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Consider the shifts generated by

a uniformly recurrent Arnoux-Rauzy word

and a coding of a three-interval exchange

having the same letter frequencies



Consider the shifts generated by

a uniformly recurrent Arnoux-Rauzy word

Tribonacci word σ : 1 7→ 12, 2 7→ 13, 3 7→ 1

The frequencies of letters in σ∞(1) are (α, α2, α3)

α + α2 + α3 = 1

and a coding of a three-interval exchange

having the same letter frequencies



Consider the minimal and uniquely ergodic shifts generated by

a uniformly recurrent Arnoux-Rauzy word

and a coding of a three-interval exchange

having the same letter frequencies

They both have factor complexity 2n + 1

Are the shifts the same?

They are not topologically conjugate Asymptotic pairs

But they are orbit equivalent

They are even strong orbit equivalent
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Orbit equivalence



Topological orbit equivalence

Two topological dynamical systems (X ,S) and (Y ,T ) are orbit
equivalent if there exists a homeomorphism h : X → Y that sends
orbits to orbits

h(OT (x)) = OS(h(x)) for all x ∈ X

h({T n(x) | n ∈ Z}) = {Sn(h(x)) | n ∈ Z}



Topological orbit equivalence
Two topological dynamical systems (X ,S) and (Y ,T ) are orbit
equivalent if there exists a homeomorphism h : X → Y that sends
orbits to orbits

h(OT (x)) = OS(h(x)) for all x ∈ X

Cocyle map If (X , S) (and hence (Y ,T ) ) are minimal, there exists
a unique map

n : X → Z s.t. for all x ∈ X h ◦ T (x) = Sn(x) ◦ h(x)

There also exists a unique map m

m : X → Z, h ◦ Tm(x)x = Sm ◦ h(x)

Strong orbit equivalence The cocyle maps have just one point of
discontinuity

Dye’s theorem Any two ergodic automorphisms of a Lebesgue
space are orbit equivalent in the measure-theoretic sense



Orbit equivalence and measures

Let (X ,S) and (Y ,T ) be uniquely ergodic Cantor systems
Let µ and ν be the corresponding invariant probability measures

Theorem [Giordano-Putman-Skau] (X ,S) is orbit equivalent to
(Y ,T ) if and only if

{µ(E ) ; E clopen subset of X} = {ν(E ) ; E clopen subset of Y }

Corollary The Tribonacci shift is orbit equivalent to the shift
generated by the interval exchange of permutation (321) with
lengths (α, α2, α3), with α + α2 + α3 = 1

Proof 〈µ[w ] ; w factor of the shift〉 = Z[α] ∩ [0, 1]
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Strong orbit equivalence

= dimension group



Ordered group

An ordered group is a pair (G ,G+) consisting of an abelian group
G together with a subset G+, called the positive cone, satisfying

G+ + G+ ⊂ G+, G+ ∩ (−G+) = {0}, G+ − G+ = G

Ex • (Zd ,Nd)
• Continuous functions (C (X ,Z),C (X ,N)) for (X ,T ) a shift



Ordered group

An ordered group is a pair (G ,G+) consisting of an abelian group
G together with a subset G+, called the positive cone, satisfying

G+ + G+ ⊂ G+, G+ ∩ (−G+) = {0}, G+ − G+ = G

Ex • (Zd ,Nd , 1)
• Continuous functions (C (X ,Z),C (X ,N), 1) for (X ,T ) a shift

The relation ≤ defined by g ≤ h if and only if h − g ∈ G+ is a
partial order compatible with the group operation

An order unit of the ordered group G is a nonnegative element 1
such that for every g ∈ G+ there exists n ∈ N such that g ≤ n1



Dimension group
Definition [Elliot’76] A dimension group is a direct limit of ordered
finitely generated free abelian groups (direct sums of copies of Z
ordered in the usual way)

Zd0 M0−→ Zd1 M1−→ Zd2 M2−→ Zd3

Each map
M−→ is the multiplication by M with the matrices being

nonnegative

How to decompose a shift (X ,T ) as an inverse limit?

