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Plan of the talk

@ Classes of Delone sets: finitely generated, finite type, Meyer
@ Inflation symmetries
© Substitution Delone sets and tilings

@ Associated dynamical systems and their spectral properties (if time
permits)
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Delone sets

Definition. A set X C R? is Delone if it is

(a) Uniformly discrete: 3r > 0 such that #(B(y,r)NX) <1Vy € RY and
(b) Relatively dense: 3R > 0 such that B(y, R)N X # () for all y € RY.
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Delone sets

Definition. A set X C RY is Delone if it is

(a) Uniformly discrete: 3r > 0 such that #(B(y,r)NX) <1Vy € RY and
(b) Relatively dense: 3R > 0 such that B(y, R)N X # () for all y € RY.
Definition. A Delone set X in R is

o finitely generated if [X] (equivalently [X — X]) is finitely generated.

k
(X] = {Zn,-x,- s n €, xpe X, kEN}.
i=1
o of finite type if X — X is a discrete closed set, that is,
(X — X)N B(0, N) is finite for all N > 0.
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Properties of Delone sets

finite type

i

finitely generated

Boris Solomyak (Bar-llan University, Israel) Delone sets and tilings November 20-24, 2017 5/ 43



Properties of Delone sets

finitely generated prad finite type

finite type ] — finite local complexity (FLC)
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Address map

Definition. Let X be a finitely generated Delone set in R?. Note that [X]
is a free Abelian group, hence it has a basis (set of free generators):
[X] = Z[w1, ..., vs] for some s > d. Then

gi)(zs: n,-v,-) =(ny,...,ns).

i=1

is the address map. It depends on the choice of basis; defined up to
left-multiplication by an element of GL(s,Z).
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Address map

Definition. Let X be a finitely generated Delone set in R?. Note that [X]
is a free Abelian group, hence it has a basis (set of free generators):
[X] = Z[w1, ..., vs] for some s > d. Then

gi)(i n,-v,-) =(ny,...,ns).

is the address map. It depends on the choice of basis; defined up to
left-multiplication by an element of GL(s,Z).

o s=d iff [X] is a lattice in R

@ the address map describes X using s “internal dimensions”
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Characterization of finite type

Theorem 1 (Lagarias 1999) Let X C RY be a Delone set. Then X is of

finite type if and only if X is finitely generated and any address map is
globally Lipschitz on X: there exists C > 0 such that

|6(x) — d(X)|| < Cllx —X|| forall x,x" € X.
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Characterization of finite type

Theorem 1 (Lagarias 1999) Let X C RY be a Delone set. Then X is of

finite type if and only if X is finitely generated and any address map is
globally Lipschitz on X: there exists C > 0 such that

|6(x) — d(X)|| < Cllx —X|| forall x,x" € X.
Proof.

[ Finite type <= Address map is Lipschitz on X

If || x — x'|| <N, then

lo(x = X)I = ll(x) — d(x)|| < CN.

The map ¢ is 1-to-1 and into Z°, hence (X — X) N B(0, N) is finite. [
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Characterization of finite type (cont.)

Note: the address map is usually NOT continuous on [X], which is
generically dense in RY (unless [X] is a lattice).
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Characterization of finite type (cont.)

Note: the address map is usually NOT continuous on [X], which is
generically dense in RY (unless [X] is a lattice).

Finite type = Fin. gen. & the address map is Lipschitz on X

Lemma 1. Let X be a Delone set with parameters (R, r). Then there
exist k, C; > 0 such that for any two points x,x' € X there is a chain
X = X0, X1y -+, Xm—1,Xm = X" in X, with

(a) ||xi — xi—1]| < kR for all i;
(b) m< Giflx = X|.

Easy: one can take, e.g., k = 4 and C; = (2R) L.
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Characterization of finite type (cont.)

Now let ¢ : [X] — Z° be an address map, and define
G = max{|lg(y)] - y € (X = X) N B(0, kR)}.

Using Z-linearity of ¢ on [X] we have for all x,x" € X, by the Lemma,

() =GN < D llo(x) — dlxia)
i=1
= D (i —xi-)l
i=1

§ Cgm S C2C1||X —X/H.
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Meyer sets

Definition. A Delone set X in R is Meyer if X — X is uniformly discrete
(equivalently, Delone).
Theorem 2 (Meyer 1970, 1972; Lagarias 1999) For a Delone set X in
RY the following are equivalent:

(i) X is Meyer, that is, X — X is Delone.

(ii) there is a finite F such that X — X C X + F
(this was the original definition of Y. Meyer).

(iii) X is fin. generated and the address map ¢ : [X] — Z° is almost linear:
I linear L:R?Y - RS, G, >0: |o(x)—Lx|| < C forall x € X.

