Rauzy fractals	Balance and algebraic irreducibility	Properties of $\mathcal R$	Tilings	Rotations	Examples

S-adic sequences A bridge between dynamics, arithmetic, and geometry

J. M. Thuswaldner

(joint work with P. Arnoux, V. Berthé, M. Minervino, and W. Steiner)

Marseille, November 2017

Properties of *R*

Tilings Rotations

Examples

PART 3

S-adic Rauzy fractals and rotations

Rauzy fractals	Balance and algebraic irreducibility	Properties of $\mathcal R$	Tilings	Rotations	Examples

Contents

- Definition of *S*-adic Rauzy fractals
- 2 Balance, algebraic irreducibility, and strong convergence
- 3 Properties of S-adic Rauzy fractals
- 4 Tiling with Rauzy fractals
- 5 Rotations
- 6 Examples and consequences

 Rauzy fractals
 Balance and algebraic irreducibility

 000000000000
 00000000

Properties of \mathcal{R} Tilings

gs Rotations

Examples 000000

The underlying papers

- Berthé, V., Steiner, W., and Thuswaldner, J., Geometry, dynamics, and arithmetic of *S*-adic shifts, preprint, 2016 (available at https://arxiv.org/abs/1410.0331).
- Arnoux, P., Berthé, V., Minervino, M., Steiner, W., and Thuswaldner, J., Nonstationary Markov partitions, flows on homogeneous spaces, and continued fractions, *in preparation*.

S-adic sequence abd *S*-adic shift

S-adic sequence: For some $a \in \mathcal{A}$ we have

$$w = \lim_{n \to \infty} \sigma_{[0,n)}(a)$$

(this is related to primitivity).

Definition (S-adic shift)

For an S-adic sequence w Let

$$X_w = \overline{\{\Sigma^k w : k \in \mathbb{N}\}}.$$

 $(X_w, \Sigma) = (X_{\sigma}, \Sigma)$ is the *S*-adic shift (or *S*-adic system) generated by *w*.

Examples

A result on the way

Theorem

Let σ be a sequence of unimodular substitutions with associated sequence of incidence matrices **M**. If **M** is primitive and recurrent, (X_{σ}, Σ) is minimal and uniquely ergodic. Rauzy fractals B

Balance and algebraic irreducibility

Tilings

Examples 000000

Rotations

An Example: Brun substitutions

Lemma

Let $S = \{\sigma_1, \sigma_2, \sigma_3\}$ be the set of Brun substitutions and $\sigma \in S^{\mathbb{N}}$. If σ is recurrent and contains the block $(\sigma_3, \sigma_2, \sigma_3, \sigma_2)$ then the associated S-adic system (X_{σ}, Σ) is minimal and uniquely ergodic.

Proof.

It is immediate that $M_3M_2M_3M_2$ is a strictly positive matrix. Since σ is recurrent, it contains the block $(\sigma_3, \sigma_2, \sigma_3, \sigma_2)$ infinitely often. Thus σ is primitive and the result follows from the theorem.

Being recurrent is a generic property.

 Rauzy fractals
 Balance and algebraic irreducibility

 000000000000
 00000000

Properties of \mathcal{R} Tilin

Tilings Rotations

Examples 000000

Looking back to the Sturmian case

- We "see" the rotation on the Rauzy fractal if it has "good" properties.
- It is our aim to establish these properties.

Preparations for the definition

An *S*-adic Rauzy fractal will be defined in terms of a projection to a hyperplane.

- $\mathbf{w} \in \mathbb{R}^d_{\geq 0} \setminus \{\mathbf{0}\}.$
- $\mathbf{w}^{\perp} = \{\mathbf{x} : \mathbf{x} \cdot \mathbf{w} = \mathbf{0}\}$ orthogonal hyperplane
- \mathbf{w}^{\perp} is equiped with the Lebesgue measure $\lambda_{\mathbf{w}}$.
- The vector $\mathbf{1} = (1, \dots, 1)^t$ will be of special interest
- u, w ∈ ℝ^d_{≥0} \ {0} noncollinear. Then we denote the projection along u to w[⊥] by π_{u,w}.

Rauzy fractals	Balance and algebraic irreducibility	Properties of \mathcal{R}	Tilings	Rotations	Examples
00000000000000000					

S-adic Rauzy fractal

Definition (S-adic Rauzy fractals and subtiles)

Let σ be a sequence of unimodular substitutions over the alphabet \mathcal{A} with generalized eigenvector $\mathbf{u} \in \mathbb{R}^d_{>0}$. Let (X_{σ}, Σ) be the associated *S*-adic system. The *S*-adic Rauzy fractal (in $\mathbf{w}^{\perp}, \mathbf{w} \in \mathbb{R}^d_{\geq 0}$) associated with σ is the set

 $\mathcal{R}_{\mathbf{w}} := \overline{\{\pi_{\mathbf{u},\mathbf{w}} \mathbf{I}(p) : p \text{ is a prefix of a limit sequence of } \sigma\}}.$

The set \mathcal{R}_{w} can be naturally covered by the subtiles $(i \in \mathcal{A})$

 $\mathcal{R}_{\mathbf{w}}(i) := \overline{\{\pi_{\mathbf{u},\mathbf{w}} \mathbf{I}(p) : pi \text{ is a prefix of a limit sequence of } \sigma\}}.$

For convenience we set $\mathcal{R}_1(i) = \mathcal{R}(i)$ and $\mathcal{R}_1 = \mathcal{R}$.

roperties of R T

Tilings Rotations

Examples 000000

Illustration of the definition

Figure: Definition of \mathcal{R}_u and its subtiles

Rauzy fractals	Balance and algebraic irreducibility	Properties of $\mathcal R$	Tilings	Rotations	Examples
00000000000000					

What we need

We want to "see" the rotation on the Rauzy fractal.

