Motivation and problem formulation (MKV)

Causal Transport

MKV via Causal Transport

Conclusions

McKean-Vlasov control problems and non-anticipative optimal transport

Beatrice Acciaio London School of Economics

ongoing work with J. Backhoff and R. Carmona

"Advances in Stochastic Analysis for Risk Modeling" CIRM, Luminy, 13-17 November 2017

Outline

- 2 Our toolkit: causal transport
- Characterization of MKV solutions via causal transport
- 4 Conclusions and ongoing research

Motivation and problem formulation (MKV) ••••••• Causal Transport

MKV via Causal Transport

Conclusions

Motivation

Conclusions

N-player stochastic differential game

 $\rightarrow N$ players with private state processes evolving as to

$$dX_t^{N,i} = b_t(X_t^{N,i}, \alpha_t^{N,i}, \bar{\nu}_t^{N,-i})dt + dW_t^i, \quad i = 1, ..., N$$

- $W^1, ..., W^N$ independent Wiener processes
- $\alpha^{N,1}, ..., \alpha^{N,N}$ controls of the *N* players
- $\bar{v}_t^{N,-i} = \frac{1}{N-1} \sum_{j \neq i} \delta_{X_t^{N,j}}$ empirical distrib. states of the other players

N-player stochastic differential game

 $\rightarrow N$ players with private state processes evolving as to

$$dX_{t}^{N,i} = b_{t}(X_{t}^{N,i}, \alpha_{t}^{N,i}, \bar{\nu}_{t}^{N,-i})dt + dW_{t}^{i}, \quad i = 1, ..., N$$

- $W^1, ..., W^N$ independent Wiener processes
- $\alpha^{N,1}, ..., \alpha^{N,N}$ controls of the *N* players
- $\bar{\nu}_t^{N,-i} = \frac{1}{N-1} \sum_{j \neq i} \delta_{X_t^{N,j}}$ empirical distrib. states of the other players
- → The objective of player *i* is to choose a control $\alpha^{N,i}$ that minimizes

$$\mathbb{E}\left[\int_0^T f_t(X_t^{N,i},\alpha_t^{N,i},\bar{\eta}_t^{N,-i})dt + g(X_T^{N,i},\bar{\nu}_T^{N,-i})\right]$$

• $\bar{\eta}_t^{N,-i} = \frac{1}{N-1} \sum_{j \neq i} \delta_{(X_t^{N,j}, \alpha_t^{N,j})}$ empirical distrib. of states & controls

 \rightarrow Statistically identical players: same functions b_t, f_t, g

Causal Transport

MKV via Causal Transport

N-player stochastic differential game

Problems:

- optimal controls rarely exist (whether cooperative or non-cooperative)
- even when they exist, difficult to characterize

N-player stochastic differential game

Problems:

- optimal controls rarely exist (whether cooperative or non-cooperative)
- even when they exist, difficult to characterize

Idea: resort to approximation by asymptotic arguments:

N-player game $----> N \rightarrow \infty$

N-player stochastic differential game

Problems:

- optimal controls rarely exist (whether cooperative or non-cooperative)
- even when they exist, difficult to characterize

Idea: resort to approximation by asymptotic arguments:

N-player game – -	:	$>$ N $\rightarrow \infty$
Nash equilibrium (non-coop)	>	Mean Field Game
Social planner (cooperative)	>	McKean Vlasov

Approximating cooperative equilibria

Main argument:

- all agents adopt the same feedback control: $\alpha_t^{N,i} = \phi(t, X_t^{N,i})$
- in the limit (# players → ∞) the private states of players evolve independently of each other

Approximating cooperative equilibria

Main argument:

- all agents adopt the same feedback control: $\alpha_t^{N,i} = \phi(t, X_t^{N,i})$
- in the limit (# players → ∞) the private states of players evolve independently of each other
- distribution of private state converges toward distribution of the solution to the McKean-Vlasov control problem:

$$\inf_{\alpha} \mathbb{E} \left[\int_{0}^{T} f_{t}(X_{t}, \alpha_{t}, \mathcal{L}(X_{t}, \alpha_{t})) dt + g(X_{T}, \mathcal{L}(X_{T})) \right]$$

subject to $dX_{t} = b_{t}(X_{t}, \alpha_{t}, \mathcal{L}(X_{t})) dt + dW_{t}$

 under suitable conditions, the optimal feedback controls are *ε*-optimal for large systems of players Motivation and problem formulation (MKV)

