictable: capacity expansion at time 1 with **no knowledge** of next prices
- ... optional: capacity expansion at time 1 with **full knowledge** of next prices

#### Same toy model - Different information flows

**Example:** demand:  $dD_t = 1_{[0,2]}(t)dt + \delta_1(dt) \rightsquigarrow$  surge in t = 1; capacity prices  $(\xi_t)$  are at level 60 on [0,1] and then

- continue to be 60 on (1, 2] in worst price scenario  $\omega_1$ ;
- jump to and stay at 40 on (1, 2] in OK price scenario  $\omega_2$ ;
- jump to and stay at 30 on (1, 2] in best price scenario  $\omega_3$ ;

Right-cont. observation filtration  $(\mathscr{F}_t)$  is naturally generated by  $\xi$ . But capacity controls *C* can be restricted to be ...

- ... predictable: capacity expansion at time 1 with **no knowledge** of next prices
- ... optional: capacity expansion at time 1 with **full knowledge** of next prices
- ... "in between": capacity expansion at time 1 with some knowledge of next prices:
  - either "Will prices remain high?" Yes/No
  - ► or "Will the best price become available?" Yes/No
  - ► or "Will the OK level price obtain afterwards?" Yes/No

#### Same toy model - Different information flows

**Example:** demand:  $dD_t = 1_{[0,2]}(t)dt + \delta_1(dt) \rightsquigarrow$  surge in t = 1; capacity prices  $(\xi_t)$  are at level 60 on [0,1] and then

- continue to be 60 on (1, 2] in worst price scenario  $\omega_1$ ;
- ▶ jump to and stay at 40 on (1, 2] in OK price scenario  $\omega_2$ ;
- jump to and stay at 30 on (1, 2] in best price scenario  $\omega_3$ ;

Right-cont. observation filtration  $(\mathscr{F}_t)$  is naturally generated by  $\xi$ . But capacity controls *C* can be restricted to be ...

- ... predictable: capacity expansion at time 1 with **no knowledge** of next prices
- ... optional: capacity expansion at time 1 with **full knowledge** of next prices
- ... "in between": capacity expansion at time 1 with some knowledge of next prices:
  - either "Will prices remain high?" Yes/No
  - or "Will the best price become available?" Yes/No
  - or "Will the OK level price obtain afterwards?" Yes/No

Unifying framework: Meyer  $\sigma$ -fields  $\Lambda$  with  $\mathscr{P} \subset \Lambda \subset \mathscr{O}$ 

### Meyer $\sigma$ -fields $\Lambda$ : Definition and some properties

A  $\sigma$ -field on  $\Omega \times [0,\infty)$  is called a **Meyer**  $\sigma$ -field if

- it is generated by càdlàg processes;
- it contains all deterministic Borel-measurable events;
- it is stable with respect to stopping: with Z also (Z<sub>s∧t</sub>)<sub>s≥0</sub> is ∧-measurable for any t ≥ 0.
- A Meyer- $\sigma$ -field induces . . .
- ... a set of **stopping times**:  $\mathscr{S}^{\Lambda} \ni S$  iff  $[S, \infty[ \in \Lambda;$

... a filtration via  $\mathscr{F}_{S}^{\Lambda} := \sigma(Z_{S} \mid Z \Lambda \text{-measurable}), S \in \mathscr{S}^{\Lambda};$ Meyer's section theorem applies: For any  $B \in \Lambda$  and any  $\varepsilon > 0$ ,

there is  $S \in \mathscr{S}^{\Lambda}$  with

$$(\omega, S(\omega)) \in B$$
 whenever  $S(\omega) < \infty$ 

and

$$\mathbb{P}[S < \infty] \geq \mathbb{P}[\operatorname{proj}_{\Omega}(B)] - \varepsilon.$$

Moreover, there are  $\Lambda$ -**projections**, super-martingales, tests for path properties...

#### General irreversible investment problem

Maximize

$$\mathbb{E}\left[\int_{[0,\infty)}\gamma_t(C_t)\,dD_t-\int_{[0,\infty)}\xi_{t\,*}dC_t\right]$$

over  $\Lambda$ -measurable increasing (only làdlàg) controls C where

- ► dD optional measure possibly with random atoms, not necessarily with full support; e.g., dD<sub>t</sub> = 1<sub>[0,2]</sub>(t)dt + δ<sub>1</sub>(dt)
- ►  $\xi$  is  $\Lambda$ -measurable with  $\xi_S = 0$  if  $dD([S, \infty)) = 0$  a.s.,  $S \in \mathscr{S}^{\Lambda}$ ; e.g.,  $\xi$  from above toy example
- $(t, \omega) \mapsto \gamma_t(c)(\omega)$  progressively measurable,  $c \mapsto \gamma_t(c)$ concave, suitable Inada conditions; e.g.,  $\gamma_t(c) = \log c$

