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Sturmian sequences and rotations

Definition (Sturmian Sequence)

A sequence w ∈ {1,2}N is called a Sturmian sequence if its
complexity function satisfies pw (n) = n + 1 for all n ∈ N.

Definition (Nat’l codings of rotations)

Rotation by α: Rα : T→ T with x 7→ x + α (mod 1).

Rα can be regarded as a two interval exchange of the
intervals I1 = [0,1− α) and I2 = [1− α,1).

w = w1w2 . . . ∈ {1,2}N is a natural coding of Rα if there is
x ∈ T such that wk = i if and only if Rk

α(x) ∈ Ii for each
k ∈ N.
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Morse and Hedlund
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Natural coding: 112. . .

Figure: Two iterations of the irrational rotation Rα on the circle T.

Theorem (Morse and Hedlund, 1940)

A sequence w ∈ {1,2}N is Sturmian if and only if there
exists α ∈ R \Q such that w is a natural coding for Rα.
A Sturmian system (Xσ,Σ) is measurably conjugate to an
irrational rotation.
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Strategy of proof

Both are S-adic

u = lim
n→∞

σi0 ◦ σi1 ◦ · · · ◦ σin (2)

Sturmian sequences: Since they are balanced.
Nat’l codings of rotations: By induction:

Consider the rotation R by α on the interval J = [−1, α)
with the partition P1 = [−1,0) and P2 = [0, α).
natural coding u of the orbit of 0 by R.
Let R′ be the first return map of R to the interval
J ′ =

[
α
⌊ 1
α

⌋
− 1, α

)
.

Let v be a natural coding of the orbit of 0 for R′.
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The induction
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Figure: The rotation R′ induced by R.



Problems in higher dimensions S-adic sequences Primitivity & recurrence S-adic Rauzy fractals

π

2

1 1

2

1 1

2

1

2

1 1

L

Rα



Problems in higher dimensions S-adic sequences Primitivity & recurrence S-adic Rauzy fractals

Inducing with restacking

P2P1
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induction and restacking

The intervals [R(0),R2(0)) and [R2(0),R3(0)) are stacked on
one interval of the induced rotation. No information lost!
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Restacking and renormalizing boxes

restack renormalize

Figure: Step 1: Restack the boxes. Step 2: Renormalize in a way that
the larger box has length 1 again.

a = length of large �, b = length of small �,
d = height of large �, c = height of small �.

Mapping in two variables since sup{a,b} = 1 and ad + bc = 1.
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The associated mapping

∆m: Set of pairs of rectangles (a× d ,b × c) as above such
that a > b is equivalent to d > c (the one with larger height
has also larger width) with sup{a,b} = 1 and ad + bc = 1.
∆m = ∆m,0 ∪∆m,1, where a = 1 in ∆m,0 and b = 1 in ∆m,1.

Definition
The map Ψ is defined on ∆m,1 by

(a,d) 7→
({1

a

}
,a− d2a

)
,

and analogously on ∆m,0. This is the natural extension of the
Gauss map.
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Boxes and Sturmian words

u

v

Figure: The vertical line is coded by a Sturmian word u, the horizontal
line by a Sturmian word v . The restacking procedure desubstitutes u
and substitutes v .
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PART 2

S-adic sequences
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The first example: Rauzy (1982)

The tribonacci substitution

σ :
1 7→ 12,
2 7→ 13,
3 7→ 1.

This has a fixpoint:

X(σ) = {Σkw : k ∈ N} orbit closure.

(X(σ),Σ) associated substitutive dynamical system.

Rauzy (1982) proved that (X(σ),Σ) is conjugate to a rotation on
the 2-dimensional torus T2.



Problems in higher dimensions S-adic sequences Primitivity & recurrence S-adic Rauzy fractals

The first example: Rauzy (1982)

The tribonacci substitution

σ :
1 7→ 12,
2 7→ 13,
3 7→ 1.

This has a fixpoint:

σ0(1) = 1

X(σ) = {Σkw : k ∈ N} orbit closure.

(X(σ),Σ) associated substitutive dynamical system.

Rauzy (1982) proved that (X(σ),Σ) is conjugate to a rotation on
the 2-dimensional torus T2.
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The first example: Rauzy (1982)

The tribonacci substitution

σ :
1 7→ 12,
2 7→ 13,
3 7→ 1.

