Continued fractions

Sturmian dynamics

Rotations

Natural extensions and Flows

S-adic sequences A bridge between dynamics, arithmetic, and geometry

J. M. Thuswaldner

(joint work with P. Arnoux, V. Berthé, M. Minervino, and W. Steiner)

Marseille, November 2017

Continued fractions

Sturmian dynamics

Rotations

Natural extensions and Flows

PART 1

Sturmian sequences and rotations

Continued fractions

Sturmian dynamics

Rotations

Natural extensions and Flows

Contents

- Basic properties of Sturmian sequences
- 2 Classical continued fraction algorithms
- Sturmian sequences and their dynamical properties
- Sturmian sequences are natural codings of rotations
- 5 Natural extensions and geodesic flows

Continued fractions

Sturmian dynamics

Rotations

Natural extensions and Flows

The underlying papers

- Arnoux, P., Sturmian sequences. Substitutions in dynamics, arithmetics and combinatorics, 143–198, Lecture Notes in Math., 1794, Springer, Berlin, 2002.
- Arnoux, P. and Fisher, A. M., The scenery flow for geometric structures on the torus: the linear setting. Chinese Ann. Math. Ser. B 22 (2001), no. 4, 427–470.

Sturmian dynamics

Rotations

Natural extensions and Flows

Words and sequences

- Alphabet: $\mathcal{A} = \{1, \dots, d\}$ (set of symbols)
- Set of words: A^* (finite block of symbols)
- Set of sequences: $\mathcal{A}^{\mathbb{N}}$

(right infinite)

Example

Two symbol alphabet $\mathcal{A} = \{1, 2\}$

v = 121121 is a word (over A)

w = 1212121212... is a (right infinite) sequence (over A)

A symbol is also called letter.

d fractions Sturmian	dynamics Rotations	Natural extensions and Flo	ws
	d fractions Sturmian o	d fractions Sturmian dynamics Rotations	ed fractions Sturmian dynamics Rotations Natural extensions and Flor

Complexity

Let
$$v = v_0 \dots v_{n-1} \in \mathcal{A}^*$$
.

|v| = n is the length of v.

Definition (Complexity function)

Let $w = w_0 w_1 \ldots \in \mathcal{A}^{\mathbb{N}}$ be a sequence.

The complexity function

$$p_{w} : \mathbb{N} \to \mathbb{N}$$

 $n \mapsto \#\{v : v \text{ subword of } w, |v| = n\}$

This function assigns to each integer n the number of subwords of length n occurring in w.

Basics of Sturmian seq	uences
000000000000000000000000000000000000000	

Sturmian dynamics

Rotations

Natural extensions and Flows

Periodicity

Definition (Ultimate periodicity)

 $w \in \mathcal{A}^{\mathbb{N}}$ is ultimately periodic if there exist k > 0 and N > 0 with $w_n = w_{n+k}$ for each $n \ge N$.

Example

w = 1121212121212... is ultimately periodic

- Subwords of length 1: {1,2}
- Subwords of length 2: {11, 12, 21}
- Subwords of length 3: {112, 121, 212}
- Subwords of length 4: {1121, 1212, 2121}

• . . .

Thus $p_w(1) = 2$ and $p_w(n) = 3$ for $n \ge 3$ and p_w is bounded.

Sturmian dynamics

Rotations

Natural extensions and Flows

Definition of Sturmian sequences

Lemma (Coven and Hedlund, 1973)

 $w \in \{1, 2, \dots, d\}^{\mathbb{N}}$ admits the inequality

 $p_w(n) \leq n$

for a single choice of n if and only if it is ultimately periodic.

Not ultimately periodic sequences with smallest complexity function:

Definition (Sturmian Sequence)

A sequence $w \in \{1, 2\}^{\mathbb{N}}$ is called a Sturmian sequence if its complexity function satisfies $p_w(n) = n + 1$ for all $n \in \mathbb{N}$.

It is not clear that Sturmian sequences exist!

Basics of Sturmian sequences	Continued fractions	Sturmian dynamics	Rotations 00000000000	Natural extensions and Flows

- Let $\mathcal{A} = \{1, 2\}$ be the alphabet.
- Define a substitution $\sigma : \mathcal{A} \to \mathcal{A}^*$ by

$$\sigma: \begin{array}{cc} \mathbf{1} \mapsto \mathbf{12}, \\ \mathbf{2} \mapsto \mathbf{1}. \end{array}$$

This is the Fibonacci substitution.

- We can extend the domain of σ to \mathcal{A}^* and $\mathcal{A}^{\mathbb{N}}$ by concatenation.
- Since $\sigma(1)$ starts with 1 the iteration $\sigma^n(1)$ "converges":

The sequence

is the famous Fibonacci sequence.

Basics of Sturmian sequences	Continued fractions	Sturmian dynamics	Rotations 00000000000	Natural extensions and Flows

- Let $\mathcal{A} = \{1, 2\}$ be the alphabet.
- Define a substitution $\sigma : \mathcal{A} \to \mathcal{A}^*$ by

$$\sigma: \begin{array}{cc} \mathbf{1} \mapsto \mathbf{12}, \\ \mathbf{2} \mapsto \mathbf{1}. \end{array}$$

This is the Fibonacci substitution.