#### General irreversible investment problem

Maximize

$$\mathbb{E}\left[\int_{[0,\infty)}\gamma_t(C_t)\,dD_t-\int_{[0,\infty)}\xi_{t\,*}dC_t\right]$$

over  $\Lambda$ -measurable increasing (only làdlàg) controls C where

- ► dD optional measure possibly with random atoms, not necessarily with full support; e.g., dD<sub>t</sub> = 1<sub>[0,2]</sub>(t)dt + δ<sub>1</sub>(dt)
- ►  $\xi$  is  $\Lambda$ -measurable with  $\xi_S = 0$  if  $dD([S, \infty)) = 0$  a.s.,  $S \in \mathscr{S}^{\Lambda}$ ; e.g.,  $\xi$  from above toy example
- $(t, \omega) \mapsto \gamma_t(c)(\omega)$  progressively measurable,  $c \mapsto \gamma_t(c)$ concave, suitable Inada conditions; e.g.,  $\gamma_t(c) = \log c$

Solution via stochastic representation theorem...

#### Assumptions and some terminology

The process  $D = (D_t)$  is right-continuous and adapted;  $g = g_t(\omega, \ell) : \Omega \times [0, \infty) \times \mathbb{R} \to \mathbb{R}$  (think  $-\partial_c \gamma_t(\ell)$ ) is progressively measurable in  $(\omega, t)$  for any fixed  $\ell \in \mathbb{R}$  with  $\mathbb{E} \int_{[0,\infty)} |g_t(\ell)| dD_t < \infty$  and continuous and strictly increasing from  $-\infty$  to  $+\infty$  in  $\ell$  for any fixed  $(\omega, t) \in \Omega \times [0, \infty)$ .

A  $\Lambda$ -measurable process X (think  $-\xi$ ) is called ... of class( $D^{\Lambda}$ ) if  $\{X_S \mid S \in \mathscr{S}^{\Lambda}\}$  is uniformly integrable; ... dD-upper-semicontinuous if

 $\limsup_{n} \mathbb{E}[X_{S_n}] \leq \mathbb{E}[X_S]$ 

for any sequence of stopping times  $(S_n)$  such that

- *either* each  $S_n$  is predictable with  $S_n \uparrow S$  on  $\{S > 0\}$ ,
- or each  $S_n$  is in  $\mathscr{S}^{\wedge}([S,\infty])$  with  $dD([S,S_n)) \to 0$ ;

#### Representation Theorem

#### Theorem

Any dD-upper-semicontinuous  $\Lambda$ -measurable process X of  $class(D^{\Lambda})$  such that  $X_S = 0$  for  $S \in \mathscr{S}^{\Lambda}$  with  $dD([S, \infty)) = 0$  a.s. is of the form

$$X_{S} = \mathbb{E}\left[\int_{[S,\infty)} g_{t}(\sup_{v\in[S,t]}L_{v})dD_{t} \middle| \mathscr{F}_{S}^{\Lambda}
ight], \quad S\in\mathscr{S}^{\Lambda},$$

for some  $\Lambda$ -measurable process L such that  $g(\sup_{v \in [S,.]} L_v) 1_{[S,\infty)}$  is  $\mathbb{P} \otimes dD$ -integrable for any  $S \in \mathscr{S}^{\Lambda}$ . The maximal such process is

$$L_{S} = \operatorname{ess\,inf}_{T \in \mathscr{S}^{\Lambda}((S,\infty])} \ell_{S,T}, \quad S \in \mathscr{S}^{\Lambda},$$

where  $\ell_{S,T} \in \mathscr{F}_{S}^{\Lambda}$  solves

$$\mathbb{E}\left[X_{T}-X_{S} \mid \mathscr{F}_{S}^{\Lambda}\right] = \mathbb{E}\left[\int_{[S,T)} g_{t}(\ell) dD_{t} \mid \mathscr{F}_{S}^{\Lambda}\right]$$



**Figure:** Price evolution of  $\xi$  in worst, OK, and best scenario, respectively.



**Figure:** Price evolution of  $\xi$  in worst, OK, and best scenario, respectively.



**Figure:** Solution  $L^{\mathcal{O}}$  for **full knowledge** of next prices: optional case



**Figure:** Price evolution of  $\xi$  in worst, OK, and best scenario, respectively.



**Figure:** Solution  $L^{\mathscr{P}}$  for **no knowledge** of next prices: predictable case



**Figure:** Price evolution of  $\xi$  in worst, OK, and best scenario, respectively.



**Figure:** Solution  $L^{\Lambda}$  for some knowledge of next prices: Meyer case



**Figure:** Price evolution of  $\xi$  in worst, OK, and best scenario, respectively.



Figure: Optimal policy with full knowledge of next prices: optional case



**Figure:** Price evolution of  $\xi$  in worst, OK, and best scenario, respectively.



**Figure:** Optimal policy with **no knowledge** of next prices: predictable case



**Figure:** Price evolution of  $\xi$  in worst, OK, and best scenario, respectively.



**Figure:** Optimal policy with **knowledge whether prices will improve**: Meyer case Illustration: prices driven by compound Poisson process

$$\mathbb{E}\left[\int_{[0,\hat{T})} \xi_t^* dC_t - \int_{[0,\hat{T})} \gamma_t(C_t) dD_t\right] \to \max_{C \text{ increasing from } C_{0-}=c_0}$$