(iv) X is a subset of a non-degenerate cut-and-project set.
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Cut-and-project sets

Definition. Let A be a full rank lattice in R” = RY x R™. Let 7l and 7+
be the orthogonal projections onto R? and R™. A window Q is a bounded
open subset of R™. The cut-and-project set X(A, Q) associated with the
data (A, Q) is

XA, Q)=rl({wen: mt(w) € Q}).

Sometimes we say that RY is the “physical space” and R™ is the “internal
space”. The cut-and-project set is non-degenerate if l : R" — R is
one-to-one. It is irreducible if m(A) is dense in R™. Cut-and-project set
(sometimes with different requirements for the window) are also called
model sets.
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Example of a cut-and-project set
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Figure: “Fibonacci set”. From the paper “A short guide to pure point diffraction
in cut-and-project sets” by C. Richard and N. Strungaru, Journal of Physics A:
Math. and Theor., Vol. 50, No. 15, 2017
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Characterization of Meyer sets (about the proof)

e (i) = (ii), thatis, (X — X Delone) = (X — X C X + F for F finite)
was proved by Lagarias (1996)
o (ii) = (iii), that is

X — X C X + F = the address map is almost linear.

It is clear that X is of finite type. Construct L : R? — RS as an “ideal
address map”: for each y € R? define

lim (%)

k—00 2k

L(y) = , where xx € X satisfies ||xx — 2kyH <R.

Need to prove that the limit exists and is unique (independent of x).
Then show that it is linear and within a constant from ¢ on X.
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Characterization of Meyer sets (about the proof, cont.)

o (iii) = (i), that is, address map is almost linear implies X — X is
uniformly discrete.

It is enough to show that there is a lower bound on the norm of
ze (X =X)—(X-=X),

whenever z # 0. Suppose ||z|| < R. We have ||Lz — ¢(z)|| < 4y, since ¢
is Z-linear on [X], L is linear, and ||¢(x) — Lx|| < G2, x € X. Therefore,

[p(2)| < 4G +[ILIR.

Since ¢ is 1-to-1 on [X] and ¢(z) € Z°, there are only finitely many
possibilities for z. |
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Boris Solomyak (Bar-llan University, Israel)

Classes of algebraic integers

A (complex) number 7 is an algebraic integer if p( ) = 0 for some monic
polynomial p € Z[x], that is, p(x) = x" + Z 0 ajx/, aj € Z. The Galois
conjugates of 7 are the other roots of the m|n|ma| polynomial for 7.

Definition. Let 7 be a real algebraic integer greater than one.

(a) nis a Pisot number or Pisot-Vijayaraghavan (PV)-number if all Galois
conjugates satisfy |r/| < 1.

(b) 7 is a Salem number if for all conjugates || < 1 and at least one
satisfies || = 1.

(c) nis a Perron number if for all conjugates |n/| < 7.

(d) nis a Lind number if for all conjugates || < n and at least one
satisfies |n/| = 7.
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Inflation symmetries

A Delone set X has an inflation symmetry by a real n > 1 if nX C X.

Theorem 3 (Lagarias 1999 + "folklore”) Let X be a Delone set in R
such that nX C X for a real numbern > 1.
(i) If X is finitely generated, then X is an algebraic integer.

(i) If X is a Delone set of finite type, then n is a Perron number or a
Lind number.

(ii") If X is repetitive Delone set of finite type, then n is a Perron number.

(iii) If X is a Meyer set, then n is a Pisot number or a Salem number.
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Inflation symmetries

A Delone set X has an inflation symmetry by a real n > 1 if nX C X.

Theorem 3 (Lagarias 1999 + "folklore”) Let X be a Delone set in R
such that nX C X for a real numbern > 1.
(i) If X is finitely generated, then X is an algebraic integer.

(i) If X is a Delone set of finite type, then n is a Perron number or a
Lind number.

(ii") If X is repetitive Delone set of finite type, then n is a Perron number.

(iii) If X is a Meyer set, then n is a Pisot number or a Salem number.

Definition. A Delone set X is repetitive if every X-cluster occurs
relatively dense in RY.
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Example: (-integers

Fix 8 > 1, with 8 ¢ N. Let X3 = X/g“ U(—Xg) where

N

XBJr = Zajﬁf, aj € {0,1,...,|B]}, greedy expansion
j=0

Then Xj is relatively dense in R and 8X C X.

@ Xz is Delone iff the orbit of 1 under Tg(x) = [5x] does not
accumulate to 0.
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Fix 8 > 1, with 8 ¢ N. Let X3 = X/g“ U(—Xg) where

N

XBJr = Zajﬁf, aj € {0,1,...,|B]}, greedy expansion
j=0

Then Xj is relatively dense in R and 8X C X.

@ Xz is Delone iff the orbit of 1 under Tg(x) = [5x] does not
accumulate to 0.