Causal Transport

MKV via Causal Transport

Conclusions

Problem Formulation

Causal Transport

MKV via Causal Transport

McKean-Vlasov control problem

We study the following McKean-Vlasov control problem:

$$\inf_{\alpha} \mathbb{E} \left[\int_{0}^{T} f_{t}(X_{t}, \alpha_{t}, \mathcal{L}(X_{t}, \alpha_{t})) dt + g(X_{T}, \mathcal{L}(X_{T})) \right]$$

subject to $dX_{t} = b_{t}(X_{t}, \alpha_{t}, \mathcal{L}(X_{t})) dt + dW_{t}, X_{0} = 0$

Causal Transport

MKV via Causal Transport

McKean-Vlasov control problem

We study the following McKean-Vlasov control problem:

$$\inf_{\alpha} \mathbb{E} \left[\int_{0}^{T} f_{t} \left(X_{t}, \alpha_{t}, \mathcal{L}(X_{t}, \alpha_{t}) \right) dt + g \left(X_{T}, \mathcal{L}(X_{T}) \right) \right]$$

subject to $dX_{t} = b_{t} \left(X_{t}, \alpha_{t}, \mathcal{L}(X_{t}) \right) dt + dW_{t}, \quad X_{0} = 0$

Remark:

An important subclass of MFGs (the so-called **potential games**) can be formulated as MKV control problems.

McKean-Vlasov control problem

Vast literature: Caines, Cardaliaguet, Carmona, Delarue, Huang, Lachapelle, Lacker, Lasry, Lions, Malhamé, Pham, Sznitman, Wei...

Classical approaches:

- analytic (Lasry-Lions): HJB, forward-backward system of PDEs
- probabilistic: Pontryagin maximum principle, adjoint FBSDEs

McKean-Vlasov control problem

Vast literature: Caines, Cardaliaguet, Carmona, Delarue, Huang, Lachapelle, Lacker, Lasry, Lions, Malhamé, Pham, Sznitman, Wei..

Classical approaches:

- analytic (Lasry-Lions): HJB, forward-backward system of PDEs
- probabilistic: Pontryagin maximum principle, adjoint FBSDEs

Our approach: use some "dynamic" optimal transportation With the aim of giving:

- \hookrightarrow different existence results
- \hookrightarrow explicit characterization beyond linear-quadratic case

Motivation and problem formulation (MKV)

Causal Transport

MKV via Causal Transport

Conclusions

Causal Transport

Classical Monge-Kantorovich optimal transport

Given two Polish probability spaces $(X, \mu), (\mathcal{Y}, \nu)$, move the mass from μ to ν minimizing the cost of transportation $c : X \times \mathcal{Y} \to [0, \infty]$:

 $OT(\mu, \nu, c) := \inf \left\{ \mathbb{E}^{\pi}[c(x, y)] : \pi \in \Pi(\mu, \nu) \right\},\$

 $\Pi(\mu, \nu)$: probability measures on $X \times \mathcal{Y}$ with marginals μ and ν .

Monge transport: all mass sitting on x is transported into y=T(x). **Kantorovich transport:** mass can split.

Classical Monge-Kantorovich optimal transport

Given two Polish probability spaces $(X, \mu), (\mathcal{Y}, \nu)$, move the mass from μ to ν minimizing the cost of transportation $c : X \times \mathcal{Y} \to [0, \infty]$:

 $OT(\mu, \nu, c) := \inf \left\{ \mathbb{E}^{\pi}[c(x, y)] : \pi \in \Pi(\mu, \nu) \right\},\$

 $\Pi(\mu, \nu)$: probability measures on $X \times \mathcal{Y}$ with marginals μ and ν .

Monge transport: all mass sitting on x is transported into y=T(x). **Kantorovich transport:** mass can split.

