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N-player stochastic differential game

→ N players with private state processes evolving as to

dXN,i
t = bt(XN,i

t , αN,i
t , ν̄N,−i

t )dt + dW i
t , i = 1, ...,N

• W1, ...,WN independent Wiener processes

• αN,1, ..., αN,N controls of the N players

• ν̄N,−i
t = 1

N−1
∑

j,i δXN, j
t

empirical distrib. states of the other players

→ The objective of player i is to choose a control αN,i that
minimizes

E

ñ∫ T

0
ft(XN,i

t , αN,i
t , η̄N,−i

t )dt + g(XN,i
T , ν̄N,−i

T )
ô

• η̄N,−i
t = 1

N−1
∑

j,i δ(XN, j
t ,α

N, j
t ) empirical distrib. of states & controls

→ Statistically identical players: same functions bt, ft, g
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N-player stochastic differential game

Problems:

optimal controls rarely exist (whether cooperative or
non-cooperative)

even when they exist, difficult to characterize

Idea: resort to approximation by asymptotic arguments:

N-player game − − − − − − −− > N→ ∞

Nash equilibrium (non-coop) − − −− > Mean Field Game

Social planner (cooperative) − − −− > McKean Vlasov
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Approximating cooperative equilibria

Main argument:

all agents adopt the same feedback control: αN,i
t = φ(t, XN,i

t )

in the limit (# players→ ∞) the private states of players evolve
independently of each other

distribution of private state converges toward distribution of
the solution to the McKean-Vlasov control problem:

infα E
î∫ T

0 ft (Xt, αt,L(Xt, αt)) dt + g (XT ,L(XT ))
ó

subject to dXt = bt (Xt, αt,L(Xt)) dt + dWt

under suitable conditions, the optimal feedback controls are
ε-optimal for large systems of players
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Problem Formulation
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McKean-Vlasov control problem

We study the following McKean-Vlasov control problem:

inf
α
E

ñ∫ T

0
ft (Xt, αt,L(Xt, αt)) dt + g (XT ,L(XT ))

ô
subject to dXt = bt (Xt, αt,L(Xt)) dt + dWt, X0 = 0

Remark:

An important subclass of MFGs (the so-called potential games)
can be formulated as MKV control problems.
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McKean-Vlasov control problem

Vast literature: Caines, Cardaliaguet, Carmona, Delarue, Huang,
Lachapelle, Lacker, Lasry, Lions, Malhamé, Pham, Sznitman, Wei..

Classical approaches:

• analytic (Lasry-Lions): HJB, forward-backward system of PDEs

• probabilistic: Pontryagin maximum principle, adjoint FBSDEs

Our approach: use some “dynamic” optimal transportation

With the aim of giving:

↪→ different existence results

↪→ explicit characterization beyond linear-quadratic case
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Causal Transport
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Classical Monge-Kantorovich optimal transport

Given two Polish probability spaces (X, µ), (Y, ν), move the mass
from µ to ν minimizing the cost of transportation c : X×Y → [0,∞]:

OT(µ, ν, c) := inf
{
Eπ[c(x, y)] : π ∈ Π(µ, ν)

}
,

Π(µ, ν): probability measures on X ×Y with marginals µ and ν.

Monge transport: all mass sitting on x is transported into y=T (x).
Kantorovich transport: mass can split.

In a dynamic setting (we have the “time component”): move the
mass in a non-anticipative way: what is transported into the 2nd

coordinate at time t, depends on the 1st coordinate only up to t
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Causal optimal transport

Definition (Causal (non-anticipative) transport plans)

π ∈ P(X ×Y) is a causal transport plan if, ∀t and D ∈ F Yt , the map
X 3 x 7→ πx(D) is F Xt -mbl. (F X,F Y canonical filtrations on X, Y)

The concept goes back to Yamada-Watanabe (1971); see also
Jacod (1980), Kurtz (2014), Lassalle (2015), Backhoff et al. (2016).

Notation:

Πc(µ, ν) = set of causal transports with marginals µ and ν,
Πc(µ, . ) =

⋃
ν∈P(Y) Πc(µ, ν)

COT(µ, ν, c) := inf
{
Eπ[c(X,Y)] : π ∈ Πc(µ, ν)

}
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Example: weak-solutions of SDEs

Here X = Y = C0 := C0[0,∞) continuous paths starting at zero

Example (Yamada-Watanabe’71)

Assume weak-existence of the solution to the SDE:

dYt = b(Yt)dt + σ(Yt)dBt, b, σ Borel measurable.