@ Delone X3 is finitely generated iff 5 is an algebraic integer.
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Example: (-integers

Fix 8 > 1, with 8 ¢ N. Let X3 = X/g“ U(—Xg) where

N

XBJr = Zajﬁf, aj € {0,1,...,|B]}, greedy expansion
j=0

Then Xj is relatively dense in R and 8X C X.

@ Xz is Delone iff the orbit of 1 under Tg(x) = [5x] does not
accumulate to 0.

@ Delone X3 is finitely generated iff 5 is an algebraic integer.

@ Delone Xj is of finite type iff 3 is a Parry 3-number, i.e., the orbit
{T5(1)}nx0 is finite.
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Example: (-integers

Fix 8 > 1, with 8 ¢ N. Let X3 = X/g“ U(—Xg) where

N

XBJr = Zajﬁf, aj € {0,1,...,|B]}, greedy expansion
j=0

Then Xj is relatively dense in R and 8X C X.

@ Xz is Delone iff the orbit of 1 under Tg(x) = [5x] does not
accumulate to 0.

@ Delone X3 is finitely generated iff 5 is an algebraic integer.

@ Delone Xj is of finite type iff 3 is a Parry 3-number, i.e., the orbit
{T5(1)}nx0 is finite.

o If 8 is Pisot, then X3 is Meyer.
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Example: Delone sets from self-similar tilings

Let 7 be a self-similar tiling in RY with inflation symmetry by n > 1
(definition will be given later.) Then the set of control points of the tiles is
a Delone set with inflation symmetry by n > 1.
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Example: Delone sets from self-similar tilings

Let 7 be a self-similar tiling in RY with inflation symmetry by n > 1
(definition will be given later.) Then the set of control points of the tiles is
a Delone set with inflation symmetry by n > 1.

@ Consider a primitive substitution on a finite alphabet and make it into
a tiling. On R: interval tiles with lengths corresponding to the
Perron-Frobenius eigenvector; the control points are the endpoints.
Obtain a finite type Delone set X(7).
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Example: Delone sets from self-similar tilings

Let 7 be a self-similar tiling in RY with inflation symmetry by n > 1
(definition will be given later.) Then the set of control points of the tiles is
a Delone set with inflation symmetry by n > 1.

@ Consider a primitive substitution on a finite alphabet and make it into
a tiling. On R: interval tiles with lengths corresponding to the
Perron-Frobenius eigenvector; the control points are the endpoints.
Obtain a finite type Delone set X(7).

@ For every Perron number 1 > 1 there is a finite type Delone set
X = X(T) C R, such that nX C X [D. Lind (1984)].
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Example: Delone sets from self-similar tilings

Let 7 be a self-similar tiling in RY with inflation symmetry by n > 1
(definition will be given later.) Then the set of control points of the tiles is
a Delone set with inflation symmetry by n > 1.

@ Consider a primitive substitution on a finite alphabet and make it into
a tiling. On R: interval tiles with lengths corresponding to the
Perron-Frobenius eigenvector; the control points are the endpoints.
Obtain a finite type Delone set X(7).

@ For every Perron number 1 > 1 there is a finite type Delone set
X = X(T) C R, such that nX C X [D. Lind (1984)].

@ Such an X is Meyer if and only if 1 is Pisot.
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Example: Delone sets from self-similar tilings

Let 7 be a self-similar tiling in RY with inflation symmetry by n > 1
(definition will be given later.) Then the set of control points of the tiles is
a Delone set with inflation symmetry by n > 1.

@ Consider a primitive substitution on a finite alphabet and make it into
a tiling. On R: interval tiles with lengths corresponding to the
Perron-Frobenius eigenvector; the control points are the endpoints.
Obtain a finite type Delone set X(7).

@ For every Perron number 1 > 1 there is a finite type Delone set
X = X(T) C R, such that nX C X [D. Lind (1984)].

@ Such an X is Meyer if and only if 1 is Pisot.

@ For every Salem number 7 there exists X Meyer such that nX C X
(not from substitution) [Y. Meyer (1972)].
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Algebraicity of inflations

Lemma 2. Let X be a finitely generated Delone set in RY such that
QX C X for some expanding linear map Q : RY — R9. Then all
eigenvalues of Q are algebraic integers.

Proof.

o [X]=7Z[w,...,vs|, address map ¢ : [X] — Z°.
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Algebraicity of inflations

Lemma 2. Let X be a finitely generated Delone set in RY such that
QX C X for some expanding linear map Q : RY — R9. Then all
eigenvalues of Q are algebraic integers.

Proof.

e [X] =2Z|w,...,vs], address map ¢ : [X] — Z°.
o Q(X]) C[X] = Qvj=>";_; akjvk for some ay; € Z.
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Algebraicity of inflations

Lemma 2. Let X be a finitely generated Delone set in RY such that
QX C X for some expanding linear map Q : RY — R9. Then all
eigenvalues of Q are algebraic integers.

