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Aim]

We see tilings asscociated to the nearest integer complex

continued fractions over imaginary quadratic fields.

- What kind of complex continued fractions over imaginary
quadratic fields do we consider?
- Why and how do we construct the tilings?



What kind of complex continued fractions over quadratic field?

FACT:

The unique factorization property only holds for Q(+/—d) with
d—=—1,2,3,7,11,19,43,67,163.

FACT:

Even among them, the Euclidean algorithm does not work for
d—=19,43,67,163.

— In the case of the imaginary quadratic field, the Euclidean
algorithm works only ford = 1,2,3,7,11.

The case of d = 1, 3 was studied by A.Hurwitz and the case of
d = 2,7,11 by R. B. Lakein.



FACT:
We CAN NOT consider the naive simple complex continued

fraction transformation except d = 3 (Shiokawa, Kaneiwa,
Tamura).

But we CAN consider the nearest integer complex continued
fraction transformation ford = 1,2,3,7,11.

— We consider the nearest integer complex continued fractions

(N.1.C.F) over imaginary quadratic field Q(+/—d) with
d=1,2,3,7,11.



Why and how do we construct the tilings?

Recall the case of simple continued fraction transformation of R.
Define the map G on I := [0, 1) by

G(x) = - H

X X

Then it is known that an absolutely continuous invariant ergodic
probability measure is given by

1 1
log21+4 x

dx.

How do we get this invariant measure?
H. Nakada, S. Tanaka and S.lto gave one answer.



Define
I=1[0,1) x (o0, —1],
e = (2= [ [1]) e et

Then G on I is 1-1 and onto except for a set of Lebesgue

measure 0 and
1 dxdy

log 2 (x — y)?2

gives an invariant measure for (I, G). Then we get

1 1 ; /—1 1 1 g
X — £.
log21+«x oo log 2 (x — y)? J




How do we determine I = [0,1) X (—o0, —1]7
Take (x, —o0) € [0,1) X [ — oo, —1] with
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By induction, we have
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_|_

| An41 | An 42

é’n(ag,—oo):< +"'a_<an+

|an—1 |a1

By the set of the reversed sequences of {a.,(x)},
we obtain the domain

—(a () ! ‘n,,,. ! ) z € (0,1)
n | ‘an_l(w) i | ‘a,l(aj) : h e N

= (—o0, —1].
— We will see that in the case of the nearest integer complex

continued fractions over imaginary quadratic fields, we get tilings
on this domain.



N.I.C.F over Q(n/—d) ford =1,2,3,7,11

d=1,2,3,7,11.
The set of algebraic integers o(1/—d) of Q(v/—d) is
o(v/—d) =

{n—|—m\/——d:n,m€Z} ifd = 1,2

{n<_1+2° _d)-l—m<+1+2° _d) :'n,mEZ} ifd =3,7,11

Ud « —
(r=otwi:—p<acd -3 <u< )
(Rectangle)
= ;s — L1 < 1 _1 _d+41 < 1 d+1
{z T + y1i 5 J < 3, =@ 4\/E_y<_\/aw+4\/a’
1941 o1 4 dt1

4/d

(Hexagon)

ifd = 1,2

ifd =3, 7,11



Let us define T : Uy — Uy by

N

]d if z#0

Ta(=) == Z_[ if z=0

where [w]g = a € o(v/—d) if w € a + Uy.

1
n—1
1y (Z)

an(z2) = agn(z) =

if T7"'(2) # 0and a,(z) =0if z = 0.

Then we get the continued fraction expansion of z € Uyg:

1\|1\I 1\|

| ‘ an(2)

—

_‘al(z) | ‘az(z) -
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Fig. Ud and Td(Ud)
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Fig. Ud and Td(Ud)
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In the case of d = 1 (Hurwitz C.F)
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Fig. The partition of Uy,
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Fig.: The domains by T4{a)
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In the case of simple continued fraction of real number

— @y, (resp. a,41) is not restricted from a,, 1 (resp. ay,).