- We can extend the domain of σ to \mathcal{A}^* and $\mathcal{A}^{\mathbb{N}}$ by concatenation.
- Since $\sigma(1)$ starts with 1 the iteration $\sigma^n(1)$ "converges": $\sigma^0(1) = 1$
- The sequence

is the famous Fibonacci sequence.

Basics of Sturmian sequences	Continued fractions	Sturmian dynamics	Rotations 00000000000	Natural extensions and Flows

- Let $\mathcal{A} = \{1, 2\}$ be the alphabet.
- Define a substitution $\sigma : \mathcal{A} \to \mathcal{A}^*$ by

$$\sigma: \begin{array}{cc} \mathbf{1} \mapsto \mathbf{12}, \\ \mathbf{2} \mapsto \mathbf{1}. \end{array}$$

This is the Fibonacci substitution.

- We can extend the domain of σ to \mathcal{A}^* and $\mathcal{A}^{\mathbb{N}}$ by concatenation.
- Since $\sigma(1)$ starts with 1 the iteration $\sigma^n(1)$ "converges": $\sigma^1(1) = 12$
- The sequence

is the famous Fibonacci sequence.

Basics of Sturmian sequences	Continued fractions	Sturmian dynamics	Rotations 00000000000	Natural extensions and Flows

- Let $\mathcal{A} = \{1, 2\}$ be the alphabet.
- Define a substitution $\sigma : \mathcal{A} \to \mathcal{A}^*$ by

$$\sigma: \begin{array}{cc} \mathbf{1}\mapsto\mathbf{12}, \\ \mathbf{2}\mapsto\mathbf{1}. \end{array}$$

This is the Fibonacci substitution.

- We can extend the domain of σ to \mathcal{A}^* and $\mathcal{A}^{\mathbb{N}}$ by concatenation.
- Since $\sigma(1)$ starts with 1 the iteration $\sigma^n(1)$ "converges": $\sigma^2(1) = 121$
- The sequence

is the famous Fibonacci sequence.

Basics of Sturmian sequences	Continued fractions	Sturmian dynamics	Rotations 00000000000	Natural extensions and Flows

- Let $\mathcal{A} = \{1, 2\}$ be the alphabet.
- Define a substitution $\sigma : \mathcal{A} \to \mathcal{A}^*$ by

$$\sigma: \begin{array}{cc} \mathbf{1}\mapsto\mathbf{12}, \\ \mathbf{2}\mapsto\mathbf{1}. \end{array}$$

This is the Fibonacci substitution.

- We can extend the domain of σ to \mathcal{A}^* and $\mathcal{A}^{\mathbb{N}}$ by concatenation.
- Since $\sigma(1)$ starts with 1 the iteration $\sigma^n(1)$ "converges":

 $\sigma^{3}(1) = 12112$

The sequence

is the famous Fibonacci sequence.

Basics of Sturmian sequences	Continued fractions	Sturmian dynamics	Rotations 00000000000	Natural extensions and Flows

- Let $\mathcal{A} = \{1, 2\}$ be the alphabet.
- Define a substitution $\sigma : \mathcal{A} \to \mathcal{A}^*$ by

$$\sigma: \begin{array}{cc} \mathbf{1}\mapsto\mathbf{12}, \ \mathbf{2}\mapsto\mathbf{1}. \end{array}$$

This is the Fibonacci substitution.

- We can extend the domain of σ to \mathcal{A}^* and $\mathcal{A}^{\mathbb{N}}$ by concatenation.
- Since $\sigma(1)$ starts with 1 the iteration $\sigma^n(1)$ "converges":

 $\sigma^4(1) = 12112121$

The sequence

is the famous Fibonacci sequence.

Basics of Sturmian sequences	Continued fractions	Sturmian dynamics	Rotations	Natural extensions and Flows

- Let $\mathcal{A} = \{1, 2\}$ be the alphabet.
- Define a substitution $\sigma : \mathcal{A} \to \mathcal{A}^*$ by

$$\sigma: \begin{array}{cc} \mathbf{1} \mapsto \mathbf{12}, \\ \mathbf{2} \mapsto \mathbf{1}. \end{array}$$

This is the Fibonacci substitution.

- We can extend the domain of σ to \mathcal{A}^* and $\mathcal{A}^{\mathbb{N}}$ by concatenation.
- Since $\sigma(1)$ starts with 1 the iteration $\sigma^n(1)$ "converges":

 $\sigma^5(1) = 1211212112112$

The sequence

is the famous Fibonacci sequence.

Basics of Sturmian sequences	Continued fractions	Sturmian dynamics	Rotations	Natural extensions and Flows

- Let $\mathcal{A} = \{1, 2\}$ be the alphabet.
- Define a substitution $\sigma : \mathcal{A} \to \mathcal{A}^*$ by

$$\sigma: \begin{array}{cc} \mathbf{1} \mapsto \mathbf{12}, \\ \mathbf{2} \mapsto \mathbf{1}. \end{array}$$

This is the Fibonacci substitution.