- \mathcal{R} should be bounded.
- \mathcal{R} should be the closure of its interior.
- The boundary $\partial \mathcal{R}$ should have λ_1 -measure zero.
- The subtiles *R*(*i*), *i* ∈ *A*, should not overlap on a set of positive measure.
- *R* should be the fundamental domain of a lattice, *i.e.*, it can be used as a tile for a lattice tiling.

Rauzy fractals	Balance and algebraic irreducibility	Properties of \mathcal{R}	Tilings	Rotations	Examples
000000000000000					

Figure: The domain exchange

Properties of \mathcal{R} Til

Tilings Rotations

Examples 000000

Multiple tiling and tiling

Definition (Multiple tiling and tiling)

- Let ${\mathcal K}$ be a collection of subsets of an Euclidean space ${\mathcal E}.$
- Assume that each element of ${\cal K}$ is compact and equal to the closure of its interior.
- *K* is a multiple tiling if there is *m* ∈ N such that a. e. point (w.r.t. Lebesgue measure) of *E* is contained in exactly *m* elements of *K*.
- \mathcal{K} is a multiple tiling if m = 1.

Rauzy fractals	Balance and algebraic irreducibility	Properties of <i>R</i>	Tilings 000000000	Rotations	Examples 000000

Discrete hyperplane

- A discrete hyperplane can be viewed as an approximation of a hyperplane by translates of unit hypercubes.
- Pick $\mathbf{w} \in \mathbb{R}^d_{>0} \setminus \{\mathbf{0}\}$ and denote by $\langle \cdot, \cdot \rangle$ the dot product.
- The discrete hyperplanes is defined by

$$\Gamma(\mathbf{w}) = \{ [\mathbf{x}, i] \in \mathbb{Z}^d \times \mathcal{A} : \mathbf{0} \le \langle \mathbf{x}, \mathbf{w} \rangle < \langle \mathbf{e}_i, \mathbf{w} \rangle \}$$

(here \mathbf{e}_i is the standard basis vector).

Interpret the symbol [x, i] ∈ Z^d × A as the hypercube or "face"

$$[\mathbf{x}, i] = \bigg\{ \mathbf{x} + \sum_{j \in \mathcal{A} \setminus \{i\}} \lambda_j \mathbf{e}_j : \lambda_j \in [0, 1] \bigg\}.$$

Then the set $\Gamma(\mathbf{w})$ turns into a stepped hyperplane that approximates \mathbf{w}^{\perp} by hypercubes.

Rauzy fractals Balan

Balance and algebraic irreducibility

Properties of *R*

Tilings

Rotations Examples

Examples of stepped surfaces

Figure: A subset of a periodic and an aperiodic stepped surface

A finite subset of a discrete hyperplane will be called a patch.

Collections of Rauzy fractals

- Using the concept of discrete hyperplane we define the following collections of Rauzy fractals.
- Let σ be a sequence of substitutions with generalized eigenvector u and choose w ∈ ℝ^d_{>0} \ {0}.

Definition (Collections of Rauzy fractals)

Set

$$\mathcal{C}_{\mathbf{w}} = \{\pi_{\mathbf{u},\mathbf{w}}\mathbf{X} + \mathcal{R}_{\mathbf{w}}(i) : [\mathbf{x},i] \in \Gamma(\mathbf{w})\}.$$

- We will see that these collections often form a tiling of the space w[⊥].
- A special role will be played by the collection C₁ which will give rise to a periodic tiling of 1[⊥] by lattice translates of the Rauzy fractal *R*.

Rauzy fractals	Balance and algebraic irreducibility	Properties of <i>R</i>	Tilings 000000000	Rotations 000000	Examples 000000
Balance					

Definition (Balance)

Let \mathcal{A} be an alphabet and consider a pair of words $(u, v) \in \mathcal{A}^* \times \mathcal{A}^*$ of the same length.

• If there is C > 0 such that

 $||\mathbf{v}|_i - |\mathbf{u}|_i| \leq C$

holds for each letter $i \in A$, the pair (u, v) is called *C*-balanced.

- A language L is called C-balanced if each pair
 (u, v) ∈ L × L with |u| = |v| is C-balanced. It is called finitely balanced if it is C-balanced for some C > 0.
- A sequence $w \in A^{\mathbb{N}}$ is *C*-balanced if the language L(w) of all finite subwords of *w* is *C*-balanced.

Properties of *R*

Tilings Rotations

Examples

Balance and boundedness of \mathcal{R}

We associate to $\boldsymbol{\sigma} = (\sigma_n)$ a sequence of languages

 $\mathcal{L}_{\sigma}^{(m)} = \{ w \in \mathcal{A}^* : w \text{ is a factor of } \sigma_{[m,n)}(a) \text{ for some } a \in \mathcal{A}, n > m \}$

and call $\mathcal{L}_{\sigma} = \mathcal{L}_{\sigma}^{(0)}$ the language of σ .