Then L(B,Y) causal transport between (C0,L(B)) and (C0,L(Y)).

Transport perspective: from an observed trajectory of B, the
mass can be split at each moment of time into Y only based
on the information available up to that time.

No splitting of mass:
Monge transport ⇐⇒ strong solution Y = F(B).



Motivation and problem formulation (MKV) Causal Transport MKV via Causal Transport Conclusions

Example: weak-solutions of SDEs

Here X = Y = C0 := C0[0,∞) continuous paths starting at zero

Example (Yamada-Watanabe’71)

Assume weak-existence of the solution to the SDE:

dYt = b(Yt)dt + σ(Yt)dBt, b, σ Borel measurable.

Then L(B,Y) causal transport between (C0,L(B)) and (C0,L(Y)).

Transport perspective: from an observed trajectory of B, the
mass can be split at each moment of time into Y only based
on the information available up to that time.

No splitting of mass:
Monge transport ⇐⇒ strong solution Y = F(B).



Motivation and problem formulation (MKV) Causal Transport MKV via Causal Transport Conclusions

Example: weak-solutions of SDEs

Here X = Y = C0 := C0[0,∞) continuous paths starting at zero

Example (Yamada-Watanabe’71)

Assume weak-existence of the solution to the SDE:

dYt = b(Yt)dt + σ(Yt)dBt, b, σ Borel measurable.

Then L(B,Y) causal transport between (C0,L(B)) and (C0,L(Y)).

Transport perspective: from an observed trajectory of B, the
mass can be split at each moment of time into Y only based
on the information available up to that time.

No splitting of mass:
Monge transport ⇐⇒ strong solution Y = F(B).



Motivation and problem formulation (MKV) Causal Transport MKV via Causal Transport Conclusions

MKV via Causal Transport
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McKean-Vlasov control problem and Causal Transport

→ Recall our McKean-Vlasov control problem:

inf
α
E

ñ∫ T

0
ft (Xt, αt,L(Xt, αt)) dt + g (XT ,L(XT ))

ô
subject to

dXt = bt (Xt, αt,L(Xt)) dt + dWt, X0 = 0

→ The joint distribution L(W, X) is a causal transport plan
between (C0[0,T ],L(W)) and (C0[0,T ],L(X))
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McKean-Vlasov control problem

Definition. A weak solution to the McKean-Vlasov control problem
is a tuple (Ω, (Ft)t∈[0,T ],P,W, X, α) such that:

(i) (Ω, (Ft)t∈[0,T ],P) supports X, BM W, α is F -progress. meas.

(ii) the state equation dXt = bt
(
Xt, αt,P ◦ X−1

t
)

dt + dWt holds

(iii) if (Ω′, (F ′t )t∈[0,T ],P
′,W′, X′, α′) is another tuple s.t. (i)-(ii) hold,

EP
ñ∫ T

0
ft
Ä

Xt, αt,P ◦ (Xt, αt)−1
ä

dt + g
Ä

XT ,P ◦ X−1
T

äô
≤ EP

′

ñ∫ T

0
ft
Ä

X′t , α
′
t ,P
′ ◦ (X′t , α

′
t)
−1
ä

dt + g
Ä

X′T ,P
′ ◦ X′−1

T

äô
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Assumptions

→We need some convexity assumptions.

→ In the case of linear drift:

dXt = (c1
t Xt + c2

t αt + c3
t E[Xt])dt + dWt,

ci
t ∈ R, c

2
t > 0, the assumptions reduce to: for all x, a, η,

ft is bounded from below uniformly in t

ft(x, ., η) is convex

ft(x, a, .) is ≺conv-monotone
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Example: Inter-bank systemic risk model

[Carmona-Fouque-Sun 2013]

Inter-bank borrowing/lending, where the log-monetary reserve
of each bank, asymptotically, is governed by the MKV eq.

dXt = [k(E[Xt] − Xt) + αt]dt + dWt, X0 = 0

k ≥ 0 rate of m-r in the interaction from b&l between banks

All banks can control their rate of borrowing/lending to a
central bank with the same policy α, to minimize the cost