Kakutani-Rohlin towers and Bratteli-Vershik maps
[Herman-Putman-Skau]

Return words [Durand-Host-Skau]

Desubstitution and S-adic representations

C (X ,Z)/ ; C (X ,Z)/βC (X ,Z),
β : C (X ,Z)→ C (X ,Z), f 7→ f ◦ T − f
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Dimension group of a shift

Let (X ,T ) be a minimal shift

Coboundaries β : C (X ,Z)→ C (X ,Z), f 7→ f ◦ T − f

Let H(X ,T ) = C (X ,Z)/βC (X ,Z)

Let 1 be the function that takes constant value 1

The dynamical dimension group of (X ,T ) is the ordered
group with order unit

K 0(X ,T ) := (H(X ,T ),H+(X ,T ), [1])



Dimension groups are complete invariants for strong orbit
equivalence

Dimension group

K 0(X ,S) := (H(X ,S),H+(X ,S), [1])

H(X ,S) = C (X ,Z)/βC (X ,Z)

Theorem [Giordano-Putman-Skau] Let (X , S) and (Y ,T ) be two
minimal Cantor dynamical systems
(X , S) is strong orbit equivalent to (Y ,T ) iff

K 0(X ,S) ' K 0(Y ,T )

Infinitesimal subgroup of K 0(X ,T )

Inf(K 0(X ,T )) =

{
[f ] ∈ K 0(X ,T ) ;

∫
fdµ = 0 for all µ ∈M(X ,T )

}



Dimension groups are complete invariants for strong orbit
equivalence

Dimension group

K 0(X ,S) := (H(X ,S),H+(X ,S), [1])

H(X ,S) = C (X ,Z)/βC (X ,Z)
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(X , S) is strong orbit equivalent to (Y ,T ) iff
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Inf(K 0(X ,T )) =

{
[f ] ∈ K 0(X ,T ) ;

∫
fdµ = 0 for all µ ∈M(X ,T )

}
M(X ,T ): set of T -invariant probability measures on X



Dimension groups are complete invariants for strong orbit
equivalence

Dimension group

K 0(X ,S) := (H(X ,S),H+(X ,S), [1])

H(X ,S) = C (X ,Z)/βC (X ,Z)

Theorem [Giordano-Putman-Skau] Let (X , S) and (Y ,T ) be two
minimal Cantor dynamical systems
(X , S) is strong orbit equivalent to (Y ,T ) iff

K 0(X ,S) ' K 0(Y ,T )

Infinitesimal subgroup of K 0(X ,T )

Inf(K 0(X ,T )) =

{
[f ] ∈ K 0(X ,T ) ;

∫
fdµ = 0 for all µ ∈M(X ,T )

}
(X , S) is orbit equivalent to (Y ,T ) iff

K 0(X , S)/Inf(K 0(X , S)) ' K 0(Y ,T )/Inf(K 0(Y ,T ))



Dimension group of the Tribonacci shift

Let (X ,S) be the Tribonacci shift

Dimension group

K 0(X ,S) = (H(X , S ,Z),H+(X , S ,Z), [1])

K 0(X ,S) ' (Z3, {x ∈ Z3 | 〈x, f〉 ≥ 0}, 1)

with f = (α, α2, α3)

Let (Y ,T ) be the interval exchange with permutation (321) and
lengths (α, α2, α3)

K 0(Y ,T ) ' (Z3, {x ∈ Z3 | 〈x, f〉 ≥ 0}, 1)

Both shifts are strong orbit equivalent
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Tree shifts

c© Coulbois-Minervino



Tree words
We study a family of words

tree words

from the viewpoint of word combinatorics

but we also add more structure

Topological and measure-theoretic ; Symbolic dynamics and
ergodic theory
Algebraic ; From free monoids to free groups Parageometric
case [cf. T. Coulbois’s lecture]

We want to

find a common framework for natural generalizations of
Sturmian words such as codings of interval exchanges or
Arnoux-Rauzy words

understand the role played by free groups for them
define generalized continued fraction algorithms [cf.
J. Cassaigne’s lecture]
Tool : S-adic expansions via return words
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Extension graphs

We consider the set of factors Lu of u ∈ AN. Let w ∈ Lu

`(w) = {a ∈ A | aw ∈ Lu}

r(w) = {a ∈ A | wa ∈ Lu}

e(w) = {(a, b) ∈ A× A | awb ∈ Lu}

The extension graph of the finite word w is the undirected graph
G (w) having

• `(w) and r(w) as vertices

• e(w) as edges
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Extension graphs
We consider the set of factors Lu of u ∈ AN. Let w ∈ Lu