Lemma

Let σ be a primitive and recurrent sequence of unimodular substitution that admits a generalized right eigenvector. Then \mathcal{R} is bounded if and only if \mathcal{L}_{σ} is balanced.

Note: \mathcal{L}_{σ} is the union of the languages of all limit words of σ . The broken line remains at bounded distance from $\mathbb{R}\mathbf{u}$ if and only if this language is balanced.

Rauzy fractals	Balance and algebraic irreducibility	Properties of \mathcal{R}	Tilings	Rotations	Examples
	0000000				

Rational independence

- The definition is defined as (the closure of) the projection of some lattice points along the generalized right vector u.
- Our goal is to have a Rauzy fractal with nonempty interior.
- If there is an integer vector z ∈ Z^d such that ⟨u, z⟩ = 0, the projection π_{u,w}(Z^d) is contained in (d − 2)-dimensional affine subspaces of w[⊥]: no hope for nonempty interior

Definition (Rational indepencence)

A vector $\mathbf{u} \in \mathbb{R}^d$ is called rationally independent if the only $\mathbf{z} \in \mathbb{Z}^d$ satisfying $\langle \mathbf{u}, \mathbf{z} \rangle = 0$ is the vector $\mathbf{z} = \mathbf{0}$.

Rauzy fractals Bal

Balance and algebraic irreducibility

Rotations

Examples 000000

Algebraic irreducibility

We need to exclude generalized right eigenvectors that are rationally dependent. This requires a condition.

Definition (Algebraic irreducibility)

Let $\mathbf{M} = (M_n)$ be a sequence of nonnegative matrices in $GL_d(\mathbb{Z})$. We say that \mathbf{M} is algebraically irreducible if for each $m \in \mathbb{N}$ there is n > m such that the characteristic polynomial of $M_{[m,\ell)}$ is irreducibly for each $\ell \ge n$. A sequence σ of unimodular substitutions is called algebraically irreducible if it has a sequence of incidence matrices which is algebraically irreducible.

Pisot

In our setting these polynomials are even Pisot polynomials. This is related to convergence properties of generalized continued fraction algorithms.

Rauzy fractals	Balance and algebraic irreducibility	Properties of $\mathcal R$	Tilings	Rotations	Examples
	0000000				

A key lemma...

Algebraic irreducibility yields the desired property.

Lemma

Let σ be an algebraically irreducible sequence of unimodular substitutions with balanced language \mathcal{L}_{σ} that admits a generalized eigenvector **u**. Then **u** has rationally independent coordinates.

A stronger form of convergence

- So far we defined weak convergence.
- We need a stronger form: strong convergence.
- Sturmian case: the cascade of inductions we perform on the interval leads to smaller and smaller intervals whose lengths tend to 0.
- To get an analogous behaviour on *S*-adic Rauzy fractals we need to introduce a certain subdivision on them whose pieces have a diameter that tends to zero.
- Strong convergence is well-known in the theory of generalized continued fractions.

lucibility Properties of R 0000000000

Tilings

Rotations

Examples 000000

Strong convergence and its consequences

Definition (Strong convergence)

We say that a sequence $\mathbf{M} = (M_n)$ of matrices from $GL_d(\mathbb{Z})$ admit strong convergence to $\mathbf{u} \in \mathbb{R}^d_{>0} \setminus \{0\}$ if

$$\lim_{n\to\infty}\pi_{\mathbf{u},\mathbf{1}}M_{[0,n)}\mathbf{e}_i=\mathbf{0}\quad\text{for all }i\in\mathcal{A}.$$

If σ has a strongly convergent sequence of incidence matrices we say that σ admits strong convergence.

Rauzy fractals	Balance and algebraic irreducibility	Properties of $\mathcal R$	Tilings	Rotations	Examples
	0000000				

Lemma

Let σ be a primitive, algebraically irreducible, and recurrent sequence of substitutions with balanced language \mathcal{L}_{σ} . Then

$$\lim_{n\to\infty}\sup\{||\pi_{\mathbf{u},\mathbf{1}}M_{[0,n)}\mathbf{I}(\mathbf{v})|| : \mathbf{v}\in\mathcal{L}_{\sigma}^{(n)}\}=0.$$

By primitivity this implies that σ is strongly convergent, i.e.,

$$\lim_{n \to \infty} \sup\{||\pi_{\mathbf{u},\mathbf{1}} M_{[0,n)} \mathbf{e}_i|| : \mathbf{v} \in \mathcal{L}_{\sigma}^{(n)}\} = \mathbf{0}$$

for each $i \in A$.

Examples

Our goal

Theorem (Properties of Rauzy fractals)

Let *S* be a finite set of unimodular substitutions over a finite alphabet *A* and let $\sigma = (\sigma_n)$ be a primitive and algebraically irreducible sequence of substitutions taken from the set *S*. Assume that there is C > 0 such that for every $\ell \in \mathbb{N}$ there exists $n \ge 1$ such that $(\sigma_n, \ldots, \sigma_{n+\ell-1}) = (\sigma_0, \ldots, \sigma_{\ell-1})$ and the language $\mathcal{L}_{\sigma}^{(n+\ell)}$ is *C*-balanced.

Then each subtile $\mathcal{R}(i)$, $i \in A$, of the Rauzy fractal \mathcal{R} is a nonempty compact set which is equal to the closure of its interior and has a boundary whose Lebesgue measure λ_1 is zero.