This has a fixpoint:

σ1(1) = 12

X(σ) = {Σkw : k ∈ N} orbit closure.

(X(σ),Σ) associated substitutive dynamical system.

Rauzy (1982) proved that (X(σ),Σ) is conjugate to a rotation on
the 2-dimensional torus T2.
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The first example: Rauzy (1982)

The tribonacci substitution

σ :
1 7→ 12,
2 7→ 13,
3 7→ 1.

This has a fixpoint:

σ2(1) = 1213

X(σ) = {Σkw : k ∈ N} orbit closure.

(X(σ),Σ) associated substitutive dynamical system.

Rauzy (1982) proved that (X(σ),Σ) is conjugate to a rotation on
the 2-dimensional torus T2.
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The first example: Rauzy (1982)

The tribonacci substitution

σ :
1 7→ 12,
2 7→ 13,
3 7→ 1.

This has a fixpoint:

σ3(1) = 1213121

X(σ) = {Σkw : k ∈ N} orbit closure.

(X(σ),Σ) associated substitutive dynamical system.

Rauzy (1982) proved that (X(σ),Σ) is conjugate to a rotation on
the 2-dimensional torus T2.
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The first example: Rauzy (1982)

The tribonacci substitution

σ :
1 7→ 12,
2 7→ 13,
3 7→ 1.

This has a fixpoint:

σ4(1) = 1213121121312

X(σ) = {Σkw : k ∈ N} orbit closure.

(X(σ),Σ) associated substitutive dynamical system.

Rauzy (1982) proved that (X(σ),Σ) is conjugate to a rotation on
the 2-dimensional torus T2.
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The first example: Rauzy (1982)

The tribonacci substitution

σ :
1 7→ 12,
2 7→ 13,
3 7→ 1.

This has a fixpoint:

σ5(1) = 121312112131212131211213

X(σ) = {Σkw : k ∈ N} orbit closure.

(X(σ),Σ) associated substitutive dynamical system.

Rauzy (1982) proved that (X(σ),Σ) is conjugate to a rotation on
the 2-dimensional torus T2.
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The first example: Rauzy (1982)

The tribonacci substitution

σ :
1 7→ 12,
2 7→ 13,
3 7→ 1.

This has a fixpoint:

w = limn→∞ σ
n(1) = 1213121121312121312112131213 . . .

X(σ) = {Σkw : k ∈ N} orbit closure.

(X(σ),Σ) associated substitutive dynamical system.

Rauzy (1982) proved that (X(σ),Σ) is conjugate to a rotation on
the 2-dimensional torus T2.
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The Rauzy Fractal

Figure: The classical Rauzy fractal

The main tool in Rauzy’s proof is this fractal set on which one
can “visualize” the rotation. Fractals instead of intervals !!!
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A possible generalization to three letters

In the following definition a right special factor of a sequence
w ∈ {1,2,3}N is a subword v of w for which there are distinct
letters a,b ∈ {1,2,3} such that va and vb both occur in w . A
left special factor is defined analogously.

Definition (Arnoux-Rauzy sequences, 1991)

A sequence w is called Arnoux-Rauzy sequence if
pw (n) = 2n + 1 and if w has only one right special factor and
only one left special factor for each given length n.

Hope: Arnoux-Rauzy sequences behave like Sturmian
sequences. In particular, they code rotations on T2.
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A substitutive representation

Lemma (Arnoux and Rauzy, 1991)
Let the Arnoux-Rauzy substitutions σ1, σ2, σ3 be defined by

σ1 :
1 7→ 1,
2 7→ 12,
3 7→ 13,

σ2 :
1 7→ 21,
2 7→ 2,
3 7→ 23,

σ3 :
1 7→ 31,
2 7→ 32,
3 7→ 3.

Then for each Arnoux-Rauzy sequence w there exists a
sequence σ = (σin ), where (in) takes each symbol in {1,2,3}
an infinite number of times, such that w has the same collection
of subwords as

u = lim
n→∞

σi0 ◦ σi1 ◦ · · · ◦ σin (1).

(Xw ,Σ) = (Xσ,Σ) is the associated S-adic system.
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Minimality and unique ergodicity

Let w be an Arnoux-Rauzy sequence with directive
sequence σ.