- We can extend the domain of σ to \mathcal{A}^* and $\mathcal{A}^{\mathbb{N}}$ by concatenation.
- Since $\sigma(1)$ starts with 1 the iteration $\sigma^n(1)$ "converges":

 $\sigma^6(1) = 121121211211212112121$

The sequence

is the famous Fibonacci sequence.

Basics of Sturmian sequences	Continued fractions	Sturmian dynamics	Rotations	Natural extensions and Flows

- Let $\mathcal{A} = \{1, 2\}$ be the alphabet.
- Define a substitution $\sigma : \mathcal{A} \to \mathcal{A}^*$ by

$$\sigma: \begin{array}{cc} \mathbf{1} \mapsto \mathbf{12}, \\ \mathbf{2} \mapsto \mathbf{1}. \end{array}$$

This is the Fibonacci substitution.

- We can extend the domain of σ to \mathcal{A}^* and $\mathcal{A}^{\mathbb{N}}$ by concatenation.
- Since $\sigma(1)$ starts with 1 the iteration $\sigma^n(1)$ "converges":

The sequence

is the famous Fibonacci sequence.

Sturmian dynamics

Rotations

Natural extensions and Flows

Natural codings of rotations

- Rotation by α : $R_{\alpha} : \mathbb{T} \to \mathbb{T}$ with $x \mapsto x + \alpha \pmod{1}$.
- *R*_α can be regarded as a two interval exchange of the intervals *I*₁ = [0, 1 α) and *I*₂ = [1 α, 1).
- $w = w_1 w_2 \ldots \in \{1, 2\}^{\mathbb{N}}$ is a natural coding of R_{α} if there is $x \in \mathbb{T}$ such that $w_k = i$ if and only if $R_{\alpha}^k(x) \in I_i$ for each $k \in \mathbb{N}$.

Lemma

If $w \in \{1,2\}^{\mathbb{N}}$ is a natural coding of R_{α} with $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ then w is Sturmian.

Continued fractions

Sturmian dynamics

Rotations

Natural extensions and Flows

An image of the rotation

Natural coding: 112...

Figure: Two iterations of the irrational rotation R_{α} on the circle \mathbb{T} .

The proof of the lemma just follows from the equivalence

 $v_1 \dots v_n$ is a factor of a nat'l coding of $R_{\alpha} \iff \bigcap_{\alpha}^{\prime \prime} R_{\alpha}^{-j} I_{v_j} \neq \emptyset$.

What about the converse of the lemma?

Continued fractions

Sturmian dynamics

Rotations

Natural extensions and Flows

Recurrence

Definition (Recurrence)

A sequence $w \in \{1, 2\}^{\mathbb{N}}$ is called recurrent if each subword of *w* occurs infinitely often in *w*.

Lemma

A Sturmian sequence w is recurrent.

Proof.

- Suppose for some v, |v| = n this is wrong.
- Then v doesn't occur in some shift $w' = \Sigma^k w$.
- Then $p_{w'}(n) \le n$ and w' is ultimately periodic.
- Thus *w* is ultimately periodic as well, a contradiction.

Basics of Sturmian sequences	Continued fractions	Sturmian dynamics	Rotations 00000000000	Natural extensions and Flows

• $v \in \{1,2\}^*$

Balance

• $|v|_i$ is the number of occurrences of the letter *i* in *v*.

Definition (Balanced sequence)

A sequence $w \in \{1,2\}^{\mathbb{N}}$ is called balanced if each pair of subwords (v, v') of w with |v| = |v'| satisfies $||v|_1 - |v'|_1| \le 1$.

Lemma (Morse and Hedlund, 1940)

Let $w \in \{1,2\}^{\mathbb{N}}$ be given. Then w is a Sturmian sequence if and only if w is not ultimately periodic and balanced.

The proof is combinatorial and a bit tricky.

Sturmian dynamics

Rotations

Natural extensions and Flows

Related substitutions

Next Goal

Use balance to code a Sturmian word by the Sturmian substitutions

$$\sigma_{1}: \begin{array}{cc} 1 \mapsto 1, \\ 2 \mapsto 21, \end{array} \quad \begin{array}{cc} \sigma_{2}: & 1 \mapsto 12, \\ 2 \mapsto 2. \end{array}$$

The domain of these substitutions can naturally be extended from $\{1,2\}$ to $\{1,2\}^*$ and $\{1,2\}^{\mathbb{N}}$, *e.g.*,

$$\sigma_1(1211) = \sigma_1(1)\sigma_1(2)\sigma_1(1)\sigma_1(1) = 12111$$

$$\sigma_2(121\ldots) = \sigma_2(1)\sigma_2(2)\sigma_2(1)\ldots = 12212\ldots$$

Sturmian dynamics

Rotations

Natural extensions and Flows

Two types of Sturmian sequences

- $w = w_0 w_1 \ldots \in \{1, 2\}^{\mathbb{N}}$ a given Sturmian sequence.
- *w* contains exactly three of the subwords 11, 12, 21, 22.
- Type 1: w contains 11, 12, 21
- Type 2: w contains 12, 21, 22

Desubstitution

Recall: $\sigma_1(1) = 1$, $\sigma_1(2) = 21$ w = 12112121121121 ... Sturmian sequence of Type 1.