 Rauzy fractals
 Balance and algebraic irreducibility

 000000000000
 00000000

Properties of \mathcal{R}

Tilings

Examples

Rotations

Rauzy fractals of shifted sequences

Definition

For $k \in \mathbb{N}$ let

projection at level k:

$$\pi_{\mathbf{u},\mathbf{w}}^{(n)} = \pi_{M_{[0,n)}^{-1}\mathbf{u},M_{[0,n)}^{t}\mathbf{w}},$$

Subtiles of the shifted sequence of substitutions (σ_{n+k})_{n∈ℕ} projected to M^t_{[0,n)}w:

 $\mathcal{R}_{\mathbf{w}}^{(k)}(i) := \{\pi_{\mathbf{u},\mathbf{w}}^{(k)}(\mathbf{I}p') : p'j \text{ prefix of a limit word of } (\sigma_{n+k})\},\$

Rauzy fractal of the shifted sequence of substitutions $(\sigma_{n+k})_{n\in\mathbb{N}}$

$$\mathcal{R}_{\mathbf{w}}^{(k)} = \bigcup_{i \in \mathcal{A}} \mathcal{R}_{\mathbf{w}}^{(k)}(i).$$

The set equation

Lemma (The set equation)

Let σ be a primitive and recurrent sequence of unimodular substitutions with generlaized right eigenvalue **u**. Then for each $[\mathbf{x}, i] \in \mathbb{Z}^d \times \mathcal{A}$ and every k, ℓ with $k < \ell$ we have

$$\pi_{\mathbf{u},\mathbf{w}}^{(k)}\mathbf{x} + \mathcal{R}_{\mathbf{w}}^{(k)}(i) = \bigcup_{[\mathbf{y},j] \in E_1^*(\sigma_{[k,\ell)})[\mathbf{x},i]} M_{[k,\ell)}(\pi_{\mathbf{u},\mathbf{w}}^{(\ell)}\mathbf{y} + \mathcal{R}_{\mathbf{w}}^{(\ell)}(j)),$$

where

$$\begin{aligned} E_1^*(\sigma)[\mathbf{x},i] &= \{ [M_{\sigma}^{-1}(\mathbf{x} + \mathbf{I}p), j] : \\ j \in \mathcal{A}, \ p \in \mathcal{A}^* \text{ such that pi is a prefix of } \sigma(j) \}. \end{aligned}$$

 $E_1^*(\sigma)[\mathbf{x}, i]$ is the dual of the geometric realization of a substitution.

Rauzy fractals	Balance and algebraic irreducibility	Properties of <i>R</i> ooo●ooooooooooooo	Tilings 000000000	Rotations	Examples

• Let σ be the Tribonacci substitution.

$$\sigma(1) = 12, \quad \sigma(2) = 13, \quad \sigma(3) = 1.$$

Then

 (σ)

$$\begin{split} E_1^*(\sigma)[\mathbf{0},1] &= \{[\mathbf{0},1],[\mathbf{0},2],[\mathbf{0},3]\},\\ E_1^*(\sigma)[\mathbf{0},2] &= \{[(0,0,1)^t,1]\},\\ E_1^*(\sigma)[\mathbf{0},3] &= \{[(0,0,1)^t,2]\}. \end{split}$$

together with the obvious fact that $E_1^*(\sigma)[\mathbf{x}, i] = M_{\sigma}^{-1}\mathbf{x} + E_1^*(\sigma)[\mathbf{0}, i].$

 One can extend the definition of E^{*}₁(σ) to subsets of Z^d × A in a natural way. We can then iterate E^{*}₁(σ).

Iterating $E_1^*(\sigma)$

Examples

Figure: The iterates $(E_1^*(\sigma))^k[0, 1]$ for $k \in \{1, 2, 3, 4\}$

Rauzy fractals

Balance and algebraic irreducibility

Properties of *R*

Tilings

Rotations

Examples 000000

$E_1^*(\sigma)$ generates the Rauzy fractal

Mapping properties

Set

$$\mathbf{u}^{(n)} = (M_{[0,n)})^{-1}\mathbf{u}, \qquad \mathbf{w}^{(n)} = (M_{[0,n)})^t\mathbf{w} \qquad (n \in \mathbb{N}).$$

Lemma

Let $\sigma = (\sigma)_n$ be a sequence of unimodular substitutions. Then for all $k < \ell$ the following assertions hold.

(i)
$$M_{[k,\ell)}(\mathbf{w}^{(\ell)})^{\perp} = (\mathbf{w}^{(k)})^{\perp}$$
,

(ii)
$$E_1^*(\sigma_{[k,\ell)})\Gamma(\mathbf{w}^{(k)}) = \Gamma(\mathbf{w}^{(\ell)}),$$

(iii) for distinct pairs $[\mathbf{x}, i], [\mathbf{x}', i'] \in \Gamma(\mathbf{w}^{(k)})$ the images $E_1^*(\sigma_{[k,\ell)})[\mathbf{x}, i]$ and $E_1^*(\sigma_{[k,\ell)})[\mathbf{x}', i']$ are disjoint.

 Rauzy fractals
 Balance and algebraic irreducibility

 000000000000
 0000000

Properties of *R* Tilings Rotations Examples

Set equation for collections

Set

$$\mathcal{C}_{\mathbf{w}}^{(n)} = \{ \pi_{\mathbf{u},\mathbf{w}} \mathbf{X} + \mathcal{R}_{\mathbf{w}}^{(n)}(i) : [\mathbf{X}, i] \in \Gamma(\mathbf{w}^{(n)}) \}.$$

for the collection of the subtiles associated with the shifted sequences of σ .