(Mn) sequence of incidence matrices of σ = (σn). For
each m there is n > m such that Mm · · ·Mn−1 is positive.

This implies that (Xσ,Σ) is minimal.

Since w has linear complexity function pw we may invoke a
result of Boshernitzan to conclude that (Xσ,Σ) is uniquely
ergodic.

Arnoux and Rauzy proved that w is a coding of an
exchange of six intervals.
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Unbalanced Arnoux-Rauzy sequences

Definition

Let C ≥ 1 be an integer. We say that a sequence w ∈ {1,2,3}N
is C-balanced if each pair of factors (u, v) of w having the
same length satisfies

∣∣|u|a − |v |a∣∣ ≤ C.

By a clever combinatorial construction one can prove:

Lemma (Cassigne, Ferenczi, and Zamboni, 2000)
There exists an Arnoux-Rauzy sequence which is not
C-balanced for any C ≥ 1.

Consequence: Diameter of Rauzy fractal is not bounded.
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The generalization breaks down

Theorem (Cassigne, Ferenczi, and Zamboni, 2000)

There exists an Arnoux-Rauzy sequence w for which (Xw ,Σ) is
not conjugate to a rotation.

Definition (Bounded remainder set)

For a dynamical system (X ,T , µ) a set A ⊂ X is called a
bounded remainder set if there exist real numbers a,C > 0
such that for all N ∈ N and µ-almost all x ∈ X we have∣∣|{n < N : T n(x) ∈ A}| − aN

∣∣ < C.

To prove the theorem one has to use a theorem of Rauzy
saying that rotations give rise to bounded remainder sets. The
unbalanced Arnoux-Rauzy sequence w constructed above
doesn’t permit a bounded remainder set and, hence, the
system (Xw ,Σ) cannot be conjugate to a rotation.
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Weak Mixing...

Let (X ,T , µ) be a dynamical system with invariant
measure µ.

The transformation T is called weakly mixing for each
A,B ⊂ X of positive measure we have

lim
n→∞

1
n

∑
0≤k<n

|µ(T−k(A) ∩ B)− µ(A)µ(B)| = 0.

Weak mixing is equivalent to the fact that 1 is the only
measurable eigenvalue of T and the only eigenfunctions
are constants (in this case the dynamical system is said to
have continuous spectrum).
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... and what it really is (after Halmos)

90% gin and 10% vermouth in a glass.
Let V be the original region of the vermouth.
Let F be a given part of the glass.
µ(T−nF ∩ V )/µ(V ) is the amount of vermouth in F after n
stirrings.

Stirring (which is applying T )

Ergodic stirring: the amount of vermouth in F is 10% on
average.
Mixing stirring: amount of vermouth in F is close to 10%
after a while.
Weakly mixing stirring: amount of vermouth in F is close to
10% after a while apart from few exceptions.
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Weakly mixing Arnoux-Rauzy sequences

Given an Arnoux-Rauzy sequence

u = lim
n→∞

σk1
i1
◦ σk2

i2
◦ · · · ◦ σkn

in (1)

with in 6= in+1.
(n`) the sequence of indices for which in 6= in+2.
u is uniquely defined by the sequences (kn) and (n`)

Theorem (Cassaigne-Ferenczi-Messaoudi, 2008)
For an Arnoux-Rauzy word w with directive sequence σ and
associated squences (kn) and (n`) the system (Xσ,Σ, µ) (with
µ being the unique invariant measure) is weakly mixing if

kni+2 is unbounded,
∑
`≥1

1
kn`+1

<∞, and
∑
`≥1

1
kn`

<∞.
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Rauzy’s program

Generalize the Sturmian setting to dimension d ≥ 3; |A| = d .

Sequences generated by substitutions over the alphabet
A = {1, . . . ,d}.

Generalized continued fraction algorithms.

Rauzy fractals.

Rotations on Td−1.

Flows on SLd (Z) \ SLd (R) (Weyl chamber flow).
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Problems we have to deal with

A lot of new difficulties pop up in the general case.

No unconditional generalization is possible in view of the
counterexamples in the last section.

The theory of generalized continued fractions is less
complete.

The structure of lattices in Rd is more complicated than in
R2.

The projections of the “broken” line is a fractal, not an
interval.