In a dynamic setting (we have the "time component"): move the mass in a non-anticipative way: what is transported into the 2^{nd} coordinate at time *t*, depends on the 1^{st} coordinate only up to *t*

Causal optimal transport

Definition (Causal (non-anticipative) transport plans)

 $\pi \in \mathcal{P}(\mathcal{X} \times \mathcal{Y})$ is a causal transport plan if, $\forall t$ and $D \in \mathcal{F}_t^{\mathcal{Y}}$, the map $\mathcal{X} \ni x \mapsto \pi^x(D)$ is $\mathcal{F}_t^{\mathcal{X}}$ -mbl. ($\mathcal{F}^{\mathcal{X}}, \mathcal{F}^{\mathcal{Y}}$ canonical filtrations on \mathcal{X}, \mathcal{Y})

The concept goes back to Yamada-Watanabe (1971); see also Jacod (1980), Kurtz (2014), Lassalle (2015), Backhoff et al. (2016).

Causal optimal transport

Definition (Causal (non-anticipative) transport plans)

 $\pi \in \mathcal{P}(\mathcal{X} \times \mathcal{Y})$ is a causal transport plan if, $\forall t$ and $D \in \mathcal{F}_t^{\mathcal{Y}}$, the map $\mathcal{X} \ni x \mapsto \pi^x(D)$ is $\mathcal{F}_t^{\mathcal{X}}$ -mbl. ($\mathcal{F}^{\mathcal{X}}, \mathcal{F}^{\mathcal{Y}}$ canonical filtrations on \mathcal{X}, \mathcal{Y})

The concept goes back to Yamada-Watanabe (1971); see also Jacod (1980), Kurtz (2014), Lassalle (2015), Backhoff et al. (2016).

Notation:

$$\begin{split} \Pi_c(\mu,\nu) &= \text{set of causal transports with marginals } \mu \text{ and } \nu, \\ \Pi_c(\mu,.) &= \bigcup_{\nu \in \mathcal{P}(\mathcal{Y})} \Pi_c(\mu,\nu) \end{split}$$

 $\operatorname{COT}(\mu, \nu, c) := \inf \left\{ \mathbb{E}^{\pi}[c(X, Y)] : \pi \in \Pi_{c}(\mu, \nu) \right\}$

Causal Transport

MKV via Causal Transport

Example: weak-solutions of SDEs

Here $\mathcal{X} = \mathcal{Y} = C_0 := C_0[0, \infty)$ continuous paths starting at zero

Example (Yamada-Watanabe'71)

Assume weak-existence of the solution to the SDE:

 $dY_t = b(Y_t)dt + \sigma(Y_t)dB_t$, b, σ Borel measurable.

Then $\mathcal{L}(B, Y)$ causal transport between $(C_0, \mathcal{L}(B))$ and $(C_0, \mathcal{L}(Y))$.

Example: weak-solutions of SDEs

Here $\mathcal{X} = \mathcal{Y} = C_0 := C_0[0, \infty)$ continuous paths starting at zero

Example (Yamada-Watanabe'71)

Assume weak-existence of the solution to the SDE:

 $dY_t = b(Y_t)dt + \sigma(Y_t)dB_t$, b, σ Borel measurable.

Then $\mathcal{L}(B, Y)$ causal transport between $(C_0, \mathcal{L}(B))$ and $(C_0, \mathcal{L}(Y))$.

• **Transport perspective:** from an observed trajectory of *B*, the mass can be split at each moment of time into *Y* only based on the information available up to that time.

Example: weak-solutions of SDEs

Here $X = \mathcal{Y} = C_0 := C_0[0, \infty)$ continuous paths starting at zero

Example (Yamada-Watanabe'71)

Assume weak-existence of the solution to the SDE:

 $dY_t = b(Y_t)dt + \sigma(Y_t)dB_t$, b, σ Borel measurable.

Then $\mathcal{L}(B, Y)$ causal transport between $(C_0, \mathcal{L}(B))$ and $(C_0, \mathcal{L}(Y))$.

- **Transport perspective:** from an observed trajectory of *B*, the mass can be split at each moment of time into *Y* only based on the information available up to that time.
- No splitting of mass:

Monge transport \iff strong solution Y = F(B).