Lemma

Let σ be a primitive and recurrent sequence of unimodular substitutions with generlaized right eigenvector **u**. Then for each $[\mathbf{x}, i] \in \mathbb{Z}^d \times \mathcal{A}$ and every $k, \ell \in \mathbb{N}$ with $k < \ell$ we have

$$\bigcup_{[\mathbf{y},j]\in\Gamma(\mathbf{w}^{(k)})}\pi_{\mathbf{u},\mathbf{w}}\mathbf{x} + \mathcal{R}_{\mathbf{w}}^{(k)}(i) = \bigcup_{[\mathbf{y},j]\in\Gamma(\mathbf{w}^{(\ell)})}M_{[k,\ell)}(\pi_{\mathbf{u},\mathbf{w}}^{(\ell)}\mathbf{y} + \mathcal{R}_{\mathbf{w}}^{(\ell)}(j)).$$

The collection $M_{[k,\ell)}C_{\mathbf{w}}^{(\ell)}$ is a refinement of $C_{\mathbf{w}}^{(k)}$ in the sense that each element of the latter is a finite union of elements of the former.

Rauzy fractals

Balance and algebraic irreducibility

Properties of R

Tilings

Rotations

Examples 000000

Illustration of the set equation I

Figure: An illustration of the set equation. (a) shows a patch P_0 of the collection $C_{\mathbf{w}} = C_{\mathbf{w}}^{(0)}$, (b) contains a patch P_1 of $C_{\mathbf{w}}^{(1)}$.

Rauzy fractals E

Balance and algebraic irreducibility

Tilings

Rotations

Examples

Illustration of the set equation II

(c)

Figure: An illustration of the set equation. In (c) P_0 an P_1 are drawn together to illustrate that they lie in different planes.

Rauzy fractals Balance and

Balance and algebraic irreducibility

Properties of R

Tilings

Rotations

Examples

Illustration of the set equation III

Figure: An illustration of the set equation. In (d) the matrix M_0 is applied to P_1 : the image M_0P_1 is located in the same plane as P_0 and, according to the set equation, forms a subdivision of some tiles of P_0 . The subdivision of P_0 in patches from $M_0C_w^{(1)}$ is shown in (e) for the whole patch P_0 .

Rauzy fractals	Balance and	algebraic	irreducibility

Properties of R	Tilings	Rotations	Examples
000000000000000000000000000000000000000			

Closure of interior

Lemma

Let σ be a sequence of unimodular substitutions and $\mathbf{w} \in \mathbb{R}_{\geq 0} \setminus \{\mathbf{0}\}$. If σ is primitive, recurrent, algebraically irreducible, and has balanced language \mathcal{L}_{σ} then $\mathcal{C}_{\mathbf{w}}^{(n)}$ covers $(\mathbf{w}^{(n)})^{\perp}$ with finite covering degree. The covering degree of $\mathcal{C}_{\mathbf{w}}^{(n)}$ increases monotonically with n.

Lemma

Let σ be a sequence of unimodular substitutions over the alphabet \mathcal{A} and $\mathbf{w} \in \mathbb{R}_{\geq 0} \setminus \{\mathbf{0}\}$. If σ is primitive, recurrent, algebraically irreducible, and has balanced language \mathcal{L}_{σ} . Then $\mathcal{R}(i)$ is the closure of its interior for each $i \in \mathcal{A}$.

Properties of \mathcal{R} Tiling

Tilings Rotations

Examples 000000

Generalized left eigenvector

- The collections $C_{\mathbf{w}}^{(n)}$ lie in different hyperplanes
- By recurrence there is a sequence (n_k) and a generalized left vector v such that the following properties hold.

Lemma

- *R*_v and *R*^(n_k)_v have the same subdivision structure for a long time.
- The hyperplanes v[⊥] and (v^(n_k))[⊥] with v^(n_k) = M^t_{[0,n_k)}v are close to each other for large k.
- $\mathcal{R}_{\mathbf{v}}^{(n_k)}$ tends to $\mathcal{R}_{\mathbf{v}}$ in Hausdorff metric.
- $C_{\mathbf{w}}$ and $C_{\mathbf{w}}^{(n)}$ have the same covering degree for each $n \in \mathbb{N}$.

Rauzy fractals Bala

Balance and algebraic irreducibility

Properties of *R*

Tilings

Examples 000000

Rotations

Measure of the boundary I

Figure: Illustration of the proof of measure zero of $\partial \mathcal{R}$. In (a) the subtile $\mathcal{R}(i), i \in \mathcal{A}$, is shown. In (b) we see the ℓ -th subdivision of $\mathcal{R}(i)$. The level ℓ subtile contained in $int(\mathcal{R}(i))$ has black boundary.

Rauzy fractals

Balance and algebraic irreducibility

 Tilings

Rotations Examples

Measure of the boundary II

(C)

(d)

Figure: Illustration of the proof of measure zero of $\partial \mathcal{R}$. In (c) all other level ℓ subtiles are further subdivided in level n_k subtiles. Each of them contains a level $n_k + \ell$ subtile in its interior. These level $n_k + \ell$ subtiles, which *a fortiori* are also contained in $int(\mathcal{R}(i))$, are depicted in (d) also with black boundary.