E
î ∫ T

0

Ä1
2
α2

t −qαt(E[Xt]−Xt)+
c
2

(E[Xt]−Xt)2
ä
dt+

d
2

(E[XT ]−XT )2
ó

q > 0 incentive to borrowing (αt > 0) or lending (αt < 0),
c, d > 0 penalize departure from average
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Characterization via non-anticipative optimal transport

we consider transport problems in the path space C0[0,T ]

γ: Wiener measure on C0[0,T ]

(ω,ω): generic element on C0[0,T ] × C0[0,T ]

here for simplicity control = drift

Theorem
The weak MKV problem is equivalent to the variational problem

inf
ν∈P̃

inf
π∈Πc(γ,ν)

Eπ
î∫ T

0
ft
Ä
ωt, (

˙̆
ω − ω)t, pt

(
(ω, ˙̇

ω − ω)#π
)ä

dt + g(ωT , νT )
ó

where pt(η) = ηt, ( ˙̆
ω − ω)t = βt when ω − ω =

∫ .
0 βtdt, and

P̃ = {ν ∈ P(C) : ν-a.s. pathwise quadr.var. ∃ and 〈ω〉t = t ∀ t}
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Characterization via non-anticipative optimal transport

’Equivalence’ means that the above variational problem and

inf EP
ñ∫ T

0
ft
Ä

Xt, αt,P ◦ (Xt, αt)−1
ä

dt + g
Ä

XT ,P ◦ X−1
T

äô
have the same value, where the infimum is taken over tuples
(Ω, (Ft),P,W, X, α) s.t. dXt = bt

(
Xt, αt,P ◦ X−1

t
)

dt + dWt, and that
moreover the optimizers are related via:

ν∗ = L(X∗)

π∗ ←→ α∗, with π∗ = L(W∗, X∗)
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Characterization via non-anticipative optimal transport

→Weak solutions of MKV control problem given by infimum over
tuples (Ω, (Ft)t∈[0,T ],P,W, X, α).

Corollary
1 The infimum can be taken over tuples s.t. α is F X-measurable

(weak closed loop).

2 If the infimum is attained, then the optimal α is of weak closed
loop form.

Remark. The outer minimization in VP can be done over {ν � γ}

instead of P̃, whenever the drift is guaranteed to be square integr.
(e.g. drift = control, and ft(x, a, η) ≥ K|a|2 ∀ x, η and for a large).
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Example: separable cost ft(x, a) + f̃t(νt, x)

Example: take k = q = 0 in the example above, then

state dynamics: dXt = αtdt + dWt

cost: E
î ∫ T

0

Ä
1
2α

2
t + c

2 (E[Xt] − Xt)2
ä
dt + d

2 (E[XT ] − XT )2
ó

⇒ COT w.r.t. Cameron-Martin distance (Lassalle 2015):

inf
π∈Πc(γ,ν)

Eπ[|ω − ω|2H] = H(ν|γ)⇒ inf
ν�γ

¶
H(ν|γ) +

c
2

∫ T

0
Var(νt)dt +

d
2

Var(νT )
©

More generally: for running cost 1
2α

2
t + ht(Xt,P ◦ X−1

t ),
by Sanov’s theorem, we can approximate

inf
ν�γ
{H(ν|γ) + F(ν)} = lim

n→∞
−

1
n

lnEenF( 1
n

∑n
i=1 δWi), {Wi} ind. BMs.

This does not seem to be limited to the entropy case (1
2α

2
t ).



Motivation and problem formulation (MKV) Causal Transport MKV via Causal Transport Conclusions

Example: separable cost ft(x, a) + f̃t(νt, x)

Example: take k = q = 0 in the example above, then

state dynamics: dXt = αtdt + dWt

cost: E
î ∫ T

0

Ä
1
2α

2
t + c

2 (E[Xt] − Xt)2
ä
dt + d

2 (E[XT ] − XT )2
ó

⇒ COT w.r.t. Cameron-Martin distance (Lassalle 2015):

inf
π∈Πc(γ,ν)

Eπ[|ω − ω|2H] = H(ν|γ)⇒ inf
ν�γ

¶
H(ν|γ) +

c
2

∫ T

0
Var(νt)dt +

d
2

Var(νT )
©

More generally: for running cost 1
2α

2
t + ht(Xt,P ◦ X−1

t ),
by Sanov’s theorem, we can approximate

inf
ν�γ
{H(ν|γ) + F(ν)} = lim

n→∞
−

1
n

lnEenF( 1
n

∑n
i=1 δWi), {Wi} ind. BMs.

This does not seem to be limited to the entropy case (1
2α

2
t ).