Motivation and problem formulation (MKV)

Causal Transport

MKV via Causal Transport

Conclusions

MKV via Causal Transport

McKean-Vlasov control problem and Causal Transport

 \rightarrow Recall our McKean-Vlasov control problem:

$$\inf_{\alpha} \mathbb{E}\left[\int_{0}^{T} f_{t}\left(X_{t}, \alpha_{t}, \mathcal{L}(X_{t}, \alpha_{t})\right) dt + g\left(X_{T}, \mathcal{L}(X_{T})\right)\right]$$

subject to

$$dX_t = b_t (X_t, \alpha_t, \mathcal{L}(X_t)) dt + dW_t, \quad X_0 = 0$$

→ The joint distribution $\mathcal{L}(W, X)$ is a causal transport plan between ($C_0[0, T], \mathcal{L}(W)$) and ($C_0[0, T], \mathcal{L}(X)$)

McKean-Vlasov control problem

Definition. A weak solution to the McKean-Vlasov control problem is a tuple $(\Omega, (\mathcal{F}_t)_{t \in [0,T]}, \mathbb{P}, W, X, \alpha)$ such that:

- (i) $(\Omega, (\mathcal{F}_t)_{t \in [0,T]}, \mathbb{P})$ supports *X*, BM *W*, α is \mathcal{F} -progress. meas.
- (ii) the state equation $dX_t = b_t (X_t, \alpha_t, \mathbb{P} \circ X_t^{-1}) dt + dW_t$ holds

(iii) if $(\Omega', (\mathcal{F}'_t)_{t \in [0,T]}, \mathbb{P}', W', X', \alpha')$ is another tuple s.t. (i)-(ii) hold,

$$\mathbb{E}^{\mathbb{P}}\left[\int_{0}^{T} f_{t}\left(X_{t},\alpha_{t},\mathbb{P}\circ(X_{t},\alpha_{t})^{-1}\right)dt + g\left(X_{T},\mathbb{P}\circ X_{T}^{-1}\right)\right]$$
$$\leq \mathbb{E}^{\mathbb{P}'}\left[\int_{0}^{T} f_{t}\left(X_{t}',\alpha_{t}',\mathbb{P}'\circ(X_{t}',\alpha_{t}')^{-1}\right)dt + g\left(X_{T}',\mathbb{P}'\circ X_{T}'^{-1}\right)\right]$$

Causal Transport

MKV via Causal Transport

Assumptions

 \rightarrow We need some **convexity assumptions**.

Assumptions

- \rightarrow We need some convexity assumptions.
- \rightarrow In the case of linear drift:

$$dX_t = (c_t^1 X_t + c_t^2 \alpha_t + c_t^3 \mathbb{E}[X_t])dt + dW_t,$$

 $c_t^i \in \mathbb{R}, c_t^2 > 0$, the assumptions reduce to: for all x, a, η ,

- f_t is bounded from below uniformly in t
- $f_t(x, ., \eta)$ is convex
- $f_t(x, a, .)$ is \prec_{conv} -monotone

Example: Inter-bank systemic risk model

[Carmona-Fouque-Sun 2013]

• Inter-bank borrowing/lending, where the log-monetary reserve of each bank, asymptotically, is governed by the MKV eq.

 $dX_t = [k(\mathbb{E}[X_t] - X_t) + \alpha_t]dt + dW_t, \ X_0 = 0$

 $k \ge 0$ rate of m-r in the interaction from b&l between banks

 All banks can control their rate of borrowing/lending to a central bank with the same policy α, to minimize the cost

$$\mathbb{E}\Big[\int_0^T \Big(\frac{1}{2}\alpha_t^2 - q\alpha_t(\mathbb{E}[X_t] - X_t) + \frac{c}{2}(\mathbb{E}[X_t] - X_t)^2\Big)dt + \frac{d}{2}(\mathbb{E}[X_T] - X_T)^2\Big]$$

q > 0 incentive to borrowing ($\alpha_t > 0$) or lending ($\alpha_t < 0$), c, d > 0 penalize departure from average

Characterization via non-anticipative optimal transport

- we consider transport problems in the path space $C_0[0,T]$
- γ : Wiener measure on $C_0[0,T]$
- $(\omega, \overline{\omega})$: generic element on $C_0[0, T] \times C_0[0, T]$
- here for simplicity control = drift

- we consider transport problems in the path space $C_0[0,T]$
- γ : Wiener measure on $C_0[0,T]$
- $(\omega, \overline{\omega})$: generic element on $C_0[0, T] \times C_0[0, T]$
- here for simplicity control = drift