 Rauzy fractals
 Balance and algebraic irreducibility

 000000000000
 00000000

Properties of R

Tilings

Rotations

Examples

$\partial \mathcal{R}$ has measure 0

Lemma

Let σ be a sequence of unimodular substitutions over the alphabet \mathcal{A} and $\mathbf{w} \in \mathbb{R}_{\geq 0} \setminus \{\mathbf{0}\}$. If σ is primitive, recurrent, algebraically irreducible, and has balanced language \mathcal{L}_{σ} . Then $\lambda_1(\partial \mathcal{R}(i)) = \mathbf{0}$ for each $i \in \mathcal{A}$.

Rauzy fractals

Balance and algebraic irreducibility

Tilings •••••• Rotations Examples

Remember what we want:

Figure: The domain exchange and rotation

Rauzy fractals	Balance and algebraic irreducibility	Properties of ${\cal R}$	Tilings	Rotations	Examples
			00000000		

Three kinds of tilings

We have three unions which we want to be disjoint in measure:

(i) The unions of subtiles on the right hand side of the set equation

$$\pi_{\mathbf{u},\mathbf{w}}^{(k)}\mathbf{x} + \mathcal{R}_{\mathbf{w}}^{(k)}(i) = \bigcup_{[\mathbf{y},j] \in E_1^*(\sigma_{[k,\ell)})[\mathbf{x},i]} M_{[k,\ell)}(\pi_{\mathbf{u},\mathbf{w}}^{(\ell)}\mathbf{y} + \mathcal{R}_{\mathbf{w}}^{(\ell)}(j)),$$

(ii) The union

$$\mathcal{R} = \mathcal{R}(1) \cup \cdots \cup \mathcal{R}(d).$$

(iii) The union

$$\mathbf{1}^{\perp} = \bigcup_{\mathbf{x} \in \mathbb{Z}^d : \mathbf{x} \cdot \mathbf{1} = \mathbf{0}} \pi_{\mathbf{u}, \mathbf{1}} \mathbf{x} + \mathcal{R} = \bigcup_{[\mathbf{x}, i] \in \Gamma(\mathbf{1})} \pi_{\mathbf{u}, \mathbf{1}} \mathbf{x} + \mathcal{R}(i).$$

For (i) we can prove the disjointness. For (ii) and (iii) we derive it from (i) by additional coincidence conditions.

Disjointness of unions in the set equation

Lemm<u>a</u>

Let σ be a primitive and algebraically irreducible sequence of unimodular substitutions. Assume that there is C > 0 such that for every $\ell \in \mathbb{N}$ there exists $n \ge 1$ such that

 $(\sigma_n, \ldots, \sigma_{n+\ell-1}) = (\sigma_0, \ldots, \sigma_{\ell-1})$ and the language $\mathcal{L}_{\sigma}^{(n+\ell)}$ is *C*-balanced.

Then the unions in the set equation

$$\pi_{\mathbf{u},\mathbf{w}}^{(k)}\mathbf{x} + \mathcal{R}_{\mathbf{w}}^{(k)}(i) = \bigcup_{[\mathbf{y},j]\in E_1^*(\sigma_{[k,\ell)})[\mathbf{x},i]} M_{[k,\ell)}(\pi_{\mathbf{u},\mathbf{w}}^{(\ell)}\mathbf{y} + \mathcal{R}_{\mathbf{w}}^{(\ell)}(j)),$$

are disjoint in measure.

Follows because all collections $C_{\mathbf{w}}^{(n)}$ have the same covering degree.

Definition (Strong coincidence condition)

A sequence σ of substitutions over an alphabet \mathcal{A} satisfies the *strong coincidence condition* if there is $\ell \in \mathbb{N}$ such that for each pair $(j_1, j_2) \in \mathcal{A}^2$ there are $i \in \mathcal{A}$ and $p_1, p_2 \in \mathcal{A}^*$ with $\mathbf{I}p_1 = \mathbf{I}p_2$ such that $\sigma_{[0,\ell)}(j_1) \in p_1 i \mathcal{A}^*$ and $\sigma_{[0,\ell)}(j_1) \in p_2 i \mathcal{A}^*$.

Example

Coincidence for $\sigma = (\sigma)$ with $\sigma(1) = 121$, $\sigma(2) = 21$.

Rauzy fractals Balance

Balance and algebraic irreducibility

Properties of *R*

Tilings oooo●oooo Rotations Examples

Measure disjointness of the subtiles $\mathcal{R}(i)$

Lemma

Let σ be a primitive and algebraically irreducible sequence of unimodular substitutions. Assume that there is C > 0 such that for every $\ell \in \mathbb{N}$ there exists $n \ge 1$ such that $(\sigma_n, \ldots, \sigma_{n+\ell-1}) = (\sigma_0, \ldots, \sigma_{\ell-1})$ and the language $\mathcal{L}_{\sigma}^{(n+\ell)}$ is *C*-balanced. If the strong coincidence condition holds then $\mathcal{R}(i)$, $i \in A$, are disjoint in measure.