$$w = \underbrace{1}_{\sigma_{1}(1)} \underbrace{21}_{\sigma_{1}(2)} \underbrace{1}_{\sigma_{1}(1)} \underbrace{21}_{\sigma_{1}(2)} \underbrace{21}_{\sigma_{1}(2)} \underbrace{1}_{\sigma_{1}(2)} \underbrace{21}_{\sigma_{1}(2)} \underbrace{1}_{\sigma_{1}(2)} \underbrace{21}_{\sigma_{1}(1)} \underbrace{21}_{\sigma_{1}(2)} \underbrace{1}_{\sigma_{1}(2)} \underbrace{21}_{\sigma_{1}(2)} \underbrace{21}_{\sigma_{1}(2)} \underbrace{1}_{\sigma_{1}(2)} \underbrace{21}_{\sigma_{1}(2)} \underbrace{1}_{\sigma_{1}(2)} \underbrace{21}_{\sigma_{1}(2)} \underbrace{1}_{\sigma_{1}(2)} \underbrace{21}_{\sigma_{1}(2)} \underbrace{21$$

 $= \sigma_1(121221212...)$

Using balance one sees: 121221212... is Sturmian again.

Natural extensions and Flows

S-adic representations of Sturmian sequences

- This desubstitution process is (esssentially) unique.
- Problems can occur at the beginning (in this case an additional shift is needed).

Let *w* be a Sturmian sequence. Then there is a sequence $(w^{(n)})_{n\geq 0}$ of Sturmian sequences with (modulo shifts)

$$w = w^{(0)}$$
 and $w^{(n)} = \sigma_{i_n}(w^{(n+1)})$ for $n \ge 0$.

Iterating this we see that

$$\mathbf{w} = \sigma_{i_0} \circ \cdots \circ \sigma_{i_n}(\mathbf{w}^{(n+1)}).$$

The coding sequence $(i_n) \in \{1, 2\}^{\mathbb{N}}$ changes its value infinitely often (otherwise *w* would be ultimately constant).

Sturmian dynamics

Rotations

Natural extensions and Flows

Variants of *S*-adic representations

- $w^{(n)}$ begins with the same letter as $w = w^{(0)}$.
- The first letter of $w^{(n)}$ determines a prefix of w whose length tends to infinity with n.

Thus

$$\boldsymbol{w} = \lim_{n \to \infty} \sigma_{i_0} \circ \cdots \circ \sigma_{i_n}(\boldsymbol{a}).$$

We could also group the blocks of the sequence (i_n) . This gives

$$\mathbf{W} = \lim_{k \to \infty} \sigma_1^{a_0} \circ \sigma_2^{a_1} \circ \sigma_1^{a_2} \circ \cdots \circ \sigma_1^{a_{2k}} (\mathbf{a}).$$

Limit: $\mathcal{A}^{\mathbb{N}}$ carries the product topology of the discrete topology on \mathcal{A} .

Sturmian dynamics

Rotations

Natural extensions and Flows

Characterization of Sturmian sequences

$$\sigma_1: \begin{array}{cc} 1\mapsto 1, \\ 2\mapsto 21, \end{array} \quad \begin{array}{cc} \sigma_2: & 1\mapsto 12, \\ 2\mapsto 2. \end{array}$$

Lemma

Let σ_1, σ_2 be the Sturmian substitutions. Then for each Sturmian sequence w there exists a coding sequence $\sigma = (\sigma_{i_n})$, where (i_n) takes each symbol in {1,2} an infinite number of times, such that w has the same language as

$$u = \lim_{n \to \infty} \sigma_{i_0} \circ \sigma_{i_1} \circ \cdots \circ \sigma_{i_n}(a).$$

Here $a \in \{1, 2\}$ can be chosen arbitrarily.

Sturmian dynamics

Rotations

Natural extensions and Flows

Abelianization and incidence matrices

Recall the definition of the Sturmian substitutions

$$\sigma_1: \begin{array}{cc} 1\mapsto 1, \\ 2\mapsto 21, \end{array} \quad \begin{array}{cc} \sigma_2: & 1\mapsto 12, \\ 2\mapsto 2. \end{array}$$

For a word $v \in \{1,2\}^*$ define the abelianization

$$\mathbf{I}\mathbf{v} = (|\mathbf{v}|_1, |\mathbf{v}|_2)^t$$

and let $M_i = (|\sigma_i(k)|_j)_{1 \le j,k \le 2}$ be the incidence matrix of σ_i . Then

$$M_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 and $M_2 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$

 M_i is the abelianized version of σ_i in the sense that

 $\mathbf{I}\sigma_i(\mathbf{v})=\mathbf{M}_i\mathbf{I}\mathbf{v}.$

Sturmian dynamics

Rotations

Natural extensions and Flows

Additive continued fraction algorithm

We start with the well-known additive Euclidean algorithm.

Iterate F on $(a, b) \in \mathbb{R}^2_{>0}$.

- If $a/b \in \mathbb{Q}$ we reach a pair of (0, c) or (c, 0) with c > 0.
- If a/b ∉ Q we produce an infinite sequence of pairs of different strictly positive numbers.

Continued fractions

Sturmian dynamics

Rotations

Natural extensions and Flows

Additive continued fraction expansion

Recall that

$$M_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 and $M_2 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$.