`(w) = {a ∈ A | aw ∈ Lu}

r(w) = {a ∈ A | wa ∈ Lu}

e(w) = {(a, b) ∈ A× A | awb ∈ Lu}

The extension graph of the finite word w is the undirected graph
G (w) having

• `(w) and r(w) as vertices

• e(w) as edges

Definition We say that u ∈ AN is a tree word if the graph G (w) is
a tree for any w ∈ Lu

Tree = undirected, acyclic and connected graph



The Thue-Morse word is not a tree word

τ : 0 7→ 01, 1 7→ 10

u = τ∞(0) = 01101001100101101001011001 · · ·

w = 01 w = 010



The Fibonacci word is a tree word

σ : a 7→ ab, b 7→ a

u = σ∞(a) = abaababaabaababaababaab · · ·

The factors of length 2 are aa, ab, ba



Examples of tree words

Theorem [B.,De Felice,Dolce,Leroy, Perrin,Reutenauer,Rindone]
A tree word u on k letters has (k − 1)n + 1 factors of length n

Sturmian words
and generalizations of Sturmian words on a k-letter alphabet



Examples of tree words

Theorem [B.,De Felice,Dolce,Leroy, Perrin,Reutenauer,Rindone]
A tree word u on k letters has (k − 1)n + 1 factors of length n

Sturmian words
and generalizations of Sturmian words on a k-letter alphabet

Arnoux-Rauzy words Combinatorial generalization

l(w) = r(w) = 3

Codings of interval exchanges Geometric generalization

l(w) = r(w) = 2 for w large enough

Cassaigne-Selmer’s substitutions Arithmetic generalization



Interval exchanges are tree words

Extension graph for ε



Interval exchanges are tree words



Tree sets and return words



Return words

Let Lu be the set of factors of u ∈ AN

We assume u uniformly recurrent

factors occur infinitely often with bounded gaps

Let w ∈ Lu. A return word to w is a finite word v in Lu such that
wv ends with w and wv contains exactly two occurrences of w



Return words
Let Lu be the set of factors of u ∈ AN

We assume u uniformly recurrent

factors occur infinitely often with bounded gaps

Let w ∈ Lu. A return word to w is a finite word v in Lu such that
wv ends with w and wv contains exactly two occurrences of w

Example Let Lu be the set of factors of the Fibonacci word

a|ba|a|ba|ba|a|ba|a|ba|ba|a|ba|ba|a|ba|a|ba|ba|a|ba|a|ba|ba|a|ba|ba|a · · ·

a and ba are return words to a

w a b aa ab ba

RF (w) a, ba ab, aab baa, babaa ab, aab ba, aba



Return words
Let Lu be the set of factors of u ∈ AN

We assume u uniformly recurrent

factors occur infinitely often with bounded gaps

Let w ∈ Lu. A return word to w is a finite word v in Lu such that
wv ends with w and wv contains exactly two occurrences of w

Example Let Lu be the set of factors of the Fibonacci word

a|ba|a|ba|ba|a|ba|a|ba|ba|a|ba|ba|a|ba|a|ba|ba|a|ba|a|ba|ba|a|ba|ba|a · · ·

RF (aa) = {baa, babaa} is a basis of the free group on {a, b}

a = (baa)(babaa)−1(baa)

b = (baa)a−1a−1



Tree words and Fd

Let u ∈ AN be a uniformly recurrent tree word over an alphabet of
cardinality d and let Lu be the set of its factors.

Theorem [B.,De Felice,Dolce,Leroy,Perrin,Reutenauer,Rindone]
Let w be a factor of u. The set of return words to w is a basis of
the free group Fd .