Examples

Geometric coincidence and geometric finiteness

Definition (Geometric coincidence and geometric finiteness)

A sequence σ of unimodular substitutions over an alphabet ${\mathcal A}$ satisfies

- the geometric coincidence condition if the following is true. For each R > 0 there is n₀ ∈ N such that for each n ≥ n₀ the set E^{*}₁(σ_{[0,n)})[0, i_n] contains a ball of radius R of the discrete hyperplane Γ(M^t_{[0,n)}1) for some i_n ∈ A.
- the geometric finiteness condition if the following is true. For each R > 0 there is $\ell \in \mathbb{N}$ such that $\bigcup_{i \in \mathcal{A}} E_1^*(\sigma_{[0,n)})[\mathbf{0}, i]$ contains the ball $\{[\mathbf{x}, i] \in \Gamma({}^t(M_{[0,n)}) \mathbf{1}) : \|\mathbf{x}\| \leq R\}$ for all $n \geq \ell$.

Rauzy fractals	Balance and algebraic irreducibility	Properties of $\mathcal R$	Tilings	Rotations	Examples
			0000000000		

A tiling result

Lemma

Let σ be a primitive and algebraically irreducible sequence of unimodular substitutions. Assume that there is C > 0 such that for every $\ell \in \mathbb{N}$ there exists $n \ge 1$ such that $(\sigma_n, \ldots, \sigma_{n+\ell-1}) = (\sigma_0, \ldots, \sigma_{\ell-1})$ and the language $\mathcal{L}_{\sigma}^{(n+\ell)}$ is *C*-balanced. Then the following assertions are equivalent.

- (i) The collection C_1 forms a tiling of 1^{\perp} .
- (ii) The sequence σ satisfies the geometric coincidence condition.
- (iii) The sequence σ satisfies the strong coincidence condition and for each R > 0 there exists $n_0 \in \mathbb{N}$ such that $\bigcup_{i \in \mathcal{A}} E_1^*(\sigma_{[0,n)})[\mathbf{0}, i]$ contains a ball of radius R of $\Gamma({}^t(M_{[0,n)})\mathbf{1})$ for all $n \ge n_0$.

How to check this? (Berthe, Jolivet, Siegel 2012)

Rotations

Known classes with geometric finiteness

- For Arnoux-Rauzy sequences σ which contain each of the three Arnoux-Rauzy substitutions infinitely often.
- For Brun sequences σ which contain each of the three Brun substitutions infinitely often.
- For certain sequences σ of substitutions related to the Jacobi-Perron continued fraction algorithm.

We refer to Berthé, Bourdon, Jolivet, and Siegel (2012,1016)

Rauzy fractals Balance and algebraic irreducibility Properties of R

Tilinas Rotations Examples

00000

Main theorem: assumptions

Assumptions

- Let S be a finite set of unimodular substitutions over a finite alphabet \mathcal{A} .
- Let $\sigma = (\sigma_n)$ be a primitive and algebraically irreducible sequence of substitutions taken from the set $S^{\mathbb{N}}$.
- Assume that there is C > 0 such that for every $\ell \in \mathbb{N}$ there exists $n \ge 1$ such that $(\sigma_n, \ldots, \sigma_{n+\ell-1}) = (\sigma_0, \ldots, \sigma_{\ell-1})$ and the language $\mathcal{L}_{\sigma}^{(n+\ell)}$ is *C*-balanced.
- Assume that the collection C_1 forms a tiling of $1 \perp$.

 Rauzy fractals
 Balance and algebraic irreducibility

 000000000000
 0000000

Properties of *R*

Tilings 000000000

Rotations Examples

Main theorem: Assertions

Assertions

- The S-adic shift (X_σ, Σ, μ) is measurably conjugate to a translation T on the torus T^{d-1}.
- Each ω ∈ X_σ is a natural coding of the toral translation T with respect to the partition {R(i) : i ∈ A}.
- So The set $\mathcal{R}(i)$ is a bounded remainder set for the toral translation T for each $i \in A$.

Rauzy fractals	Balance and algebraic irreducibility	Properties of <i>R</i>	Tilings 000000000	Rotations 00●000	Examples

Figure: The domain exchange and rotation

Lyapunov exponents

- Shift $(S^{\mathbb{N}}, \Sigma, \nu)$ with ν an ergodic probability measure.
- With each γ = (γ_n)_{n∈ℕ} ∈ S^ℕ, associate the linear cocycle operator A(γ) = ^tM₀
- Then the Lyapunov exponents θ₁, θ₂,..., θ_d of (S^N, Σ, ν) are recursively defined by

$$\begin{aligned} \theta_1 + \theta_2 + \cdots + \theta_k &= \\ &= \lim_{n \to \infty} \frac{1}{n} \int_{E_G} \log \| \wedge^k \left(A(\Sigma^{n-1}(x)) \cdots A(\Sigma(x)) A(x) \right) \| d\nu(x) \\ &= \lim_{n \to \infty} \frac{1}{n} \int_{E_G} \log \| \wedge^k ({}^t M_{[0,n)}) \| d\nu \\ &= \lim_{n \to \infty} \frac{1}{n} \int_{E_G} \log \| \wedge^k M_{[0,n)} \| d\nu \end{aligned}$$

for $1 \le k \le d$, where \wedge^k denotes the *k*-fold wedge product.

Rauzy fractals	Balance and algebraic irreducibility	Properties of <i>R</i>	Tilings 000000000	Rotations 0000●0	Examples

Pisot condition

Definition (Pisot condition)

We say that $(S^{\mathbb{N}}, \Sigma, \nu)$ satisfies the Pisot condition if

$$\theta_1 > 0 > \theta_2 \ge \theta_3 \ge \cdots \ge \theta_d.$$

This means that a typical sequence of substitution from $S^{\mathbb{N}}$ has a sequence of incidence matrices that on the long run is expanding in one direction and contracting in on a hyperplane. It is thus exponentially convergent to one direction.