We see that

$$F(a,b) = egin{cases} M_1^{-1}(a,b)^t, & ext{if } a > b, \ M_2^{-1}(a,b)^t, & ext{if } a \leq b. \end{cases}$$

Thus

$$(a,b)^t = M_{i_0}F(a,b)$$

= $M_{i_0}M_{i_1}F^2(a,b)$
= $M_{i_0}M_{i_1}M_{i_2}F^3(a,b) = \cdots$

This sequence (M_{i_n}) is called the additive continued fraction expansion of (a, b).

Continued fractions

Sturmian dynamics

Rotations

Natural extensions and Flows

Linear additive continued fractions

Let $\ensuremath{\mathbb{P}}$ be the projective line and

$$X = \{ [a:b] \in \mathbb{P} : a \ge 0, b \ge 0 \}.$$

Define $M: X \to \{M_1, M_2\}$ by

$$M([a:b]) = egin{cases} M_1, & ext{if } a > b, \ M_2, & ext{if } b \geq a. \end{cases}$$

Then the mapping

$$F: X \to X; \quad \mathbf{x} \mapsto M(\mathbf{x})^{-1}\mathbf{x}$$

is called the linear additive continued fraction mapping.

Continued fractions

Sturmian dynamics

Rotations

Natural extensions and Flows

Projective additive continued fractions

Assume $a, b \neq 0$. Then [a : b] = [1, b/a] if a > b and [a : b] = [a/b, 1] if $a \ge b$.

$$F[1:c] = \begin{cases} [1-c:c] = [\frac{1-c}{c}:1], & \text{if } c > \frac{1}{2}, \\ [1-c:c] = [1:\frac{c}{1-c}] & \text{if } c \le \frac{1}{2}, \end{cases}$$
$$F[c:1] = \begin{cases} [1:\frac{1-c}{c}], & \text{if } c > \frac{1}{2}, \\ [\frac{c}{1-c}:1] & \text{if } c \le \frac{1}{2}. \end{cases}$$

Since the coordinate 1 contains no information this defines

$$egin{aligned} f:(0,1) &
ightarrow (0,1) \ &X &\mapsto egin{cases} rac{1-x}{x}, & ext{if } x > rac{1}{2}, \ rac{x}{1-x}, & ext{if } x \leq rac{1}{2}. \end{aligned}$$

called projective additive continued fraction mapping.

Continued fractions

Sturmian dynamic

Rotations

Natural extensions and Flows

A picture

Figure: The projective additive continued fraction mapping.

Continued fractions

Sturmian dynamics

Rotations

.

Natural extensions and Flows

Multiplicative acceleration

The multiplicative Euclidean algorithm is given by

$$egin{aligned} G: \mathbb{R}^2_{\geq 0} \setminus \{\mathbf{0}\} &
ightarrow \mathbb{R}^2_{\geq 0} \setminus \{\mathbf{0}\} \ (a,b) \mapsto egin{cases} (a - \lfloor rac{a}{b}
floor b, b), & ext{if } a > b, \ (a,b - \lfloor rac{b}{a}
floor a), & ext{if } b \geq a. \end{aligned}$$

Again this yields a sequence of matrices $M_1^{a_0}, M_2^{a_1}, M_1^{a_2}, \dots$

$$egin{aligned} (a,b)^t &= M_1^{a_0} G(a,b) \ &= M_1^{a_0} M_2^{a_1} G^2(a,b) \ &= M_1^{a_0} M_2^{a_1} M_1^{a_2} G^3(a,b) = \cdots \end{aligned}$$

Continued fractions

Sturmian dynamics

Rotations

Natural extensions and Flows

Linear multiplicative continued fractions

Set

$$X = \{ [a:b] \in \mathbb{P} : a \ge 0, b \ge 0 \}.$$

Define $M: X \to \{M_1^c, M_2^c, : c \ge 1\}$ by

$$M([a:b]) = egin{cases} M_1^c & ext{if } a > b ext{ and } 0 \leq a-cb < b, \ M_2^c & ext{if } b \geq a ext{ and } 0 \leq b-ca < b. \end{cases}$$

Then the mapping

$$G: X \to X; \quad \mathbf{x} \mapsto M(\mathbf{x})^{-1}\mathbf{x}$$

is called the linear multiplicative continued fraction mapping.

Sturmian dynamics

Rotations

Natural extensions and Flows

Projective multiplicative continued fractions

In the same way as before this gives rise to a mapping

$$g:(0,1)
ightarrow (0,1),\quad x\mapsto \Big\{rac{1}{x}\Big\}.$$

The mapping g is called Gauss map. It defines the (multiplicative) continued fraction expansion

$$x = \frac{1}{a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \ddots}}}, \text{ where } a_n = \left\lfloor \frac{1}{g^n(x)} \right\rfloor.$$

Notation: $x = [a_0, a_1, a_2, ...]$.

Continued fractions

Sturmian dynamics

Rotations

Natural extensions and Flows

The Gauss map

Natural extensions and Flows

S-adic representation and continued fractions

- Nonabelian: $\sigma_{i_0} \circ \cdots \circ \sigma_{i_n}(a)$ converges to a Sturmian seq.
- Abelian : $M_{i_0} \dots M_{i_n}$ converges to a vector.