The decoding of a uniformly recurrent tree word u with respect to

the return words of a given factor is again a tree word ,

; S-adic expansions



Tree sets are S-adic

Positive automorphism σ of the free group FA: σ(a) ∈ A+, ∀a ∈ A

Elementary positive automorphisms Se
permutations

αa,b(a) = ab, αa,b(c) = c if c 6= a

α̃a,b(a) = ba, α̃a,b(c) = c if c 6= a

Theorem [B.,De Felice,Dolce,Leroy, Perrin,Reutenauer,Rindone] If
X is a minimal tree shift over the alphabet A, then it admits a
primitive Se-adic representation

u = lim
n→+∞

σ1 ◦ σ2 ◦ · · · ◦ σn(1), (σn)n ∈ SNe



Tree sets are S-adic

Positive automorphism σ of the free group FA: σ(a) ∈ A+, ∀a ∈ A

Elementary positive automorphisms Se
permutations

αa,b(a) = ab, αa,b(c) = c if c 6= a

α̃a,b(a) = ba, α̃a,b(c) = c if c 6= a

Theorem [B.,De Felice,Dolce,Leroy, Perrin,Reutenauer,Rindone] If
X is a minimal tree shift over the alphabet A, then it admits a
primitive Se-adic representation

u = lim
n→+∞

σ1 ◦ σ2 ◦ · · · ◦ σn(1), (σn)n ∈ SNe

Primitive: for all k, there exists ` such that σk · · ·σ` is such that
the image of any letter contains all the letters



Tree sets are S-adic
Positive automorphism σ of the free group FA: σ(a) ∈ A+, ∀a ∈ A

Elementary positive automorphisms Se
permutations
αa,b(a) = ab, αa,b(c) = c if c 6= a
α̃a,b(a) = ba, α̃a,b(c) = c if c 6= a

Theorem [B.,De Felice,Dolce,Leroy, Perrin,Reutenauer,Rindone] If
X is a minimal tree shift over the alphabet A, then it admits a
primitive Se-adic representation

u = lim
n→+∞

σ1 ◦ σ2 ◦ · · · ◦ σn(1), (σn)n ∈ SNe

Primitive S-adic words u generated by a set of substitutions
over a finite alphabet have zero entropy

But it is possible to construct S-adic words generated by
positive elementary automorphisms with high factor
complexity among zero entropy words
[Cassaigne-Leroy-Pytheas Fogg]



Orbit equivalent tree shifts



Dimension group of a shift

Let (X ,T ) be a minimal shift

Coboundaries β : C (X ,Z)→ C (X ,Z), f 7→ f ◦ T − f

Let H(X ,T ) = C (X ,Z)/βC (X ,Z)

Let 1 be the function that takes constant value 1

The dynamical dimension group of (X ,T ) is the ordered
group with order unit

K 0(X ,T ) := (H(X ,T ),H+(X ,T ), [1])



Dimension groups are complete invariants for strong orbit
equivalence

Dimension group

K 0(X ,S) := (H(X ,S),H+(X ,S), [1])

H(X ,S) = C (X ,Z)/βC (X ,Z)

Theorem [Giordano-Putman-Skau] Let (X , S) and (Y ,T ) be two
minimal Cantor dynamical systems
(X , S) is strong orbit equivalent to (Y ,T ) iff

K 0(X ,S) ' K 0(Y ,T )

Infinitesimal subgroup of K 0(X ,T )

Inf(K 0(X ,T )) =

{
[f ] ∈ K 0(X ,T ) ;

∫
fdµ = 0 for all µ ∈M(X ,T )

}
(X , S) is orbit equivalent to (Y ,T ) iff

K 0(X ,S)/Inf(K 0(X ,S)) ' K 0(Y ,T )/Inf(K 0(Y ,T ))



Image group and infinitesimals
Let M(X ,T ) be the set of T -invariant probability measures on X

I (X ,T ) =
⋂

µ∈M(X ,T )

{∫
fdµ ; f ∈ C (X ,Z)

}
An ordered group with unit: the image subgroup of K 0(X ,T )

(I (X ,T ), I (X ,T ) ∩ R+, 1)

Infinitesimal subgroup of K 0(X ,T )

Inf(K 0(X ,T )) =

{
[f ] ∈ K 0(X ,T ) ;

∫
fdµ = 0 for all µ ∈M(X ,T )

}
If (X ,T , µ) is uniquely ergodic

I (X ,T ) = additive group generated by µ[w ], w ∈ LX

K 0(X ,T )/Inf(K 0(X ,T )) ' (I (X ,T ), I (X ,T ) ∩ R+, 1)
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Let M(X ,T ) be the set of T -invariant probability measures on X

I (X ,T ) =
⋂

µ∈M(X ,T )

{∫
fdµ ; f ∈ C (X ,Z)