Proof.

e [X] =2Z|w,...,vs], address map ¢ : [X] — Z°.
o Q(X]) C[X] = Qvj=>";_; akjvk for some ay; € Z.

o V:=|v,..., v, d X s matrix.

® M := (ayj); j—; is an integer square matrix such that QV = VM.
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Algebraicity of inflations

Lemma 2. Let X be a finitely generated Delone set in RY such that
QX C X for some expanding linear map Q : RY — R9. Then all
eigenvalues of Q are algebraic integers.

Proof.

e [X] =2Z|w,...,vs], address map ¢ : [X] — Z°.
o Q(X]) C[X] = Qvj=>";_; akjvk for some ay; € Z.

o V:=|v,..., v, d X s matrix.

® M := (ayj); j—; is an integer square matrix such that QV = VM.

o {Vvj}j<s spans R9, hence rank(V) = d.
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Algebraicity of inflations

Lemma 2. Let X be a finitely generated Delone set in RY such that
QX C X for some expanding linear map Q : RY — R9. Then all
eigenvalues of Q are algebraic integers.

Proof.

o [X]=7Z[w,...,vs|, address map ¢ : [X] — Z°.

o Q(X]) C[X] = Qvj=>";_; akjvk for some ay; € Z.

o V:=|v,..., v, d X s matrix.

® M := (ayj); j—; is an integer square matrix such that QV = VM.
o {vj}j<s spans R9, hence rank(V) = d.

o Let e be a left eigenvector of Q for an eigenvalue A. Then
eV =eQV =eVM = eV is a left eigenvector for M.

@ eV # 0, because the rows of V are linearly independent.

o M e 7Z°*°, so all its eigenvalues are algebraic integers. O
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Inflations for finite type Delone sets are Lind

Proof. Assume 0 € X, nX C X forn > 1, and X C R is a Delone set of
finite type. Continue the argument in the Lemma.

@ Let v be a Galois conjugate of 1. Since 7 is an eigenvalue of M, so is
~v. We want to prove |y| < 7.

@ Let e, € R® be an eigenvector.

Boris Solomyak (Bar-llan University, Israel) Delone sets and tilings November 20-24, 2017 20 / 43



Inflations for finite type Delone sets are Lind

Proof. Assume 0 € X, nX C X forn > 1, and X C R is a Delone set of
finite type. Continue the argument in the Lemma.

@ Let v be a Galois conjugate of 1. Since 7 is an eigenvalue of M, so is
~v. We want to prove |y| < 7.
@ Let e, € R® be an eigenvector.

@ ¢(X) spans R®, hence there exists x € X such that ¢(x) has a
non-zero e,-coefficient.
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Inflations for finite type Delone sets are Lind

Proof. Assume 0 € X, nX C X forn > 1, and X C R is a Delone set of
finite type. Continue the argument in the Lemma.

@ Let v be a Galois conjugate of 1. Since 7 is an eigenvalue of M, so is
~v. We want to prove |y| < 7.
@ Let e, € R® be an eigenvector.

@ ¢(X) spans R®, hence there exists x € X such that ¢(x) has a
non-zero e,-coefficient.

e By definition, ¢(x) € Z° is unique such that x = V¢(x), x € X.

Boris Solomyak (Bar-llan University, Israel) Delone sets and tilings November 20-24, 2017 20 / 43



Inflations for finite type Delone sets are Lind

Proof. Assume 0 € X, nX C X forn > 1, and X C R is a Delone set of
finite type. Continue the argument in the Lemma.

@ Let v be a Galois conjugate of 1. Since 7 is an eigenvalue of M, so is
~v. We want to prove |y| < 7.

(]

Let e, € R® be an eigenvector.

@(X) spans R®, hence there exists x € X such that ¢(x) has a
non-zero e,-coefficient.

By definition, ¢(x) € Z* is unique such that x = V¢(x), x € X.
NV =QV=VM = nx=nV(x) = VMd(x) = ¢(nx) = M¢(x).
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Inflations for finite type Delone sets are Lind

Proof. Assume 0 € X, nX C X forn > 1, and X C R is a Delone set of
finite type. Continue the argument in the Lemma.

@ Let v be a Galois conjugate of 1. Since 7 is an eigenvalue of M, so is
~v. We want to prove |y| < 7.

(]

Let e, € R® be an eigenvector.

@(X) spans R®, hence there exists x € X such that ¢(x) has a
non-zero e,-coefficient.

By definition, ¢(x) € Z* is unique such that x = V¢(x), x € X.
o NV = QV = VM = nx=yVo(x) = VMo(x) = 6(nx) = Mo(x).
o ¢(n"x) = M"p(x).
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Inflations for finite type Delone sets are Lind

Proof. Assume 0 € X, nX C X forn > 1, and X C R is a Delone set of
finite type. Continue the argument in the Lemma.