The Weyl chamber flow is an Rd−1-action (hence, not a
“flow” in the strict sense).
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Start from the beginning: substitutions

Definition (Substitution)

Let A = {1, . . . ,d} be an alphabet.
A substitution is a (nonerasing) endomorphism on A∗.

It is sufficient to define a substitution σ on A
Example

Fibonacci substitution σ(1) = 12, σ(2) = 1.
Sturmian substitutions.
Tribonacci Substitution σ(1) = 12, σ(2) = 13, σ(3) = 1.
Arnoux-Rauzy Substitutions.

On AN a substitution σ is defined by concatenation setting

σ(w0w1 . . .) = σ(w0)σ(w1) . . .

The mapping σ is continuous on AN (w.r.t. usual topology).
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Abelianization and incidence matrix

Given a substitution σ on A.
The incidence matrix: the |A| × |A| matrix Mσ whose
columns are the abelianized images of σ(a) for i ∈ A, i.e.,
Mσ = (mij) = (|σ(j)|i).
The abelianization: l : A∗ → N, l(w) = (|w |1, . . . , |w |d )t .

We have the commutative diagram

A∗ σ−−−−→ A∗yl

yl

N Mσ−−−−→ N

which says that lσ(w) = Mσlw holds for each w ∈ A∗.
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Properties and notations

Definition
Let σ : A∗ → A∗ be a substitution.

σ is called unimodular if |det Mσ| = 1.
σ is called Pisot if the characteristic polynomial of Mσ is the
minimal polynomial of a Pisot number.

σ = (σn)n∈N is a sequence of substitutions.
M = (Mσn )n∈N = (Mn)n∈N is the associated sequence of
incidence matrices.
σ[m,n) = σm ◦ · · · ◦ σn−1 is a block of substitutions.
M[m,n) = Mm · · ·Mn−1 is a block of matrices.

.
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S-adic sequence

Definition (S-adic sequence)

σ = (σn) is a sequence of substitutions over A.
S := {σn : n ∈ N} (we assume this is finite).
w ∈ AN is an S-adic sequence (or a limit sequence) for σ if
there exists (w (n))n∈N with w (n) ∈ AN s.t.

w (0) = w , w (n) = σn(w (n+1)) (for all n ∈ N).

In this case we call σ the directive sequence for w .

Often there is a ∈ A such such that

w = lim
n→∞

σ[0,n)(a)

(this is related to primitivity).
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S-adic shift

Shift on AN: Σ : AN → AN, Σ(w0w1 . . .) = w1w2 . . .

Definition (S-adic shift)
For an S-adic sequence w Let

Xw = {Σkw : k ∈ N}.

(Xw ,Σ) is the S-adic shift (or S-adic system) generated by w .

Language of a sequence:

L(w) = {u ∈ A∗ : u is a subword of w}.

Alternative: Xw can also be defined by

Xw = {v ∈ AN : L(v) ⊆ L(w)}.

Often Xw only depends on σ: Xσ := Xw .
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The substitutive case (well-studied)

Let σ = (σ)n∈N is the constant sequence.

Then (Xσ,Σ) = (X(σ),Σ) is called substitutive.

Rauzy (1982): (X(σ),Σ) is a rotation on T2 for σ being the
tribonacci substitution.
Arnoux-Ito (2001) and Ito-Rao (2006): (X(σ),Σ) is a
rotation on Td−1 for σ unimodular Pisot if some
combinatorial conditions are in force.
Minervino-T. (2014): Generalizations to nonunimodular
Pisot substitutions under combinatorial conditions.
Barge (2016): (X(σ),Σ) is a rotation on Td−1 for σ
unimodular Pisot under very general conditions.
Pisot substitution conjecture: (X(σ),Σ) is a rotation on T2

for σ unimodular Pisot.
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Some Rauzy fractals

Figure: Rauzy fractals may have holes and can even be disconnected
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Generalized continued fraction algorithms

Definition (Generalized continued fraction algorithm)

Let X be a closed subset of the projective space Pd and let
{Xi}i∈I be a partition of X (up to a set of measure 0) indexed by
a countable set I. LetM = {Mi : i ∈ I} be a set of unimodular
integer matrices M−1

i Xi ⊂ X and let

M : X →M, x 7→ Mi whenever x ∈ Xi .