}
An ordered group with unit: the image subgroup of K 0(X ,T )
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Infinitesimals of a tree shift: orbit equivalence
Let (X ,S , µ) be a uniquely ergodic and minimal tree shift

I (X , S) =

{∫
fdµ ; f ∈ C (X ,Z)

}
Theorem [B.-Cecchi-Dolce-Durand-Leroy-Perrin-Petite]

I (X , S) =
∑

a letter in A

Zµ([a])

Proof

For any α ∈ I (X ,T ) ∩ (0, 1), there exists a clopen set U such
that α = µ(U)

Tree shift and extension graph The measure of any cylinder is
in ∑

a∈A
Zµ([a])

Frequencies of letters determine frequencies of factors

6= Thue-Morse Z[1/2] dyadic rationals



Tree shifts and invariant measures

Theorem [B.-Cecchi-Dolce-Durand-Leroy-Perrin-Petite] Let (X ,T )
be a minimal tree shift on a d-letter alphabet A, let µ and µ′ be
two T -invariant measures on X

If µ and µ′ coincide on cylinders associated with letters, then they
are equal

µ([a]) = µ′([a]) ∀a ∈ A ⇒ µ(U) = µ′(U) ∀U ⊆ X clopen



Dimension group of a tree shift: strong orbit equivalence
Let (X ,T ) be a minimal tree shift on a d-letter alphabet

Dimension group

K 0(X ,T ) = (H(X ,T ,Z),H+(X ,T ,Z), [1])

Theorem [B.-Cecchi-Dolce-Durand-Leroy-Perrin-Petite]
• H(X ,T ,Z) is isomorphic to Zd

• If moreover (X ,T ) is uniquely ergodic and has rationally
independent letter frequencies, then

K 0(X ,T ) ' (Zd , {x ∈ Zd | 〈x, f〉 ≥ 0}, 1)

f denotes the letter frequency vector
Proof Description by return words.
Rem For the Zd part, one can also use
Theorem [B., De Felice,Dolce,Leroy,Perrin,Reutenauer,Rindone]
For any n, the group described by the Rauzy graph Gn with respect
to any vertex is the free group FA
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to any vertex is the free group FA



Orbit equivalent tree shifts

Two tree shifts that are minimal and uniquely ergodic with
the same additive group of letter frequencies are orbit
equivalent

If the letter frequencies are rationally independent, they are
strong orbit equivalent

All minimal tree shifts on a three-letter alphabet with the
same group of letter frequencies are orbit equivalent

In particular any i.d.o.c. exchange of three intervals is orbit
equivalent to any theree-letter Arnoux-Rauzy subshift, or to a
two-dimensional Sturmian shift, provided they have all the
same letter frequencies
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Tree shifts and recognizability
We are given X ⊆ AZ and σ : A → B+
Centered σ-representation of y ∈ BZ

y = T kσ(x), x ∈ AZ, 0 ≤ k < |σ(x0)|

The morphism σ is recognizable in X if each y ∈ BZ has at most
one centered σ-representation in X

Let σ = (σn)n≥0 be a sequence of morphisms σn : An+1 → A+
n

lim
N
σn ◦ σn+1 ◦ · · · ◦ σn+N(1) ; X

(n)
σ

The sequence σ is recognizable if σn is recognizable in X
(n+1)
σ , ∀n

Theorem [B.-Steiner-Yassawi] Let (X ,T ) be a minimal tree shift.
Let (Xσ,T ) be a return word S-adic representation of (X ,T ).
The sequence σ is recognizable.
The natural Bratteli-Vershik system associated with σ is properly
ordered and is topologically conjugate to (X ,T ). Its topological
rank is bounded by the size of the alphabet of X .
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Tree shifts

Minimal tree shifts on a k-letter alphabet have linear factor
complexity (k − 1)n + 1

The class of minimal tree words is closed under decoding with
respect to return words

The set of return words forms a basis of the free group FA

S-adic generation by elementary positive automorphisms/
continued fraction algorithms/recognizability

Orbit equivalence is determined by the group of letter
frequencies

We develop codes and automata theory inside tree languages
and provide positive bases of subgroups of the free group FA.

Any subgroup of finite index of the free group has a positive
basis contained in a tree language

Find suitable geometric representations for tree shifts
cf. [Coulbois-Hilion-Lustig-Minervino] parageometric
substitutions/real trees and interval exchanges
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