@ Let v be a Galois conjugate of 1. Since 7 is an eigenvalue of M, so is
~v. We want to prove |y| < 7.

(]

Let e, € R® be an eigenvector.

@(X) spans R®, hence there exists x € X such that ¢(x) has a
non-zero e,-coefficient.

e By definition, ¢(x) € Z° is unique such that x = V¢(x), x € X.
o NV = QV=VM = nx=nVe(x) = VMo(x) = o(nx) = Me(x).
o ¢(n"x) = M"p(x).
o [[Mp(x)[| = [lo(n"x)I| = l[¢(n"x) = ¢(0)]| < Clin"x| = Cn"[|x]|
by Theorem 1. It follows that |y| < 7. O
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Example revisited: the set of 3-integers Xj

e Fix B > 1 algebraic integer, such that {Tﬁ”l}nzo does not accumulate

to zero. Then X3 C R is Delone and [X3] = Z[/].

@ Free generators can be chosen v; = i1, j <'s, where s is the degree
of B. Let o+ cix + -+ + cs_1x° "1 + x° be the minimal (with integer
coefficients) polynomial for 3.

@ We have Qx = Bx on R, and QX3 C X3. Then QV = VM, where

V =[vi,...,vs] (a 1 x s matrix), and
0 0 -—o
1 0 0 —C1
M = 0 1 0 —C
0 —c-2
0 0 1 —Cs—1
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The set of [-integers (cont.)

o Let ¢ be the associated address map, ¢ : [Xg] = Z[5] — R°. We have

o =

¢(8") = M"p(1) = M”

@ Now suppose that 3 is Pisot. Then we have
(1) ¢(8") = B"es + O(2"),

where eg is the eigenvector of M corresponding to 3 and ¢ € (0,1) is
the maximal absolute value of the Galois conjugates of .
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The set of [-integers (cont.)

o Define L : R — R® by L(x) = xeg, a linear map.

e We want to show that ||¢(x) — Lx|| < C on X3, whence X3 is a
Meyer set.

@ In view of (1) we have for x = EJ-N:O a e XE:

N ) N )
lot) = Lxll = |lo(Xa#) —L(>-a#)
j=0 j=0
- O(mjax\aj\~z,v:gj):0(l).
j=0
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The set of [-integers (cont.)

o Define L : R — R® by L(x) = xeg, a linear map.

e We want to show that ||¢(x) — Lx|| < C on X3, whence X3 is a
Meyer set.

@ In view of (1) we have for x = EJ-N:O a e XE:

N ) N )
lot) = Lxll = |lo(Xa#) —L(>-a#)
j=0 j=0
- O(mjax\aj\~z,v:gj):0(1).
j=0

O

@ The same proof works e.g. for the set of endpoints of a self-similar
tiling on R with a Pisot inflation factor.
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Boris Solomyak (Bar-llan University, Israel)

Delone m-sets

Consider Delone sets where each point has a “color” or “type” from a
finite list. Formally:

Definition. An m-multiset in R? is
o A=A; x - xAp CRY x --- x RY (m copies).
o We also write A = (A1, ..., Am) = (A)i<m-

o A = (A;)i<m is a Delone m-set in R9 if each A; is Delone and

supp(A U/\ c RY is Delone.
i=1
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Substitution Delone sets

Definition. Let Q : RY — R be a linear expanding map (i.e. all
eigenvalues are greater than one in absolute value).

o A= (A))i<m is a substitution Delone m-set with expanding map Q if
there are finite sets Dj; for i,j < m (possibly empty) such that

(2) N =H(QA +Dy), i<m.

e The substitution matrix S is Sj; = #(Dj;).
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Algebraicity of expansion map

Lemma 3. Suppose that N\ is a substitution Delone m-set with expansion

map Q. If supp(A) is finitely generated, then all eigenvalues of Q are
algebraic integers.

Proof sketch. Consider the set of “inter-atomic vectors”

m

=(A) = i = ).
i=1

We have [Z(A)] finitely generated, and Q(Z(A)) = =(A). Then the proof
proceeds as in Lemma 2 above. []
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Perron-Frobenius condition

Theorem 4 (Lagarias and Wang 2003). If A is a primitive substitution
Delone m-set with expansion map Q, then the Perron-Frobenius (PF)
eigenvalue of the substitution matrix S equals | det(Q)|.
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Perron-Frobenius condition

Theorem 4 (Lagarias and Wang 2003). If A is a primitive substitution
Delone m-set with expansion map Q, then the Perron-Frobenius (PF)
eigenvalue of the substitution matrix S equals | det(Q)|.

Denote A(S) = PF eigenvalue of S. In fact,

is relatively dense = A(S) > | det(Q)|
is uniformly discrete = A(S) < |det(Q)|

supp(A)  is Delone = A(S) = |det(Q)].