Metric theory

Theorem

Let S be a finite set of unimodular substitutions and consider the shift $(S^{\mathbb{N}}, \Sigma, \nu)$. Assume that this shift is ergodic and that it satisfies the Pisot condition. Assume further that ν assigns positive measure to each (non-empty) cylinder, and that there exists a cylinder corresponding to a substitution with positive incidence matrix. Then for a.a. sequences $\sigma \in S^{\mathbb{N}}$ the assertions of the above theorem hold provided that C_1 forms a tiling of $\mathbf{1}^{\perp}$. In particular, the S-adic system (X_{σ}, Σ) is measurably conjugate to a rotation on \mathbb{T}^{d-1} .

Properties of *R*

Tilings Rotations

Examples •ooooo

Arnoux-Rauzy sequences are a.a. rotations

Theorem

Let *S* be the set of Arnoux-Rauzy substitutions over three letters and consider the shift $(S^{\mathbb{N}}, \Sigma, \nu)$ for some shift invariant ergodic probability measure ν which assigns positive measure to each cylinder. Then $(S^{\mathbb{N}}, \Sigma, \nu)$ satisfies the Pisot condition. Moreover, for ν -almost all sequences $\sigma \in S^{\mathbb{N}}$ the collection C_1 forms a tiling, the *S*-adic shift (X_{σ}, Σ) is measurably conjugate to a translation on the torus \mathbb{T}^2 , and the words in X_{σ} form natural codings of this translation.

This shows that the counterexample of Cassaigne, Ferenczi, and Zamboni is exceptional.

Examples 00000

Concrete rotational Arnoux-Rauzy systems

Definition

A directive sequence $\sigma = (\sigma_n) \in S^{\mathbb{N}}$ that contains each α_i (*i* = 1, 2, 3) infinitely often is said to have bounded weak partial quotients if there is $h \in \mathbb{N}$ such that $\sigma_n = \sigma_{n+1} = \cdots = \sigma_{n+h}$ does not hold for any $n \in \mathbb{N}$.

Theorem

Let $S = \{\alpha_1, \alpha_2, \alpha_3\}$ be the set of Arnoux-Rauzy substitutions over three letters. If $\sigma \in S^{\mathbb{N}}$ is recurrent, contains each α_i (i = 1, 2, 3) infinitely often and has bounded weak partial quotients, then the collection C_1 forms a tiling, the S-adic shift (X_{σ}, Σ) is measurably conjugate to a translation on the torus \mathbb{T}^2 , and the words in X_{σ} form natural codings of this translation. Rauzy fractals Balance a

Balance and algebraic irreducibility

Properties of *R*

Tilings

Rotations Examples

Bun sequences are a.a. rotations

Theorem

Let $S = \{\beta_1, \beta_2, \beta_3\}$ be the set of Brun substitutions, and consider the shift $(S^{\mathbb{N}}, \Sigma, \nu)$ for some shift invariant ergodic probability measure ν that assigns positive measure to each cylinder. Then $(S^{\mathbb{N}}, \Sigma, \nu)$ satisfies the Pisot condition. Moreover, for ν -almost all sequences $\sigma \in S^{\mathbb{N}}$ the collection C_1 forms a tiling, the S-adic shift (X_{σ}, Σ) is measurably conjugate to a translation on the torus \mathbb{T}^2 , and the words in X_{σ} form natural codings of this translation.

By the weak convergence of Brun's algorithm for almost all $(x_1, x_2) \in \Delta_2 = \{(x, y) : 0 < x < y < 1\}$ (w.r.t. to the two-dimensional Lebesgue measure), there is a bijection Φ defined for almost all $(x_1, x_2) \in \Delta_2$ that makes the diagram

commutative and that provides a measurable conjugacy between $(\Delta_2, F_B, \lambda_2)$ and $(S^{\mathbb{N}}, \Sigma, \nu)$.

Tilings

Examples

Rotations

Natural codings for a.a. \mathbb{T}^2 -rotations

Theorem

For almost all $(x_1, x_2) \in \Delta_2$, the S-adic shift (X_{σ}, Σ) with $\sigma = \Phi(x_1, x_2)$ is measurably conjugate to the translation by $(\frac{x_1}{1+x_1+x_2}, \frac{x_2}{1+x_1+x_2})$ on \mathbb{T}^2 ; then each $\omega \in X_{\sigma}$ is a natural coding for this translation, \mathcal{L}_{σ} is balanced, and the subpleces of the Rauzy fractal provide bounded remainder sets for this translation.

This result has the following consequence.

Corollary

For almost all $\mathbf{t} \in \mathbb{T}^2$, there is $(x_1, x_2) \in \Delta_2$ such that the S-adic shift (X_{σ}, Σ) with $\sigma = \Phi(x_1, x_2)$ is measurably conjugate to the translation by \mathbf{t} on \mathbb{T}^2 . Moreover, the words in X_{σ} form natural codings of the translation by \mathbf{t} .

Linear natural codings?

- We believe that the codings mentioned on the previous slide have linear factor complexity.
- S. Labbé and J. Leroy are currently working on a proof of the fact that S-adic words with S = {β₁, β₂, β₃} have linear factor complexity.
- We thus get bounded remainder sets whose characteristic infinite words have linear factor complexity, contrarily to the examples provided e.g. by Chevallier or Grepstad and Lev.