Lemma (Birkhoff 1957 and Furstenberg 1960)

If (i_n) changes its value infinitely often then (M_{i_n}) contains the positive block M_1M_2 infinitely often. This implies that

$$\bigcap_{n\geq 0} M_{i_0}\cdots M_{i_n}\mathbb{R}^2_+=\mathbb{R}_+\mathbf{u}.$$

The lemma says that the additive continued fraction algorithm is weakly convergent.

Definition (Generalized right eigenvector)

u is called the generalized right eigenvector of (M_{i_n}) .

Continued fractions

Sturmian dynamics

Rotations

Natural extensions and Flows

The geometric meaning of **u**

Figure: We can interpret a Sturmian sequence as a broken line. As we will see later, this line approximates the vector **u**.

Natural extensions and Flows

The combinatorial meaning of **u**

Definition (Uniform letter frequencies)

 $w = w_0 w_1 \ldots \in \{1, 2\}^{\mathbb{N}}$ has uniform letter frequencies, *i.e.*,

$$f_a(w) = \lim_{\ell \to \infty} \frac{|w_k \dots w_{\ell-1}|_a}{\ell - k}$$

exists for each $a \in \{1, 2\}$ and does not dependent on k. Frequencies can be defined also for words instead of letters.

Lemma

Let w be a Sturmian sequence with coding sequence (σ_{i_n}). Then w has uniform letter (and word) frequencies and

 $(f_1(\boldsymbol{w}), f_2(\boldsymbol{w}))^t = \frac{\mathbf{u}}{||\mathbf{u}||_1},$

u ... right eigenvector of sequence of incidence matrices (M_{i_n}) .

Natural extensions and Flows

Sturmian dynamical system

Instead of a single Sturmian sequence w, we study a dynamical system generated by w in a natural way.

• Let w be a Sturmian sequence.

Let

$$X_w = \overline{\{\Sigma^k w : k \in \mathbb{N}\}}$$

be the closure of the shift orbit of w.

• Alternatively, X_w can be viewed as the set

$$X_w = \big\{ u \in \{1,2\}^{\mathbb{N}} : L(u) \subseteq L(w) \big\},\$$

where L(u) denotes the language of u.

• (X_w, Σ) with the shift Σ defined as

$$\Sigma(u_0u_1u_2\ldots)=u_1u_2u_3\ldots$$

is called Sturmian (dynamical) system.

Natural extensions and Flows

Properties of sturmian systems

Lemma

Let (X_w, Σ) be a Sturmian system. Then it has the following properties.

- (i) The system (X_w, Σ) is recurrent.
- (ii) The system (X_w, Σ) is minimal.
- (iii) The system (X_w, Σ) is uniquely ergodic.

(iv) Let $\sigma = (\sigma_n)$ be the coding sequence of w. Then $X_w = X_{w'} =: X_{\sigma}$ for any Sturmian sequence w' with coding sequence σ .

Proof.

(i) follows from recurrence of w, (ii) from primitivity, (iii) is a consequence of the existence of word frequencies, (iv) follows by primitivity and recurrence.

Sturmian dynamics

Rotations ••••••• Natural extensions and Flows

The main result

Theorem (Morse and Hedlund, 1940)

A sequence $w \in \{1,2\}^{\mathbb{N}}$ is Sturmian if and only if there exists $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ such that w is a natural coding for \mathbb{R}_{α} .

- "—" This is easy and was discussed before.
- " \implies " Morse and Hedlund gave a combinatorial proof of this.

In the 1991 Arnoux and Rauzy gave a very beautiful proof of this theorem in which the continued fraction algorithm pops up without being presupposed.

Idea: Show that natural codings of rotations are S-adic as well.

Sturmian dynamics

Rotations

Natural extensions and Flows

Lemma

For $\alpha \in (0, 1)$ let u be the natural coding of the point $x = 1 - \alpha/(\alpha + 1)$ under an irrational rotation $R_{\alpha/(\alpha+1)}$. Then there is a sequence (σ_{i_n}) of substitutions such that

$$u = \lim_{n \to \infty} \sigma_{i_n}(2)$$

The sequence $(i_n) \in \{1,2\}^{\mathbb{N}}$ is of the form $1^{a_0}2^{a_1}1^{a_2}2^{a_3}...$ where $[a_0, a_1, a_2, ...]$ is the continued fraction expansion of α . For $\alpha > 1$ a similar result with switched symbols holds.

Natural extensions and Flows

On the proof I

For computational reasons we "stretch" the interval.

- Consider the rotation *R* by α on the interval $J = [-1, \alpha)$ with the partition $P_1 = [-1, 0)$ and $P_2 = [0, \alpha)$.
- The natural coding *u* of 1 α/(α + 1) by R_{α/(α+1)} is the natural coding of 0 by *R*.
- Let *R'* be the first return map of *R* to the interval $J' = [\alpha \lfloor \frac{1}{\alpha} \rfloor 1, \alpha).$
- Let v be a natural coding of the orbit of 0 for R'.

Continued fractions

Sturmian dynamics

Rotations

Natural extensions and Flows

The induction

Figure: The rotation R' induced by R.