The generalized continued fraction algorithm associated with
this data is given by the mapping

F : X → X ; x 7→ M(x)−1x.

If I is a finite set, the algorithm given by F is called additive,
otherwise it is called multiplicative.
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The linear Brun continued fraction algorithm

The linear Brun algorithm is defined on

B = {[w1 : w2 : w3] ∈ P2 : 0 ≤ w1 < w2 < w3} ⊂ P2

For x = [w1 : w2 : w3] ∈ B replace w3 by w3 − w2 and sort the
elements w1,w2,w3 − w2 in increasing order. More precisely,
Brun’s algorithm is given by

FB : B → B, x 7→ [sort(w1,w2,w3 − w2)].

The linear Brun algorithm subtracts the second largest element
of a sorted vector [w1,w2,w3] ∈ P2 from the largest one.
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The Brun Matrices

SetM = {M1,M2,M3} with

M1 =

0 1 0
0 0 1
1 0 1

 , M2 =

1 0 0
0 0 1
0 1 1

 , M3 =

1 0 0
0 1 0
0 1 1

 .

The sets Bi = MiB ⊂ B partition B up to a set of measure 0.

The Brun continued fraction algorithm can be written as

FB : x 7→ M−1
i x, for x ∈ Bi ,

This continued fraction algorithm is additive, since it is defined
by a finite familyM = {M1,M2,M3} of unimodular matrices.
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The partition of B

[1 : 1 : 1]

[0 : 0 : 1]

[0 : 1 : 1][1 : 1 : 2]

[0 : 1 : 2]

B1

B3

B2

Figure: The partition of B in the three regions B1,B2,B3.
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The original Brun continued fraction algorithm

There also exists a projective version of the Brun algorithm.

Definition (Brun algorithm)

The projective additive form of the Brun algorithm is given on
∆2 := {(x1, x2) ∈ R2 : 0 < x1 < x2 < 1} by

fB : (x1, x2) 7→


(

x1
1−x2

, x2
1−x2

)
, for x2 ≤ 1

2 ,(
x1
x2
, 1−x2

x2

)
, for 1

2 ≤ x2 ≤ 1− x1,(
1−x2

x2
, x1

x2

)
, for 1− x1 ≤ x2.

If the linear version of the algorithm performs the mapping
(w1,w2,w3) 7→ (w ′1,w

′
2,w

′
3) then

fB
(
w1/w3,w2/w3

)
=
(
w ′1/w

′
3,w

′
2/w

′
3
)
.
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Brun Substitutions

Let S = {β1, β2, β3} be the set of Brun substitutions

β1 :


1 7→ 3,
2 7→ 1,
3 7→ 23,

β2 :


1 7→ 1,
2 7→ 3,
3 7→ 23,

β3 :


1 7→ 1,
2 7→ 23,
3 7→ 3,

whose incidence matrices are the Brun matrices M1,M2,M3.
Note that this choice is not canonical.

Using these substitutions we can produce S-adic sequences
whose abelianizations perform the Brun algorithm.
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Primitivity and minimality

Definition (Primitivity)

A sequence M of nonnegative matrices from GLd (Z) is primitive
if for each m ∈ N there is n > m such that M[m,n) is a positive
matrix. A sequence σ of substituitons is primitive if its
associated sequence of incidence matrices is primitive.

Definition (Minimality)

Let (X ,T ) be a topological dynamical system. (X ,T ) is called
minimal if the orbit of each point is dense in X , i.e., if

{T kx : k ∈ N} = X

holds for each x ∈ X .
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Example: irrational rotation

Example

An irrational rotation Rα on T1 is minimal.

x

Rα
(x)2

Rα (x)

x

Rα
(x)2

Rα (x)

(10 iterates) (60 iterates)

More general: If α ∈ Td has irrational and rationally
independent coordinates then the rotation by α on Td is
minimal (Kronecker rotation).

Example

The full shift ({1,2}N,Σ) is not minimal: for instance, 1111 . . .
doesn’t have a dense orbit.
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Consequences of primitivity

Lemma

If σ is a primitive sequence of unimodular substitutions, the
following properties hold.

(i) There exists at least one and at most |A| limit sequences
for σ.

(ii) Let w ,w ′ be two S-adic sequences with directive sequence
σ. Then (Xw ,Σ) = (Xw ′ ,Σ).

