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A set of sequenes of omplexity 2n+1

• Sturmian words and ontinued frations

• Looking for a 2-dimensional analogue
• Rauzy graphs

• The new algorithm and assoiated words
• Link with Selmer algorithm
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S-adi representation of Sturmian words

Let u be a standard Sturmian word on alphabet A = {a, b}.Fator omplexity of u is p(n) = n+1.The word u ontains either aa or bb but not both.

• If u ontains aa, write u = σa(v) with σa : a 7→ a, b 7→ ab.

• If u ontains bb, write u = σb(v) with σb : a 7→ ba, b 7→ b.Then v is also standard Sturmian, so we an iterate.

u = lim
n→∞σd0σd1 . . . σdn(a)is an S-adi representation of u, where S = {σa, σb}, and (dn) is thediretive sequene of u. 3



Sturmian words and ontinued frations (1)

Let x = (x, y) ∈ R2
+. De�ne

f(x, y) =

{

(x− y, y) if x ≥ y
(x, y − x) if x < ywhih an be written f(x) = M−1
d0

x where d0 ∈ A and

Ma =

(

1 1
0 1

) and Mb =

(

1 0
1 1

)

are the matries of σa and σb.Iterating, we get fn(x) = M−1
dn−1

. . .M−1
d0

x. 4



Sturmian words and ontinued frations (2)

Iterating, we get fn(x) = M−1
dn−1

. . .M−1
d0

xwhere d = d0d1d2 . . . = aa0ba1aa2ba3 . . .(with a0 ≥ 0, a1 ≥ 1 for i ≥ 1).Then the ontinued fration expansion of x/y is x/y = [a0; a1, a2, . . .].

x/y is irrational if and only if a and b our in�nitely often in d.If x+ y = 1, then d is the diretive sequene of a Sturmian word withfrequenies fa = x, fb = y. 5



2-dimensional analoguesGoal: de�ne a ontinued fration (CF) algorithm on R3
+, with goodonvergene properties, and an assoiated family of words with nie

S-adi representations and low fator omplexity.Billiard in a ube? omplexity n2 + n + 1, no S-adi representation,no CF algorithm.Three-interval exhanges? good omplexity 2n + 1, ompliated S-adi onstrution, ompliated CF algorithm.Arnoux-Rauzy words? good omplexity 2n+1, nie S-adi represen-tation, CF algorithm de�ned only on a subset of measure 0.Jaobi-Perron, Brun, Poinaré, Selmer, Fully substrative, Arnoux-Rauzy-Poinaré, et. CF algorithms? Words an be assoiated, om-plexity and S-adi representations are not nie. 6



Rauzy graphs

(Rauzy 1983)For eah n ∈ N, the Rauzy graph Γn is the direted graph with

• verties: Ln(u),
• edges: Ln+1(u),
• x

z−→ y if x is a pre�x of z and y is a su�x of z.

Edges may be labelled in several ways.Here we hoose the �rst letter of z. 7



Example: Fibonai word

Let u = abaababaabaababaababaabaababaabaab . . . be the Fibonai word.Its diretive sequene is (ab)ω.
p(n) = n+1 for all n, so Γn has n+1 verties and n+2 edges.
8



u = abaababaabaababaababaabaababaabaababaababaabaababaababa . . .
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Rauzy graphs and speial fators

A fator w ∈ L(u) is right speial (for u) if there exist distint letters

a and b suh that wa ∈ L(u) and wb ∈ L(u).In Γn:right speial fator = vertex with more than one outgoing edgeleft speial fator = vertex with more than one inoming edge.On a binary alphabet:the number of right speial fators is s(n) = p(n+1)− p(n);the number of left speial fators is s(n) or s(n)+1 (in the ase whereone vertex has no inoming edge). 10



Shape of a Rauzy graphThe shape of a Rauzy graph is the graph obtained by removing allverties with indegree and outdegree 1. Branhes

x0
a1−→x1

a2−→x2 · · ·xk−1
ak−→xkare replaed with a single edge x0

a1a2...ak−→ xk labelled with a word.If u is eventually (but not purely) periodi, for n large the shape of