Basics of Sturmian sequences	Continued fractions	Sturmian dynamics	Rotations 00000000000	Natural extensions and Flows

On the proof II

- *v* emerges from *u* by removing a block of 1s after each letter 2 occurring in *u*. By the definition of σ₁ this just means that *u* = σ₁^[1/α](*v*).
- Renormalize: The Gauss map pops up!!!
- Iterate: 1 and 2 are interchanged in the next step.
- This gives a sequence (u⁽ⁿ⁾)_{n≥0} of natural codings

$$u = u^{(0)}$$
 and $u^{(n)} = \sigma_{i_n}(u^{(n+1)})$ for $n \ge 0$

for some sequence (σ_{i_n}) with $(i_n) \in \{1,2\}^{\mathbb{N}}$ having infinitely many changes between the letters 1 and 2.

Thus

$$u = \lim_{n \to \infty} \sigma_{i_0} \circ \cdots \circ \sigma_{i_n}(a),$$

where *a* is the first letter of *u*.

Continued fractions

Sturmian dynamics

Rotations

Natural extensions and Flows

A consequence for Sturmian systems

Corollary

A Sturmian system (X_{σ}, Σ) is measurably conjugate to an irrational rotation.

Figure: The rotation R_{α} is visible on a projection of the broken line

Basics of Sturmian sequences	Continued fractions	Sturmian dynamics	Rotations 000000000000	Natural extensions and Flows

An Example I

• Let
$$\sigma : \{1,2\} \rightarrow \{1,2\}^*$$
 be given by

$$\sigma = \sigma_1 \circ \sigma_2 : \begin{array}{c} \mathbf{1} \mapsto \mathbf{121}, \\ \mathbf{2} \mapsto \mathbf{21}, \end{array}$$

a reordering of the square of the Fibonacci substitution.

• An associated Sturmian sequence is

 $w = \lim_{n \to \infty} \sigma^n(2) = 21121121211212112121121121121121$

The asociated S-adic system (X_σ, Σ) is called a substitutive system (σ = (σ₁, σ₂, σ₁, ...)).

000000000000000000000000000000000000000	0000000000	00000	0000000000000	00000000000000	
An Example II					

- Let φ = 1+√5/2. By the Perron-Frobenius Theorem its generalized right eigenvector **u** is the eigenvector (φ, 1)^t corresponding to the eigenvalue φ².
- Let *L* be the eigenline defined by **u**. Being Sturmian, *w* is balanced and has uniform letter frequencies

$$(f_1(w), f_2(w))^t = (1, \varphi)^t / \sqrt{1 + \varphi^2}$$

• This is reflected by the fact that the broken line

$$B = \{\mathbf{I}(p) : p \text{ is a prefix of } w\}$$

associated with the word w stays at bounded distance from the eigenline *L*.

Continued fractions

Sturmian dynamics

Rotations

Natural extensions and Flows

An Example III

Figure: The broken line and its projection to the Rauzy fractal.

Basics of Sturmian sequences Continued fractions Sturmian dynamics Rotations Ococococo

An Example IV

- *w* is a natural coding of the rotation by φ^{-2} of the point $\varphi^{-1} \in [0, 1)$ with respect to the partition $I_1 = [0, \varphi^{-1})$, $I_2 = [\varphi^{-1}, 1)$ of [0, 1).
- Let π be the projection along L to the line L[⊥] orthogonal to L. If we project all points on the broken line and take the closure of the image, due to the irrationality of u we obtain the interval

$$\mathcal{R}_{u} = \overline{\{\pi \mathbf{I}(p) : p \text{ is a prefix of } w\}}$$

on L^{\perp} .

• We color the part of the interval for which we write out 1 at the associated lattice point light grey, the other part dark grey:

 $\mathcal{R}_{u}(i) = \overline{\{\pi I(p) : pi \text{ is a prefix of } w\}}$ (i = 1, 2).

Thus passing along the broken line one step amounts to exchanging the intervals $\mathcal{R}_{u}(1)$ and $\mathcal{R}_{u}(2)$ in the projection. If we identify the end points of \mathcal{R}_{u} this interval exchange becomes a rotation. This is the rotation which is coded by the Sturmian sequence *w*. The union $\mathcal{R}_{u} = \mathcal{R}_{u}(1) \cup \mathcal{R}_{u}(2)$ is called the Rauzy fractal associated with the substitution σ .

Lack of injectivity

• Gauss map: $x = [a_0, a_1, a_2, ...] \in (0, 1)$ yields

$$g(x) = [a_1, a_2, a_3, \ldots].$$

The partial quotient a_0 cannot be reconstructed from g(x).

• Sturmian Recoding: Let $w = \lim_{n\to\infty} \sigma_{i_0} \circ \cdots \circ \sigma_{i_n}(a)$ be a Sturmian word. Then there is a recoded Sturmian word u with $w = \sigma_{i_0}(u)$, *viz*.

$$u = \lim_{n \to \infty} \sigma_{i_1} \circ \cdots \circ \sigma_{i_n}(a).$$

The substitution σ_{i_0} cannot be reconstructed form *u*.