(iii) The S-adic shift (Xw ,Σ) is minimal.

If σ is a primitive sequence of substitutions, assertion (ii) of this
lemma allows us to define (Xσ,Σ) = (Xw ,Σ) for w being an
arbitraty S-adic sequence with directive sequence σ.
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Recurrence

Definition (Recurrence)

A sequence M = (Mn) of matrices is called recurrent if for each
m ∈ N there is n ∈ N such that M[0,m) = M[n,n+m). A sequence
σ = (σn) of substitutions is called recurrent if for each m ∈ N
there is n ∈ N such that σ[0,m) = σ[n,n+m).

Lemma (Furstenberg, 1960)

Let M = (Mn) be a primitive and recurrent sequence of
nonnegative matrices from GLd (Z). Then there is a vector
u ∈ Rd

+ satisfying ⋂
n≥0

M[0,n)Rd
+ = R+u.
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Proof of the lemma: Hilbert metric

C = {R+w : w ∈ Rd
+}: space of nonnegative rays through

the origin.
Hilbert metric:

dC(R+v,R+w) = max
1≤i,j≤d

log
viwj

vjwi
,

For M nonnegative:

dC(MR+v,MR+w) ≤ dC(R+v,R+w)

For M positive:

dC(MR+v,MR+w) ≤ dC(R+v,R+w)

Since (Mn) has infinitely many occurrences of a given
positive block, the lemma follows.
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Weak convergence & generalized right eigenvector

Definition (Weak convergence & generalized right eigenvector)

If a sequence of nonnegative matrices M with elements in
GLd (Z) satisfies ⋂

n≥0

M[0,n)Rd
+ = R+u

we say that M is weakly convergent to u. In this case we call u
a generalized right eigenvector of M.

Substitutive case
If σ = (σ), with σ a Pisot substitution then one can prove that
M = (Mσ) contains a positive block. Hence, it contains infinitely
many positive blocks. In this case the generalized right
eigenvector u is the dominant right eigenvector of Mσ.
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Unique ergodicity

Definition (Unique ergodicity)

A topological dynamical system (X ,T ) on a compact space X
is said to be uniquely ergodic if there is a unique T -invariant
Borel probability measure on X .

Kyrlov and Bogoliubov: If X is compact then there is at
least one invariant measure µ, i.e., µ(A) = µ(T−1A), ∀A.
If there is a unique invariant measure µ, it has to be
ergodic, otherwise ν(B) = µ(B∩E)

µ(E) is another invariant
measure if E is an invariant set E of µ with 0 < µ(E) < 1.
Unique ergodicity implies that each point is generic, i.e.,

1
N

∑
0≤n<N

f (T nx) −→
∫

fdµ

holds for each x ∈ X and each f ∈ C(X ).
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Uniform frequenies of letters and words

Definition

w = w0w1 . . . ∈ AN.
|wk . . .w`−1|v be the number of occurrences of v in
wk . . .w`−1 ∈ A∗ (k < ` and v ∈ A∗).
w has uniform frequencies for words if for each v ∈ A∗

lim
`→∞

|wk . . .w`−1|v
`− k

= fv (w)

holds uniformly in k . It has uniform letter frequencies if this
is true for each v ∈ A.

Example

The fixpoint w = limσn(1) of the Fibonacci substitution has
uniform letter frequencies (f1(w), f2(w)) =

(
ϕ−1, ϕ−2).
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Uniform word frequencies and unique ergodicity

Lemma

Let w ∈ AN be a sequence with uniform word frequencies and
let Xw = {Σnw : n ∈ N} be the shift orbit closure of w. Then
(Xw ,Σ) is uniquely ergodic.

This criterion can be applied to the S-adic setting:

Lemma

Let σ be a sequence of unimodular substitutions with sequence
of incidence matrices M. If M is primitive and recurrent then
each sequence w ∈ Xσ has uniform word frequencies.

Proof.
Generalized eigenvector u describes letter frequencies.
Dumont-Thomas expansion is used.
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The main result

Summing up we get the following result:

Theorem

Let σ be a sequence of unimodular substitutions with
associated sequence of incidence matrices M. If M is primitive
and recurrent, (Xσ,Σ) is minimal and uniquely ergodic.
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An Example: Brun substitutions

Lemma

Let S = {σ1, σ2, σ3} be the set of Brun substitutions and
σ ∈ SN. If σ is recurrent and contains the block (σ3, σ2, σ3, σ2)
then the associated S-adic system (Xσ,Σ) is minimal and
uniquely ergodic.