Γn is:

v

wwhere u = vwω. 11



Rauzy graphs for Sturmian words

A Sturmian word is a word suh that p(n) = n + 1 for all n (thesmallest possible omplexity for a non-periodi word).Suh a word is always reurrent: every fator ours in�nitely often.As a onsequene, its Rauzy graphs are strongly onneted.

s(n) = (n + 2) − (n + 1) = 1: there is one left speial fator l andone right speial fator r of length n. Therefore only two shapes arepossible for Γn: 12



Rauzy graphs for Sturmian words

s(n) = (n + 2) − (n + 1) = 1: there is one left speial fator l andone right speial fator r of length n. Therefore only two shapes arepossible for Γn:
Case 1: l 6= r Case 2: l = r

13



Evolution from Γn to Γn+1

If G = (V,E) is a direted graph, then its line graph is the graph

D(G) = (V ′, E′) with V ′ = E and
E′ = {(e1, e2) : head(e1) = tail(e2)}.

Γn+1 is always a subgraph of D(Γn). Often Γn+1 = D(Γn), in parti-ular when u is reurrent (we assume this from now on) and there is nobispeial fator (a fator that is both left speial and right speial).
14



Bispeial fator burst

A bispeial fator is a fator that is both left speial and right speial.For simpliity assume a binary alphabet A = {a, b}.

w

aw

bw

wa

wb

aw

bw

wa

wb

Γn D(Γn) Γn+1(w is bispeial) (w yields 4 edges) (edges may be deleted)
15



Evolution without bispeial fatorWhen there is no bispeial fator, Γn+1 = D(Γn) an be deduedfrom Γn without any additional information.

Γn and Γn+1 have the same shape. The lengths of branhes mayinrease or derease by 1. At least one branh shrinks, so eventuallya bispeial fator will our in a later graph.Example (Fibonai):
baab

aaba

abaa

abab

baba

b

a

a

b

a a

baaba

abaab

aabaa

aabab

babaa

ababaa
b

a

b

b

a

a

Γ4 Γ5 16



Evolution for Sturmian words

Assume that there is a bispeial fator of length n.

wx y

wa′

aw wb′

bw

a

a

b

bxa−1 yb−1

Γn D(Γn)To obtain Γn+1, one of the dashed vertial edges has to be removedfrom D(Γn) (exatly one to get p(n+2) = n+3 edges; and the hori-zontal edges are needed for strong onnetedness). So two evolutionsare possible. 17
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Loop labels and substitutions

Let ni be the length of the i-th bispeial fator (n0 = 0).Let xi and yi be the labels of the loops of Γni. Then the labels ofthe loops of Γni+1 are either xi+1 = xi and yi+1 = xiyi, or xi+1 = yixiand yi+1 = yi.Let τi be the substitution suh that xi = τi(a) and yi = τi(b).Then τi+1 = τi ◦ σdi.Therefore τi = σd0 ◦ · · · ◦ σdi−1

. 19



Dynamis of Rauzy graphsfor words of omplexity 2n(Rote 1994, Desideri 2002, Leroy 2012)Consider now the lass of all reurrent binary words suh that

p(n) = 2n for all n ≥ 1.Goal: �nd a haraterization of the words of this lass using substi-tutions (s-adi with extra onditions).Method: desribe the possible shapes of Rauzy graphs, and the evolu-tions between them. Enode this with substitutions. Add onditionsto ensure that the substitutions are applied only when the evolutionis allowed. 20
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Our algorithm (1)Consider words for whih all Rauzy graphs have shapes 2D and 3D(for n large enough, or for all n if we allow branhes with emptylabels).In the i-th graph of shape 2D, let τi(a), τi(b), τi(c) be the labels ofthe loops around the bispeial fator:
τi(a) through the right speial fator;
τi(b) through the right speial and left speial fators;

τi(c) through the left speial fator.Then τi+1 = τi ◦ γdi, with di ∈ {1,2} and:
γ1 : a 7→ a, b 7→ ac, c 7→ b;