Motivation and problem formulation (MKV) Causal Transport MKV via Causal Transport Conclusions

Concluding remarks

We have provided:
a connection of McKean-Vlasov control problems to causal
transport problems
a characterization of weak McKean-Vlasov solutions via CT

Work in progress:
The optimization over Πc(γ, ν) is not a standard causal
transport problem⇒ new analysis for existence/duality
Use our characterization theorem in order to find
I existence and uniqueness of weak MKV solutions
I explicit formulation of solutions to MKV control problems

Time-discretization and numerical scheme

Discrete-time setting:
By the analogy type←→ noise, we can study Cournot-Nash
equilibria for heterogeneous agents via causal transport
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Thank you for your attention!
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From N-player game to McKean-Vlasov control problem

rarely expect existence of global minimizers

resort to approximation by asymptotic arguments:

SDE State Dynamics optimization
−−−−−−−−−−−→

Nash equilibrium
for N players for N players

lim
N→∞

↓ ↓ lim
N→∞

Mean-Field Game

McKean-Vlasov dynamics optimization
−−−−−−−−−−−→

controlled McK-V dyn

Vast literature: Caines, Carmona, Delarue, Huang, Lachapelle,
Lacker, Lasry, Lions, Malhamé, Pham, Sznitman, Wei,...
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McKean-Vlasov dynamics optimization
−−−−−−−−−−−→

controlled McK-V dyn

Vast literature: Caines, Carmona, Delarue, Huang, Lachapelle,
Lacker, Lasry, Lions, Malhamé, Pham, Sznitman, Wei,...
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The red path: approximating cooperative equilibria

Main idea:

all agents adopt the same feedback control: αN,i
t = φ(t, XN,i

t )

in the limit (# players→ ∞) the private states of players evolve
independently of each other

distribution of private state converges toward distribution of
the solution to the McKean-Vlasov control problem:

infα E
î∫ T

0 ft (Xt, αt,L(Xt, αt)) dt + g (XT ,L(XT ))
ó

subject to dXt = bt (Xt, αt,L(Xt)) dt + dWt

under suitable conditions, the optimal feedback controls are
ε-optimal for large systems of players
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The blue path: approximating competitive equilibria

Main idea:

Seek for Nash equilibria for the N-player game

Model behaviour of a representative agent, and solve the
Mean-Field Game problem:

1) for every fixed joint law η, with first marginal ν, solve

infα E
î ∫ T

0 ft (Xt, αt, ηt) dt + g (XT , νT )
ó

s.t. dXt = bt (Xt, αt, νt) dt + dWt

2) fixed point problem: η s.t. for the solution L(X, α) = η

under suitable conditions, the optimal feedback provides an
approximate Nash equilibrium for large system of players

for potential games, MFG can be formulated as MKV
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General case

Assumptions. For all x, a ∈ R,m ∈ P(R), η ∈ P(R × R):

(A1) bt(x, .,m) injective and convex

(A2) ft bdd below unif. in t, and ft(x, b−1
t (x, .,m)(y), η) convex in y

(A3) ft(x, a, .) is ≺cm-monotone (resp. ≺conv-monotone if b is linear)

(≺cm (resp. ≺conv) denotes the conv/monotone (resp. conv) order)

Pathwise quadratic variation. For ω ∈ C, n ∈ N, define

σn
0(ω) := 0, σn

k+1(ω) := inf{t > σn
k(ω) : |ω(t) − ω(σn

k)| ≥ 2−n}, k ∈ N

We say that ω has quadratic variation if

Vn(ω)(t) :=
∞∑

k=0

(ω(σn
k+1 ∧ t) − ω(σn

k ∧ t))2 →u =: 〈ω〉t ∈ C

Notation. P̃ = {ν ∈ P(C) : 〈ω〉 ∃ ν-a.s., with 〈ω〉t = t for all t}
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General case

Under the above assumptions, the following characterization of
weak McKean-Vlasov solutions via causal transport holds.

Theorem
The weak MKV problem is equivalent to the following problem

inf
ν∈P̃

inf
π∈Πc(γ,ν)

Eπ
ñ∫ T

0
ft
(
ωt, uνt (ω,ω), pt

(
(ω, uν)#π

))
dt + g(ωT , νT )

ô
where uνt (ω,ω) = b−1

t (ωt, ., νt)
(
( ˙̇
ω − ω)t

)
and pt(η) = ηt.
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