Theorem

The weak MKV problem is equivalent to the variational problem

$$\inf_{\nu\in\tilde{\mathcal{P}}}\inf_{\pi\in\Pi_{c}(\gamma,\nu)}\mathbb{E}^{\pi}\Big[\int_{0}^{T}f_{t}\Big(\overline{\omega}_{t},(\widehat{\overline{\omega}-\omega})_{t},p_{t}\big((\overline{\omega},\widehat{\overline{\omega}-\omega})_{\#}\pi\big)\Big)dt+g(\overline{\omega}_{T},\nu_{T})\Big]$$

where $p_t(\eta) = \eta_t$, $(\overline{\omega} - \omega)_t = \beta_t$ when $\overline{\omega} - \omega = \int_0^{\cdot} \beta_t dt$, and

 $\tilde{\mathcal{P}} = \{v \in \mathcal{P}(C) : v\text{-a.s. pathwise quadr.var. } \exists \text{ and } \langle \omega \rangle_t = t \forall t\}$

'Equivalence' means that the above variational problem and

$$\inf \mathbb{E}^{\mathbb{P}}\left[\int_{0}^{T} f_{t}\left(X_{t}, \alpha_{t}, \mathbb{P} \circ (X_{t}, \alpha_{t})^{-1}\right) dt + g\left(X_{T}, \mathbb{P} \circ X_{T}^{-1}\right)\right]$$

have the same value, where the infimum is taken over tuples $(\Omega, (\mathcal{F}_t), \mathbb{P}, W, X, \alpha)$ s.t. $dX_t = b_t (X_t, \alpha_t, \mathbb{P} \circ X_t^{-1}) dt + dW_t$, and that moreover the optimizers are related via:

• $v^* = \mathcal{L}(X^*)$

•
$$\pi^* \longleftrightarrow \alpha^*$$
, with $\pi^* = \mathcal{L}(W^*, X^*)$

→ Weak solutions of MKV control problem given by infimum over tuples $(\Omega, (\mathcal{F}_t)_{t \in [0,T]}, \mathbb{P}, W, X, \alpha)$.

Corollary

- The infimum can be taken over tuples s.t. α is \mathcal{F}^X -measurable (weak closed loop).
- If the infimum is attained, then the optimal α is of weak closed loop form.

→ Weak solutions of MKV control problem given by infimum over tuples $(\Omega, (\mathcal{F}_t)_{t \in [0,T]}, \mathbb{P}, W, X, \alpha)$.

Corollary

- The infimum can be taken over tuples s.t. α is \mathcal{F}^X -measurable (weak closed loop).
- 2 If the infimum is attained, then the optimal α is of weak closed loop form.

Remark. The outer minimization in VP can be done over $\{\nu \ll \gamma\}$ instead of $\tilde{\mathcal{P}}$, whenever the drift is guaranteed to be square integr. (e.g. drift = control, and $f_t(x, a, \eta) \ge K|a|^2 \quad \forall x, \eta$ and for *a* large).

Example: take k = q = 0 in the example above, then

- state dynamics: $dX_t = \alpha_t dt + dW_t$
- cost: $\mathbb{E}\Big[\int_0^T \Big(\frac{1}{2}\alpha_t^2 + \frac{c}{2}(\mathbb{E}[X_t] X_t)^2\Big)dt + \frac{d}{2}(\mathbb{E}[X_T] X_T)^2\Big]$
- \Rightarrow COT w.r.t. Cameron-Martin distance (Lassalle 2015):

 $\inf_{\pi \in \Pi_{c}(\gamma,\nu)} \mathbb{E}^{\pi}[|\overline{\omega} - \omega|_{H}^{2}] = \mathcal{H}(\nu|\gamma) \Rightarrow \inf_{\nu \ll \gamma} \left\{ \mathcal{H}(\nu|\gamma) + \frac{c}{2} \int_{0}^{T} \operatorname{Var}(\nu_{t}) dt + \frac{d}{2} \operatorname{Var}(\nu_{T}) \right\}$

Example: take k = q = 0 in the example above, then

• state dynamics:
$$dX_t = \alpha_t dt + dW_t$$

• cost:
$$\mathbb{E}\Big[\int_0^T \Big(\frac{1}{2}\alpha_t^2 + \frac{c}{2}(\mathbb{E}[X_t] - X_t)^2\Big)dt + \frac{d}{2}(\mathbb{E}[X_T] - X_T)^2\Big]$$