γ2 : a 7→ b, b 7→ ac, c 7→ c. 23



Our algorithm (2)

This results in the following ontinued fration algorithm:

FC(x, y, z) =

{

(x− z, z, y) if x ≥ z
(y, x, z − x) if x < zassoiated with substitutions C = {γ1, γ2}:

γ1 : a 7→ a, b 7→ ac, c 7→ b

γ2 : a 7→ b, b 7→ ac, c 7→ cand matries

C1 =







1 1 0
0 0 1
0 1 0





 and C2 =







0 1 0
1 0 0
0 1 1





 .
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A periodi exampleLet α = 3
√
2 and x0 = (1, α, α2). Then one has:







1
1.2599
1.5874







C−1
2−→







1.2599
1

0.5874







C−1
1−→







0.6725
0.5874

1







C−1
2−→







0.5874
0.6725
0.3275







C−1
1−→







0.2599
0.3275
0.6725







C−1
2−→







0.3275
0.2599
0.4126







C−1
2−→







0.2599
0.3275
0.0851







C−1
1−→ . . .

One heks that x13 = (α− 1)2x3 so that d = 212(1221221121)ω.The orresponding in�nite word is u = (γ2γ1γ2)(γ1γ
2
2γ1γ

2
2γ

2
1γ2γ1)

ω(a) =

bcbacbcacbacbcbacbacbcacbacbcbacbcacbacbcbacbacbcacbacbcbacbcacbacbc . . .Open problem. Charaterize vetors with periodi CF expansion.25



Properties

The algorithm FC is de�ned for every vetor x0.Theorem 1. The following are equivalent:(i) the entries of x0 are rationally independent(ii) the C-adi representation (γdn) is primitive(iii) the diretive sequene d does not belong in {1,2}∗{11,22}ω.A sequene of morphisms (τn) is primitive if:
∀n ∈ N,∃m > n,∀(i, j) ∈ A2, |τnτn+1 . . . τm−1(j)|i > 0.
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Properties

If onditions of Theorem 1 are satis�ed, then u has omplexity 2n+1.Proof: by onstrution when γ1 and γ2 are de�ned with Rauzy graphs.A ombinatorial proof, using bispeial fators, is also possible.The ontinued fration is always onvergent.De�ne the ones Λn = Cd0Cd1 . . . Cdn−1
R
3
+.Then their intersetion is a half-line: ∩n∈NΛn = R+x0.
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Selmer algorithm

Selmer algorithm: subtrat the smallest entry from the largest[Ernst Selmer 1956℄.Semi-sorted formulation: FS : Γ → Γ where

Γ = {(x, y, z) ∈ R3
+ : max(y, z) ≤ x ≤ y + z} and

FS(x, y, z) =

{

(y, x− z, z) if y ≥ z
(z, y, x− y) if y < zAssoiated matries are

S1 =







0 1 1
1 0 0
0 0 1





 and S2 =







0 1 1
0 1 0
1 0 0





 .
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Link with Selmer algorithm

Theorem 2. Algorithms FC and FS are onjugated.Let

Z =







1 1 1
1 1 0
0 1 1





 .Then S1Z = ZC1 and S2Z = ZC2.The map z : R3
+ → Γ de�ned by z(x) = Zx is a homeomorphism,and z ◦ FC = FS ◦ z.
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Balane

Let D ∈ N. An in�nite word u ∈ AN is D-balaned if for all v and wfators of u of equal length and all x ∈ A, ||w|x − |v|x| ≤ D.The word u is �nitely balaned if it is D-balaned for some D.Sturmian words are 1-balaned. Most Arnoux-Rauzy words are �nitelybalaned, but there exist Arnoux-Rauzy words that are not �nitelybalaned.Work in progress: for almost all x, algorithm FC produes a �nitelybalaned word u. But there exist x for whih u is not �nitely balaned.30



Further work

Charaterize x for whih u is 2-balaned, D-balaned,�nitely balaned.Charaterize x for whih u is morphi, purely morphi, et.Construt a similar algorithm in any dimension.Problem: the Rauzy graph approah does not seem to work.
31