A
A
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Adjoint system of equations
Given m

set up the adjoint system of equations
m

(3) QA =JDs+A), j<m
i=1
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Adjoint system of equations

Given m

set up the adjoint system of equations

m

(3) QA =D+ A), j<m
i=1

Theory of (graph-directed) iterated function systems: (3) has a unique
solution (Ag,...,An) where () # A; C RY are compact.
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Adjoint system of equations

Given m

set up the adjoint system of equations

m

(3) QA =D+ A), j<m
i=1

Theory of (graph-directed) iterated function systems: (3) has a unique
solution (Ag,...,An) where () # A; C RY are compact.

Theorem 4 (Lagarias and Wang 2003). /f (A;)i<m is a primitive

substitution Delone m-set, then all A; = clos(A?) (closure of the interior),
and interiors in the RHS of (3) are disjoint.
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Substitution tilings

Definition.
@ A={Tq,..., Tn} is a set of tiles in RY; these will be our prototiles.
e Each tile is the closure of its interior and has a “type” (or “color").
@ P4 is the set of patches made up of translated prototiles.
o w:A— Pyis a tile-substitution with expanding map Q if there exist
finite sets D;; C RY for i,j < m, such that

m

(4) w(T) = (J(Ti + Dy),

i=1

and supp(w(T;)) = QA; for all j < m.
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Self-affine and self-similar tilings

@ The substitution (4) is extended by w(x 4+ T;) = @x 4+ w(T;), and to
patches and tilings by w(P) = J{w(T): T € P}.

@ w can be iterated, producing larger and larger patches w*(T;).

@ Substitution matrix: Sjj := #(Dj;). The substitution w is primitive if S
is primitive.

o If w(7) =T for a primitive w, we say that 7 is self-affine. Usually
FLC is also assumed.

e If @ =nO for some n > 1 and an orthogonal linear transformation O,
then T is self-similar.

@ For a self-similar tiling in R? = C consider the complex expansion
factor A € C, |A| > 1, by identifying Q with z — Az.
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From a substitution tiling to a substitution Delone set

If w(T) =T, then T = U:Z;(T; + A;) for some Delone A;, hence

@(TH-/\;) =T =w(T) =

i=1

+ 3

(w(T;) + QA))

‘ﬂ.
[y

H(Ti+Dy) + Qn))

Il
G+ 3
'Es

-
I
-
Il

i

m

(+ Wian + D).

j=1

1
IT(Es

Thus A; = L‘_‘Jj’11(Q/\j +Djj), i < m. In general, A; need not be disjoint,
but can be made so by translating T;'s. Then (A;)i<m is a substitution
Delone m-set.
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From a substitution Delone set to a substitution tiling

Let A = (Ai)i<m be a substitution Delone set with expansion Q. Consider
the solution of the adjoint equation (Aj,...,Ap) and define the prototiles

to be T; = (A, i).
Question. Is Y, (T + A;) necessarily a tiling of R9?
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From a substitution Delone set to a substitution tiling

Let A = (Ai)i<m be a substitution Delone set with expansion Q. Consider
the solution of the adjoint equation (Aj,...,Ap) and define the prototiles
to be T; = (A, i).

Question. Is Y, (T + A;) necessarily a tiling of R9?

showed that, in general, “no”. However, there
are verifiably sufficient conditions for “yes”. Then we say that A is
representable.

This was extended in
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Representable substitution Delone sets

Definition. For a substitution Delone m-set A = (A;)i< satisfying (2),
define a matrix ® = (®;)["._; whose entries are finite (possibly empty)
families of linear affine transformations on R given by

O ={f:x— Qx+a: acDj}.

We define ®;;(X) := Ufe%» f(X) for a set X C RY. For an m-set
X = (Xi)igm let

o(®) - (Jou(x)) .
j=1 -

Thus ®(A) = A by definition. We say that ® is an m-set substitution.
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Representable substitution Delone sets (cont.)

Let A be a substitution Delone m-set and ® the associated m-set
substitution.

o A-cluster P = (Pi)i<m is legal if it is a translate of a subcluster of
®k({x;}) for some x; € A; and k € N. (Here {x;} is an m-set which is
empty in all coordinates other than j, for which it is a singleton.)

@ A is representable if and only if every A-cluster is legal
e A-cluster P is generating if P C ®(P) and A = lim,_,o, ®"(P).

o A is representable if there exists a legal generating cluster.
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Application: pseudo-self-affine tilings

Definition. A repetitive FLC tiling 7 of RY is pseudo-self-affine with
expansion Q if T is locally derivable from QT (see N. P. Frank's Lecture
Notes for precise definition).