 \Rightarrow COT w.r.t. Cameron-Martin distance (Lassalle 2015):

$$\inf_{\pi \in \Pi_{c}(\gamma,\nu)} \mathbb{E}^{\pi}[|\overline{\omega} - \omega|_{H}^{2}] = \mathcal{H}(\nu|\gamma) \Rightarrow \inf_{\nu \ll \gamma} \left\{ \mathcal{H}(\nu|\gamma) + \frac{c}{2} \int_{0}^{T} \operatorname{Var}(\nu_{t}) dt + \frac{d}{2} \operatorname{Var}(\nu_{T}) \right\}$$

More generally: for running cost $\frac{1}{2}\alpha_t^2 + h_t(X_t, \mathbb{P} \circ X_t^{-1})$,

by Sanov's theorem, we can approximate

$$\inf_{v \ll \gamma} \{\mathcal{H}(v|\gamma) + F(v)\} = \lim_{n \to \infty} -\frac{1}{n} \ln \mathbb{E}e^{nF\left(\frac{1}{n}\sum_{i=1}^{n} \delta_{W^{i}}\right)}, \{W_{i}\} \text{ ind. BMs.}$$

This does not seem to be limited to the entropy case $(\frac{1}{2}\alpha_t^2)$.

Concluding remarks

We have provided:

- a connection of McKean-Vlasov control problems to causal transport problems
- a characterization of weak McKean-Vlasov solutions via CT

Concluding remarks

We have provided:

- a connection of McKean-Vlasov control problems to causal transport problems
- a characterization of weak McKean-Vlasov solutions via CT

Work in progress:

- The optimization over Π_c(γ, ν) is not a standard causal transport problem ⇒ new analysis for existence/duality
- Use our characterization theorem in order to find
 - existence and uniqueness of weak MKV solutions
 - explicit formulation of solutions to MKV control problems
- Time-discretization and numerical scheme

Concluding remarks

We have provided:

- a connection of McKean-Vlasov control problems to causal transport problems
- a characterization of weak McKean-Vlasov solutions via CT

Work in progress:

- The optimization over Π_c(γ, ν) is not a standard causal transport problem ⇒ new analysis for existence/duality
- Use our characterization theorem in order to find
 - existence and uniqueness of weak MKV solutions
 - explicit formulation of solutions to MKV control problems
- Time-discretization and numerical scheme

Discrete-time setting:

● By the analogy type ↔ noise, we can study Cournot-Nash equilibria for heterogeneous agents via causal transport

Motivation and problem formulation (MKV)

Causal Transport

MKV via Causal Transport

Conclusions

Thank you for your attention!

From N-player game to McKean-Vlasov control problem

- rarely expect existence of global minimizers
- resort to approximation by **asymptotic arguments:**

From N-player game to McKean-Vlasov control problem

- rarely expect existence of global minimizers
- resort to approximation by asymptotic arguments:

From N-player game to McKean-Vlasov control problem

- rarely expect existence of global minimizers
- resort to approximation by asymptotic arguments:

Vast literature: Caines, Carmona, Delarue, Huang, Lachapelle, Lacker, Lasry, Lions, Malhamé, Pham, Sznitman, Wei,...

The red path: approximating cooperative equilibria

Main idea:

- all agents adopt the same feedback control: $\alpha_t^{N,i} = \phi(t, X_t^{N,i})$
- in the limit (# players → ∞) the private states of players evolve independently of each other

The red path: approximating cooperative equilibria

Main idea:

- all agents adopt the same feedback control: $\alpha_t^{N,i} = \phi(t, X_t^{N,i})$
- in the limit (# players → ∞) the private states of players evolve independently of each other
- distribution of private state converges toward distribution of the solution to the McKean-Vlasov control problem:

$$\inf_{\alpha} \mathbb{E} \left[\int_{0}^{T} f_{t}(X_{t}, \alpha_{t}, \mathcal{L}(X_{t}, \alpha_{t})) dt + g(X_{T}, \mathcal{L}(X_{T})) \right]$$

subject to $dX_{t} = b_{t}(X_{t}, \alpha_{t}, \mathcal{L}(X_{t})) dt + dW_{t}$

 under suitable conditions, the optimal feedback controls are *ε*-optimal for large systems of players