Proof.
It is immediate that M3M2M3M2 is a strictly positive matrix.
Since σ is recurrent, it contains the block (σ3, σ2, σ3, σ2)
infinitely often. Thus σ is primitive and the result follows from
the theorem.

Being recurrent is a generic property.
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Looking back to the Sturmian case

π

2

1 1

2

1 1

2

1

2

1 1

L

Rα

We “see” the rotation on the Rauzy fractal if it has “good”
properties.
It is our aim to establish these properties.
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Preparations for the definition

An S-adic Rauzy fractal will be defined in terms of a projection
to a hyperplane.

w ∈ Rd
≥0 \ {0}.

w⊥ = {x : x ·w = 0} orthogonal hyperplane

w⊥ is equiped with the Lebesgue measure λw.

The vector 1 = (1, . . . ,1)t will be of special interest

u,w ∈ Rd
≥0 \ {0} noncollinear. Then we denote the

projection along u to w⊥ by πu,w.
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S-adic Rauzy fractal

Definition (S-adic Rauzy fractals and subtiles)
Let σ be a sequence of unimodular substitutions over the
alphabet A with generalized eigenvector u ∈ Rd

>0.
Let (Xσ,Σ) be the associated S-adic system.
The S-adic Rauzy fractal (in w⊥, w ∈ Rd

≥0) associated with σ is
the set

Rw := {πu,wl(p) : p is a prefix of a limit sequence of σ}.

The set Rw can be naturally covered by the subtiles (i ∈ A)

Rw(i) := {πu,wl(p) : pi is a prefix of a limit sequence of σ}.

For convenience we set R1(i) = R(i) and R1 = R.
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Illustration of the definition

Figure: Definition of Ru and its subtiles
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What we need

We want to “see” the rotation on the Rauzy fractal.

R should be bounded.

R should be the closure of its interior.

The boundary ∂R should have λ1-measure zero.

The subtiles R(i), i ∈ A, should not overlap on a set of
positive measure.

R should be the fundamental domain of a lattice, i.e., it can
be used as a tile for a lattice tiling.
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E−−−−−−−−−→

Figure: The domain exchange
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Multiple tiling and tiling

Definition (Multiple tiling and tiling)

Let K be a collection of subsets of an Euclidean space E .

Assume that each element of K is compact and equal to
the closure of its interior.

K is a multiple tiling if there is m ∈ N such that a. e. point
(w.r.t. Lebesgue measure) of E is contained in exactly m
elements of K.

K is a multiple tiling if m = 1.
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Discrete hyperplane

A discrete hyperplane can be viewed as an approximation
of a hyperplane by translates of unit hypercubes.
Pick w ∈ Rd

≥0 \ {0} and denote by 〈·, ·〉 the dot product.
The discrete hyperplanes is defined by

Γ(w) = {[x, i] ∈ Zd ×A : 0 ≤ 〈x,w〉 < 〈ei ,w〉}

(here ei is the standard basis vector).
Interpret the symbol [x, i] ∈ Zd ×A as the hypercube or
“face”

[x, i] =

{
x +

∑
j∈A\{i}

λjej : λj ∈ [0,1]

}
.

Then the set Γ(w) turns into a stepped hyperplane that
approximates w⊥ by hypercubes.
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Examples of stepped surfaces

Figure: A subset of a periodic and an aperiodic stepped surface

A finite subset of a discrete hyperplane will be called a patch.
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Collections of Rauzy fractals

Using the concept of discrete hyperplane we define the
following collections of Rauzy fractals.
Let σ be a sequence of substitutions with generalized
eigenvector u and choose w ∈ Rd

≥0 \ {0}.

Definition (Collections of Rauzy fractals)
Set

Cw = {πu,wx +Rw(i) : [x, i] ∈ Γ(w)}.

We will see that these collections often form a tiling of the
space w⊥.
A special role will be played by the collection C1 which will
give rise to a periodic tiling of 1⊥ by lattice translates of the
Rauzy fractal R.
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