@ E. A. Robinson, Jr. conjectured that every pseudo-self-affine tiling is
mutually locally derivable with a self-affine tiling. This was settled for
d=2in and in higher dimensions in

e Caveat: in both papers we had to pass from Q to a higher power Q*,
that is, a pseudo-self-affine tiling with expansion @ was proved to be
MLD with a self-affine tiling with expansion Q* for some k € N.
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Application: pseudo-self-affine tilings

Definition. A repetitive FLC tiling 7 of RY is pseudo-self-affine with
expansion Q if T is locally derivable from QT (see N. P. Frank's Lecture
Notes for precise definition).

@ E. A. Robinson, Jr. conjectured that every pseudo-self-affine tiling is
mutually locally derivable with a self-affine tiling. This was settled for
d=2in and in higher dimensions in

e Caveat: in both papers we had to pass from Q to a higher power Q*,
that is, a pseudo-self-affine tiling with expansion @ was proved to be
MLD with a self-affine tiling with expansion Q* for some k € N.

@ It is simpler to construct a substitution Delone m-set and then use
the adjoint system of equations to obtain the self-affine tiling.
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Application: pseudo-self-affine tilings

Definition. A repetitive FLC tiling 7 of RY is pseudo-self-affine with
expansion Q if T is locally derivable from QT (see N. P. Frank's Lecture
Notes for precise definition).

@ E. A. Robinson, Jr. conjectured that every pseudo-self-affine tiling is
mutually locally derivable with a self-affine tiling. This was settled for
d=2in and in higher dimensions in

e Caveat: in both papers we had to pass from Q to a higher power Q*,
that is, a pseudo-self-affine tiling with expansion @ was proved to be
MLD with a self-affine tiling with expansion Q* for some k € N.

@ It is simpler to construct a substitution Delone m-set and then use
the adjoint system of equations to obtain the self-affine tiling.

o Caveat: it is harder to control topological properties.
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Characterization of expansion maps

Question (Thurston): which expansion maps Q may appear as
expansions of self-similar (self-affine) tilings?
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Characterization of expansion maps

Question (Thurston): which expansion maps Q may appear as
expansions of self-similar (self-affine) tilings?

Theorem (Thurston). If T is a self-similar tiling of R? = C, then its
expansion constant A\ € C is complex Perron.

@ Thurston also conjectured that this is sufficient. Proved (7) by R.
Kenyon (1996).

o (My personal view: more likely to work for some power A\¥.)
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Characterization of expansion maps

Question (Thurston): which expansion maps Q may appear as
expansions of self-similar (self-affine) tilings?

Theorem (Thurston). If T is a self-similar tiling of R? = C, then its
expansion constant A\ € C is complex Perron.

@ Thurston also conjectured that this is sufficient. Proved (7) by R.
Kenyon (1996).

o (My personal view: more likely to work for some power A\¥.)

@ What about self-affine? Higher dimensions?
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Characterization of expansion maps (cont.)

Theorem (Kenyon 1990, Kenyon and Solomyak 2010). Let Q be a
diagonalizable (over C) expansion map on RY, and let T be a self-affine
tiling of R with expansion Q. Then every eigenvalue of Q is an algebraic
integer, and if \ is an eigenvalue of Q and v is a Galois conjugate of A,

then either |y| < |\|, or v is also an eigenvalue of Q of greater or equal
multiplicity.
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Characterization of expansion maps (cont.)

Theorem (Kenyon 1990, Kenyon and Solomyak 2010). Let Q be a
diagonalizable (over C) expansion map on RY, and let T be a self-affine
tiling of R with expansion Q. Then every eigenvalue of Q is an algebraic
integer, and if \ is an eigenvalue of Q and v is a Galois conjugate of A,

then either |y| < |\|, or v is also an eigenvalue of Q of greater or equal
multiplicity.

@ Recently extended (by a different method) to the general,
non-diagonalizable case, by J. Kwapisz (2016).
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Characterization of expansion maps (cont.)

Theorem (Kenyon 1990, Kenyon and Solomyak 2010). Let Q be a
diagonalizable (over C) expansion map on RY, and let T be a self-affine
tiling of R with expansion Q. Then every eigenvalue of Q is an algebraic
integer, and if \ is an eigenvalue of Q and v is a Galois conjugate of A,

then either |y| < |\|, or v is also an eigenvalue of Q of greater or equal
multiplicity.

@ Recently extended (by a different method) to the general,
non-diagonalizable case, by J. Kwapisz (2016).

@ It is conjectured that the “generalized Perron condition” is also
sufficient, at least in the weak sense: given a generalized Perron Q,
there exists a self-affine tiling with expansion Q¥ for some k.
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Characterization of expansion maps (cont.)

Theorem (Kenyon 1990, Kenyon and Solomyak 2010). Let Q be a
diagonalizable (over C) expansion map on RY, and let T be a self-affine
tiling of R with expansion Q. Then every eigenvalue of Q is an algebraic
integer, and if \ is an eigenvalue of Q and v is a Galois conjugate of A,
then either |y| < |\|, or v is also an eigenvalue of Q of greater or equal
multiplicity.