In the case of Hurwitz continued fraction of complex number

— @y, (resp. a,41) is restricted from a,, 11 (resp. a,).

— We decompose U, and get the following partition {Vj } which
Is @ Markov partition of T}:

Vlz{zEU:
V2:{ZEU:
ng{zEU:

Via

z+1t >1,|z—1 > 1, Rez > 0}
z_1|<19 |Z—’i|<1, |z_(]—+z)|>]—}
z—(1+14)| <1}



Fig. V1, V5, V3 and the partition of U4 ford = 1
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Fig. 3: The partition of U, ford = 2,3



Construction of the domain by reversed seqence of {a., }

]. (Kokyuroku 496 (1983).)

Computer experience by Shunji ITO for d

10

Fig.: v =!_(an=) + ! 4oy 1 ., 2eU and X

10

18



We define

V,:z U {— (an(z)—l-
n=1

for 1 < k < 12.

| ap_1(2)

1

| a1 (2)

»

z € U,
T (z) € Vi

|
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Fig.: V* and

— 1

z

2

Turtle +)

1.0

21



2 V3'and X3 (Turtle)

1.0
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We put

12

U=|])VixV

k=1
and define
) | 1 o L .
(2, w) = <_ e X —a) _ < az.z—l—z’ az;w—l—z)

z w 12 LW

for (z,w) € U where a = [1/z].
We define a measure 1 on C X C as follows

dﬂ?ldil?zdwl d’UJ2

dii =
a z — wl

for (z,w) € C X C with z = 1 + ix3 and w = wy + ‘ws.

23



‘ Theorem 1 .
(Ford = 1,2,3)

1. U has positive 4-dimensional Lebesgue measure.

2. T is 1-1 and onto except for a set of 4-dimensional Lebesgue
measure 0.

3. f1is T-invariant measure.
i. e. (U, T, 1) is a natural extension of (U, T, 1) where p

IS an absolutely continuous invariant measure which is unique.
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‘ Corollary I
(Ford = 1, 2, 3)

The measure dp defined by

1
d[,l,(Z) = (/ | |4d’UJ1d’UJ2) dwld.’,l)z
1% < — W

for z € V4 is an inveriant mesure for T; defined on Ug,.
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| Tilings I
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Fig.: The prototiles X1, X5, X3
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‘ Theorem 2 .
(Ford = 1,2,3)

1. Vi¥istiledby { X, : £k =1,2,...,12}.
Concretely for any 1 < kg < 12,

vio=U U X-a)

k=1 aEDkO,k,

where

there exists w € (a) N Vy,
D = <a € o(v/—1): .
ko,k { ( ) such that Tw €& Vk"O

2. The boundary of X, is a Jordan curve and has 2-dimensional
Lebesque measure 0.

— X IS a topological disk.
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Reversed C.F. expansion for Hurwitz C. F.

We can define a reversed continued fraction transformation on the
domain with a fractal boundary for Hurwitz C. F. Define

1 1 z
Ve = {—(an<z>+ S '): 6”’}
| Ayn_1(2) | ai(z) n € N
— U U (Xkx —a),
k=1 ac Dy
X = {E:ZEV*}

12
where Dk — ng:l Dko,k-



Fig.: Tiling of R2 with tilis X, and X
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\ Theorem 3 .
(Ford = 1, 2)

Define T'; on X by

=2 [2].

where [z], = —a ifa € Dy and z € X, — a.
Then T7 is well-defined and it gives a reversed continued fraction
expansion for Hurwitz C. F.
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Fig.: The periodic tiling by X5
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The other cases
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In the case of d = 2

Fig.: The partition of Uy
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Fig.: The prototiles
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In the case of d = 3

Fig.: The partition of U4 and the tiles X7 and X3
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In the case where the domain is a rectangle for d = 3

Fig.: The partition of U4 and some tile
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Thank you very much.
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The other cases

There are some other nearest type complex continued fractions for
—2, —7 and —11. However, they do not have the best
approximation property.

The best approximation property: p/q is a best approximation to
x if

4| < |g| = |d’z — P’| > |gx — p|.



