Products of two Cantor sets and separable two-dimensional quasicrystal models

Yuki Takahashi

Bar-Ilan University

November 23, 2017

Definition

A set $K \subset \mathbb{R}$ is a *Cantor set* if K is compact, perfect and nowhere dense.

Example (Middle-1/3 Cantor set)

Figure : $K := \bigcap_{n=0}^{\infty} K_n$ is the *middle*-1/3 *Cantor set*.

イロト 不得 トイヨト イヨト ニヨー

• Denote the *thickness* of K by $\tau(K)$.

Example

• Middle- α Cantor set has thickness $1/\alpha$.

Lemma (Newhouse Gap Lemma)

Let K, L be Cantor sets with $\tau(K) \cdot \tau(L) > 1$. Then K + L is a disjoint union of finitely many closed intervals.

Theorem (T. '15)

Let K, L be Cantor sets, and assume that $\min K$, $\min L = 0$. Then, $K \cdot L$ is an interval if

$$au(L) \geq rac{2 au(\mathcal{K})+1}{ au(\mathcal{K})^2}, \ \text{or} \ \ au(\mathcal{K}) \geq rac{2 au(L)+1}{ au(L)^2}.$$

This estimate is optimal. In particular, if

$$au(\mathcal{K}) = au(\mathcal{L}) \geq rac{1+\sqrt{5}}{2},$$

 $K \cdot L$ is an interval.

Figure : (A): $K \cdot L$ is always a closed interval.

____ ► <

Theorem (T. '15)

Let K, L be Cantor sets with $0 \in K, L$. Then, if

$$2(\tau(K) + 1)(\tau(L) + 1) \le (\tau(K)\tau(L) - 1)^2, \qquad (1)$$

 $K \cdot L$ is an interval. This estimate is optimal. In particular, if

$$\tau(K) = \tau(L) \ge 1 + \sqrt{2},$$

 $K \cdot L$ is an interval.

Figure : (A): $K \cdot L$ is always a closed interval.

• Consider the following substitution:

$$\mathcal{P} = egin{cases} 0 \longrightarrow 01 \ 1 \longrightarrow 0 \end{cases}$$

This substitution defines the *Fibonacci substitution sequence* $\{\omega_n\}$:

$$0 \longrightarrow 01 \longrightarrow 010 \longrightarrow 01001 \longrightarrow 01001010 \longrightarrow \cdots .$$

• For $\lambda > 1$, define

$$p_n = egin{cases} \lambda & ext{if} \ \ \omega_n = 0 \ 1 & ext{if} \ \ \omega_n = 1. \end{cases}$$

One dimensional quasicrystal model

For $\lambda > 1$, define the operator $H_{\lambda} : \ell^2(\mathbb{Z}) \to \ell^2(\mathbb{Z})$ by

$$(H_{\lambda}\phi)_n = p_{n+1}\phi_{n+1} + p_n\phi_{n-1}.$$

Figure : one dimensional quasicrystal model

• It is known that the *spectrum* Σ_{λ} is a (dynamically defined) Cantor set.

Theorem ('11, D. Damanik, A. Gorodetski)
$$\lim_{\lambda \to 1} \tau(\Sigma_{\lambda}) = \infty.$$

• The spectrum of the Labyrinth model is given by $\Sigma_{\lambda} \cdot \Sigma_{\lambda}$.

Theorem ('15, T.)

For sufficiently small $\lambda > 0$, the spectrum $\Sigma_{\lambda} \cdot \Sigma_{\lambda}$ is an interval.

Thank you! :)

æ

< □ > < ---->