@ Recently extended (by a different method) to the general,
non-diagonalizable case, by J. Kwapisz (2016).

@ It is conjectured that the “generalized Perron condition” is also
sufficient, at least in the weak sense: given a generalized Perron Q,
there exists a self-affine tiling with expansion Q¥ for some k.

@ Possible strategy: construct a substitution Delone m-set.
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Dynamical systems from Delone sets and tilings (in brief)

@ For a Delone m-set A in R? let Xj be the collection of all m-sets each
of whose clusters is a translate of a A-cluster.

@ Xp is the "hull” of A. Natural RY action by translations.

o Introduce the usual “big ball’ metric p, so that (Xp,RY) is compact
and (Xp,R9) is a topological dynamical system (R%-action).
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Dynamical systems from Delone sets and tilings (in brief)

@ For a Delone m-set A in R? let Xj be the collection of all m-sets each
of whose clusters is a translate of a A-cluster.

@ Xp is the "hull” of A. Natural RY action by translations.

o Introduce the usual “big ball’ metric p, so that (Xp,RY) is compact
and (Xp,R9) is a topological dynamical system (R%-action).

@ Invariant (Borel probability) measures.

o Assuming FLC, the system (X, RR9) is uniquely ergodic iff A has
Uniform Cluster Frequencies (UCF), i.e. for any cluster P, the limit

RY: x+PC B(O,N)NA
freq(P,A) = fim SXERT: x+PC BON)AA}

>
N VoI(B(0, N)) =0

exists uniformly in x € RY.
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Spectral Theory

o For a measure-preserving system (X, R9, ;1) consider the associated
group of unitary operators {Ug} ,cga 0N L2(Xp, p1):

Ugf(M) = f(—g+T), T€Xp gcR

o A vector a = (a1, ...,aq) € RY is an eigenvalue for the R%-action if
there exists an eigenfunction 0 # f € L2(Xp, u):

Ugf = e?™(&lf g e RY.

Here (g, ) is the scalar product in RY.
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Spectrum of systems from substitution Delone sets

@ A primitive FLC substitution Delone m-set has UCF = uniquely
ergodic system (Xp, R, ).
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Spectrum of systems from substitution Delone sets

@ A primitive FLC substitution Delone m-set has UCF = uniquely
ergodic system (Xp, R, ).

o Parallel theory for self-affine tilings; in fact, many of the proofs use
the link with tilings.
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Spectrum of systems from substitution Delone sets

@ A primitive FLC substitution Delone m-set has UCF = uniquely
ergodic system (Xp, R, ).

o Parallel theory for self-affine tilings; in fact, many of the proofs use
the link with tilings.

Theorem 5 (Lee-Solomyak 2008). Let A be a representable primitive
FLC substitution Delone m-set. The set of eigenvalues for the RY-action is
relatively dense in RY if and only if supp(A) is a Meyer set.

Corollary. A representable primitive FLC substitution Delone m-set is
“pure point diffractive” if and only if its support is Meyer.

This answered a question of Lagarias.
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About the proof of Theorem 5

@ The new part was

relatively dense eigenvalues = Meyer set

@ The proof proceeds via Pisot families. A set P of algebraic integers is
a Pisot family if for every A € P and every Galois conjugate )\ of ), if
N & P, then |\ < 1.

e If X is a Pisot number, then {\} is a Pisot family. If X is a complex
Pisot number, then {\, A} is a Pisot family. Let ||x|| := dist(x, Z).

Theorem (Kornei 1987, Mauduit 1989) Let A1, ..., )\, be distinct
algebraic numbers |\;j| > 1, i <r, and let P1,..., P, be nonzero
polynomials with complex coefficients. If >"_; Pi(n)A! € R for all n and

Jim |3 Pt

=0 = {A1,...,Ar} isa Pisot family
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About the proof of Theorem 5 (cont.)

The link from eigenvalues to number theory proceeds via the following
(restated in different terms here):

Theorem (Solomyak 1997) Let A = (A;)i<m be a representable primitive
FLC substitution Delone m-set. Let =(\) = J";(Ai — N\;) be the set of
“inter-atomic” vectors. If « € R? is an eigenvalue for (Xp,R9, 1), then

lim [[(Q"x,a)|| =0 forall x € =(N).

n—oo
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Partial converse

Theorem (Lee-Solomyak 2012) Let A = (A;)i<m be a representable
primitive FLC substitution Delone m-set. Suppose that the expansion map

Q has irreducible over C characteristic polynomial. Then the following are
equivalent:

(i) The spectrum of Q is a Pisot family;

(ii) the set of eigenvalues of (Xp,RY, 11) is relatively dense in RY;
(i) (Xa,RY, 1) is not weakly mixing (i.e. has a non-zero eigenvalue);
(iv) supp(A) is a Meyer set.
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