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@ Lattice gas models on Aperiodic Self-Similar tilings
( by Geerse and Hof)

@ Generalization for Aperiodic Linearly repetive (LR) tilings
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Self-similar tilings

Self-similar tilings

they are tilings build by primitive substitution which consists to enlarge every tile by a
factor A > 1 and then to segment it by tiles of initial size.
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Self-similar tilings
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Atiling T is (LR) if there is C > 1 such that for every patch P any ball of radius
C diam(P) contains a translate copy of P. J
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Quasi-crystallographic tilings

An aperiodic tiling is said quasi-crystallographic if it satisfies the following
assumptions :

@ (Repetitivity) for all patch P there exits a radius R(P) such that every ball of
radius R(P) contains a translate copy of P.

@ (Finite local complexity) for every D > 0 the set of possibly patches (up
translation) with diameter smaller than D is finite.

@ (Uniform Patch Frequency) for all patch P there exists a positif number fp such
that for every sequence of balls B, which satisfies lim,— o0 r» = +00;

o #p(Bn)
n—oo Vol(B,)

= fp-
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Vertices of the tiling

FIGURE — L : lattice of the vertices
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Lattice gas models

@ Consider a probability space (E, &, \), where E is compact metric space and € it's
Borel c—algebra. To each vertex i € L we associate a copy (E;, &, A;) of this
probability space.

@ aninteraction ® assigns to every finite set X C L a continuous function on

EX (EX = Q) Ei).

ieX
@ An interacion ® belongs to By if it is :

1) vertexpattern invariant if ®(X) ~ ®(X’) whenever X’ = X + ¢ for some ¢ € R?.

2) of finite range if there is D > 0 s.t ®(X) = 0 whenever diam(X) > D.
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Thermodynamic functions

The Hamiltonian in a bounded Q C R% is :

H = > ®(X), whereQ*=0nL
XCor

@ the pressure is defined by

Py (®) =log/ exp (— Hy (u))dA2(u). where A0 = (X) \;
EQ” i€eonL

For a probability measure p on E- we define :

@ the energy by
HY _—/ H2 (u)d .
ol Q) o Q(u) p(u)

@ and the entropy by

So(p) = — /EQ* f0 log (fpg)dAQ(u), where f,o is the density of p,.
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Case of self-similar tilings

Existence of thermodynamic functions

Forevery ® € By and p € Pg(EL), IP(®), e®(p), s(p) ER, s.tforall sequence of
cubes (Q,) with L(Q,) — oo, we have :

P(®) = lim Vol(0,)~'Pg, (®)
e®(p) = lim Vol(@n)~" p(H),

s(p) = lim Vol(x)~" So, ().

<

Variational principle

For every @ € B

P(®) = sup s(p) —e®(p)
pePp (EL)
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(sub)additive functions

additive and subadditive functions
a function F : B(R?) — R is called additive if it satisfies :
@ |F(QUQ')—F(Q)—F(Q)]| < by(Vol(9Q) + (9'Q"))
where Q, Q' have disjoint interiors.

o L

F is called subadditive if it satisfies :
@ F(QUQ')—F(Q)—F(Q') <0, whereQNQ' = .
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FIGURE — illustration of the self-similarity

K=l > T,
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Self-similarity

K=2 —» T,

FIGURE — Equivalent supertiles in T,
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FIGURE — Equivalent supertiles
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Ergodic theorems on self-similar tiling

Ergodic theorems

If F is a (sub)additive function satisfying

) m s {M}:O

k— o0 MNM/ETk VOI(M)

Then lim Vol ™' (0.)F(Q.) = F
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Voronoi construction for case

For a locator point g of some patch P. A Voronoi tile V, is the
region formed by points closer to ¢ to the other locators of P. J

16/24



Return tile

FIGURE — Return tile M, = (V,, [B(g,2R(P))]")
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Equivalence for return tile

FIGURE — Equivalent return tiles
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Hierarchical structure or Week form of self-similarity

we consider the sequence of patches C; = [B(0, dyk)]" ¥ k € N\ {0}. Denote
by Ty the tiling formed by return tiles associated to the patch Cx.

@ By (FLC) the set of possibly return tiles (up translation) in 7 is finite.
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Derived Voronoi tiling

FIGURE — Derived Voronoi tiling for k = 1
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Derived Voronoi tiling

FIGURE — Derived Voronoi tiling for k = 2
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Derived Voronoi tiling

K=1 k=2
FIGURE — Comparaison between tiles from T, and T,
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good properties for

Let T an aperiodic (LR) tiling then 3 N; > 0and N> > 0 s.t for all k € N*
@ ri,(M,;) > Nik, (Repulsive property for aperiodic (LR) case)
@ R,u(M,) < Nak

e
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Ergodic theorems

Ergodic theorems

Let T an aperiodic (LR) tiling, and F is a (sub)additive function satisfying

(ol

(%) klim sup
70 My~M)ET,

Then lim Vol ™' (Q.)F(Q.,) =F
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Thank you!
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