D<sub>t</sub> ≜ N<sub>t</sub>, t ≥ 0, standard Poisson process with parameter λ<sub>1</sub>
 ...counting the jumps of price process

$$\xi_t \triangleq \xi_0 + \sum_{n=1}^{N_t} Y_n, \quad t \ge 0,$$

with i.i.d.  $Y_1, Y_2, \ldots > 0$  ind. of N with  $m \triangleq \mathbb{E}Y_1 < \infty$ 

- $\gamma_t(c) = \frac{1}{2}c^2$ ,  $c \in \mathbb{R}$ ,  $\hat{T} \sim \text{Exp}(\lambda_2)$  independent time horizon
- ▶ observation filtration ( $\mathscr{F}_t$ ) filtration generated by  $\xi$  and  $\hat{T}$
- sensor warns about impending jumps if they are large enough:

 $\mathscr{P} \subset \Lambda^{\eta} \triangleq \mathscr{P} \lor \sigma(\chi^{\eta}) \subset \mathscr{O}$ 

where, for some detection threshold  $\eta \geq 0$ ,

$$\chi_t^{\eta} \triangleq \sum_{n=1}^{N_t} Y_n \mathbb{1}_{\{Y_n > \eta\}}, \quad t \ge 0.$$

#### Illustration: prices driven by compound Poisson process

$$\mathbb{E}\left[\int_{[0,\hat{T})} \xi_t^{\eta *} dC_t - \int_{[0,\hat{T})} \gamma_t(C_t) dD_t\right] \to \max_{C \in \Lambda^{\eta} \text{ increasing from } C_{0-} = c_0}$$

• effective cost process for controller with information  $\Lambda^{\eta}$ :

$$\xi_t^{\eta} \triangleq {}^{\Lambda^{\eta}} \xi_t = \xi_{t-} + Y_{N_t} \mathbf{1}_{\{\Delta \xi_t > \eta\}}, \quad t \ge 0$$

• solution to representation problem for  $\xi^{\eta}$ :

$$L_{t}^{\eta} = \left(\xi_{t}^{\eta} - m\frac{\lambda_{1}}{\lambda_{2}}\right) \cdot \begin{cases} 0, & \xi_{t}^{\eta} \geq \frac{\lambda_{1}}{\lambda_{2}}m, \Delta\xi_{t} > \eta \\ \frac{\lambda_{2}}{\lambda_{1}}, & \xi_{t}^{\eta} \geq \frac{\lambda_{1}}{\lambda_{2}}m, \Delta\xi_{t} \leq \eta \\ \frac{1}{1 + \frac{\lambda_{1}}{\lambda_{1} + \lambda_{2}}p}\frac{\lambda_{2}}{\lambda_{1} + \lambda_{2}}, & \xi_{t}^{\eta} < \frac{\lambda_{1}}{\lambda_{2}}m, \Delta\xi_{t} > \eta \\ \frac{1}{p}\frac{\lambda_{2}}{\lambda_{1} + \lambda_{2}}, & \xi_{t}^{\eta} < \frac{\lambda_{1}}{\lambda_{2}}m, \Delta\xi_{t} \leq \eta \end{cases}$$

where  $p \triangleq \mathbb{P}[Y_1 \leq \eta]$  is sensor's "failure-to-alert"-probability

#### Illustration: prices driven by compound Poisson process

Price evolution  $\xi$ 



optimal optional control optimal predictable control optimal Meyer control

#### Conclusions

- Information for control policies described by Meyer  $\sigma$ -fields
- Account in a very flexible manner for possible signals on information shocks and avoid delayed filtrations
- Illustration by general irreversible investment problem with signals on demand shocks
- Solution constructed from representation theorem for sufficiently regular Meyer processes
- Optimal controls are just ladlag in general: proactive and reactive control
- Explicit solutions in toy example and with some compound Poisson process
- Future work: explicit solutions with (more) general Lévy processes; signals with expected jumps; different target functionals like optimal order execution with stochastic liquidity; trading with transaction costs ...

#### Conclusions

- Information for control policies described by Meyer  $\sigma$ -fields
- Account in a very flexible manner for possible signals on information shocks and avoid delayed filtrations
- Illustration by general irreversible investment problem with signals on demand shocks
- Solution constructed from representation theorem for sufficiently regular Meyer processes
- Optimal controls are just ladlag in general: proactive and reactive control
- Explicit solutions in toy example and with some compound Poisson process
- Future work: explicit solutions with (more) general Lévy processes; signals with expected jumps; different target functionals like optimal order execution with stochastic liquidity; trading with transaction costs ...

# Thank you very much!