Continued fractions

Sturmian dynamics

Rotations

Natural extensions and Flows

Rokhlin's Natural extension

- Let (X, T) be a dynamical system. T a surjection.
- Consider

$$Y = \{(x_i)_{i \in \mathbb{N}} : T(x_{i+1}) = x_i))\},\$$

which is an inverse limit.

• Then (Y, \hat{T}) with $\hat{T}: Y \to Y$ given by

 $(x_1, x_2, \ldots) \mapsto (T(x_1), T(x_2), \ldots) = (T(x_1), x_1, x_2)$

is the natural extension of (X, T).

• This goes back to Rokhlin.

This is an abstract way of recording the past. We want it more concrete.

Continued fractions

Sturmian dynamics

Rotations

Natural extensions and Flows

Inducing without restacking

We loose some part of the information: the intervals $[R(0), R^2(0))$ and $[R^2(0), R^3(0))$ depicted in light gray are no longer present in the induced rotation.

Continued fractions

Sturmian dynamics

Rotations

Natural extensions and Flows

Inducing with restacking

The intervals $[R(0), R^2(0))$ and $[R^2(0), R^3(0))$ are stacked on one interval of the induced rotation. No information lost!

Basics	Stur	mian	sequences	С

Sturmian dynamics

Rotations

Natural extensions and Flows

Boxes

Restacking the intervals has the disadvantage that we can go "back" only finitely many steps. Here is a better way of doing it (Arnoux and Fisher, 2001):

Build rectangular boxes above intervals

- One rectangle has width 1, the other one has width α .
- The sum of the areas of the rectangles is 1.
- Common lower vertex is 0.
- Now we can restack the rectangles.

Continued fractions

Sturmian dynamics

Rotations

Natural extensions and Flows

Restacking and renormalizing boxes

Figure: Step 1: Restack the boxes. Step 2: Renormalize in a way that the larger box has length 1 again.

- a = length of large \Box , b = length of small \Box ,
- d = width of large \Box , c = width of small \Box .

Mapping in two variables since $\sup\{a, b\} = 1$ and ad + bc = 1.

Continued fractions

Sturmian dynamics

Rotations

Natural extensions and Flows

The associated mapping

- Δ_m: Set of pairs of rectangles (a × d, b × c) as above such that a > b is equivalent to d > c (the one with larger height has also larger width) with sup{a, b} = 1 and ad + bc = 1.
- $\Delta_m = \Delta_{m,0} \cup \Delta_{m,1}$, where a = 1 in $\Delta_{m,0}$ and b = 1 in $\Delta_{m,1}$.

Definition

The map Ψ is defined on $\Delta_{m,1}$ by

$$(a,d)\mapsto \Big(\Big\{rac{1}{a}\Big\},a-d^2a\Big),$$

and analogously on $\Delta_{m,0}$. This is the natural extension of the Gauss map.

 Ψ preserves the Lebesgue measure and can be used to determine the invariant measure of the Gauss map.

Continued fractions

Sturmian dynamics

Rotations

Natural extensions and Flows

Boxes and Sturmian words

Figure: The vertical line is coded by a Sturmian word u, the horizontal line by a Sturmian word v. The restacking procedure desubstitutes u and substitutes v.

Basics of Sturmian sequences	Continued fractions	Sturmian dynamics	Rotations	Natural extensions and Flows

Figure: A pair of boxes is a fundamental domain of a lattice

- A pair of boxes is a fundamental domain of the lattice $\left\langle \begin{pmatrix} a \\ c \end{pmatrix}, \begin{pmatrix} -b \\ d \end{pmatrix} \right\rangle_{\mathbb{Z}} \in SL_2(\mathbb{Z}) \setminus SL_2(\mathbb{R}).$
- Renormalization can be done by multiplying the lattice by
 (e^t 0 0 e^{-t}) from the right. This is the
 geodesic flow on SL₂(ℤ) \ SL₂(ℝ).

Natural extensions and Flows

Poincaré section

- Hit the pair of rectangles with the geodesic flow until the shorter rectangle has length 1.
- Restack; then the shorter rectangle has length 1. Restacking doesn't affect the lattice or the flow, only the basis.
- Repeat the procedure.

Poincaré section

The procedure above can be used to show that the natural extension of the Gauss map is a Poincaré section of the geodesic flow on $SL_2(\mathbb{Z}) \setminus SL_2(\mathbb{R})$.

Results of that type go back to Artin and were studied *e.g.* by Series, Arnoux, and Fisher.

Natural extensions and Flows

The scenery flow (Arnoux and Fisher, 2001)

- Mark a point in the fundamental domain.
- This gives a torus fiber on the space of lattices.
- The geodesic flow acting on this extended space is called scenery flow.
- On each fiber we have a vertical and a horizontal flow. These flows are rotations that code Sturmian words as seen above.

Sturmian dynamics

Rotations

Natural extensions and Flows

Parametrization of Sturmian sequences & systems

Remark

- Set of points in a given pair of rectangles parametrizes the pairs of Sturmian words inside a given Strumian system (offsets with given slope).
- Set of pairs of rectangles parametrizes the set of natural extensions of sturmian Systems (slopes).

Continued fractions

Sturmian dynamics

Rotations

Natural extensions and Flows

Pictures at the end

Figure: Sturmian sequences and their natural extensions