The blue path: approximating competitive equilibria

Main idea:

• Seek for Nash equilibria for the *N*-player game

The blue path: approximating competitive equilibria

Main idea:

- Seek for Nash equilibria for the *N*-player game
- Model behaviour of a representative agent, and solve the Mean-Field Game problem:
 - 1) for every fixed joint law η , with first marginal ν , solve

$$\inf_{\alpha} \mathbb{E} \Big[\int_0^T f_t(X_t, \alpha_t, \eta_t) dt + g(X_T, \nu_T) \Big]$$

s.t. $dX_t = b_t(X_t, \alpha_t, \nu_t) dt + dW_t$

2) fixed point problem: η s.t. for the solution $\mathcal{L}(X, \alpha) = \eta$

• under suitable conditions, the optimal feedback provides an approximate Nash equilibrium for large system of players

The blue path: approximating competitive equilibria

Main idea:

- Seek for Nash equilibria for the *N*-player game
- Model behaviour of a representative agent, and solve the Mean-Field Game problem:
 - 1) for every fixed joint law η , with first marginal ν , solve

$$\inf_{\alpha} \mathbb{E} \Big[\int_0^T f_t (X_t, \alpha_t, \eta_t) dt + g (X_T, \nu_T) \Big]$$

s.t. $dX_t = b_t (X_t, \alpha_t, \nu_t) dt + dW_t$

2) fixed point problem: η s.t. for the solution $\mathcal{L}(X, \alpha) = \eta$

- under suitable conditions, the optimal feedback provides an approximate Nash equilibrium for large system of players
- for potential games, MFG can be formulated as MKV

General case

Assumptions. For all $x, a \in \mathbb{R}, m \in \mathcal{P}(\mathbb{R}), \eta \in \mathcal{P}(\mathbb{R} \times \mathbb{R})$:

(A1) $b_t(x, ., m)$ injective and convex

(A2) f_t bdd below unif. in *t*, and $f_t(x, b_t^{-1}(x, ., m)(y), \eta)$ convex in *y*

(A3) $f_t(x, a, .)$ is \prec_{cm} -monotone (resp. \prec_{conv} -monotone if *b* is linear) (\prec_{cm} (resp. \prec_{conv}) denotes the conv/monotone (resp. conv) order)

Pathwise quadratic variation. For $\omega \in C$, $n \in \mathbb{N}$, define

 $\sigma_0^n(\omega) := 0, \ \ \sigma_{k+1}^n(\omega) := \inf\{t > \sigma_k^n(\omega) : |\omega(t) - \omega(\sigma_k^n)| \ge 2^{-n}\}, \ k \in \mathbb{N}$

We say that ω has quadratic variation if

$$V_n(\omega)(t) := \sum_{k=0}^{\infty} (\omega(\sigma_{k+1}^n \wedge t) - \omega(\sigma_k^n \wedge t))^2 \to_u =: \langle \omega \rangle_t \in C$$

Notation. $\tilde{\mathcal{P}} = \{ v \in \mathcal{P}(\mathcal{C}) : \langle \omega \rangle \exists v \text{-a.s., with } \langle \omega \rangle_t = t \text{ for all } t \}$

General case

Under the above assumptions, the following characterization of weak McKean-Vlasov solutions via causal transport holds.

Theorem

The weak MKV problem is equivalent to the following problem

$$\inf_{\nu\in\tilde{\mathcal{P}}}\inf_{\pi\in\Pi_{c}(\gamma,\nu)}\mathbb{E}^{\pi}\left[\int_{0}^{T}f_{t}\left(\overline{\omega}_{t},u_{t}^{\nu}(\omega,\overline{\omega}),p_{t}\left((\overline{\omega},u^{\nu})_{\#}\pi\right)\right)dt+g(\overline{\omega}_{T},\nu_{T})\right]$$

where $u_t^{\nu}(\omega, \overline{\omega}) = b_t^{-1}(\overline{\omega}_t, .., \nu_t)((\widehat{\overline{\omega} - \omega})_t)$ and $p_t(\eta) = \eta_t$.