Delone sets and tilings School on Tiling Dynamical Systems, CIRM, Luminy

Boris Solomyak

Bar-Ilan University, Israel

November 20-24, 2017

- Classes of Delone sets: finitely generated, finite type, Meyer
- Inflation symmetries
- Substitution Delone sets and tilings
- Associated dynamical systems and their spectral properties (if time permits)

Bibliography

- J. C. Lagarias, Geometric models for quasicrystals I. Delone sets of finite type, *Discrete and Computational Geometry* **21** (1999), 161–191.
- 2. J. C. Lagarias and Y. Wang, Substitution Delone sets, *Discrete and Computational Geometry* **29** (2003), 175–209.
- J. C. Lagarias, Mathematical quasicrystals and the problem of diffraction, in "Directions in Mathematical Quasicrystals" (ed. M. Baake and R. V. Moody), CRM Monograph Series, Vol. 13, AMS, Providence, RI, 2000, 61–93,
- 4. W. Thurston, "Groups, Tilings, and Finite State Automata," AMS lecture notes, 1989.

イロッ イボッ イヨッ イヨッ 二日

Delone sets

Definition. A set $X \subset \mathbb{R}^d$ is *Delone* if it is

(a) Uniformly discrete: $\exists r > 0$ such that $\sharp(B(y, r) \cap X) \le 1 \forall y \in \mathbb{R}^d$, and

(b) Relatively dense: $\exists R > 0$ such that $B(y, R) \cap X \neq \emptyset$ for all $y \in \mathbb{R}^d$.

Definition. A set $X \subset \mathbb{R}^d$ is *Delone* if it is

(a) Uniformly discrete: $\exists r > 0$ such that $\sharp(B(y, r) \cap X) \leq 1 \forall y \in \mathbb{R}^d$, and (b) Relatively dense: $\exists R > 0$ such that $B(y, R) \cap X \neq \emptyset$ for all $y \in \mathbb{R}^d$.

Definition. A Delone set X in \mathbb{R}^d is

• finitely generated if [X] (equivalently [X - X]) is finitely generated.

$$[X] = \Big\{\sum_{i=1}^k n_i x_i : n_i \in \mathbb{Z}, x_i \in X, k \in \mathbb{N}\Big\}.$$

• of finite type if X - X is a discrete closed set, that is, $(X - X) \cap B(0, N)$ is finite for all N > 0.

Properties of Delone sets

Boris Solomyak (Bar-Ilan University, Israel)

Delone sets and tilings

November 20-24, 2017 5 / 43

3

- 4 回 ト - 4 回 ト

Properties of Delone sets

3

- 4 回 ト - 4 回 ト

Address map

Definition. Let X be a finitely generated Delone set in \mathbb{R}^d . Note that [X] is a free Abelian group, hence it has a *basis* (set of free generators): $[X] = \mathbb{Z}[v_1, \ldots, v_s]$ for some $s \ge d$. Then

$$\phi\left(\sum_{i=1}^{s}n_{i}v_{i}\right)=(n_{1},\ldots,n_{s}).$$

is the address map. It depends on the choice of basis; defined up to left-multiplication by an element of $GL(s, \mathbb{Z})$.

イロッ イボッ イヨッ イヨッ 二日

Address map

Definition. Let X be a finitely generated Delone set in \mathbb{R}^d . Note that [X] is a free Abelian group, hence it has a *basis* (set of free generators): $[X] = \mathbb{Z}[v_1, \ldots, v_s]$ for some $s \ge d$. Then

$$\phi\left(\sum_{i=1}^{s}n_{i}v_{i}\right)=(n_{1},\ldots,n_{s}).$$

is the address map. It depends on the choice of basis; defined up to left-multiplication by an element of $GL(s, \mathbb{Z})$.

- s = d iff [X] is a lattice in \mathbb{R}^d
- the address map describes X using s "internal dimensions"

Characterization of finite type

Theorem 1 (Lagarias 1999) Let $X \subset \mathbb{R}^d$ be a Delone set. Then X is of finite type if and only if X is finitely generated and any address map is globally Lipschitz on X: there exists C > 0 such that

$$\|\phi(x) - \phi(x')\| \le C \|x - x'\|$$
 for all $x, x' \in X$.

Characterization of finite type

Theorem 1 (Lagarias 1999) Let $X \subset \mathbb{R}^d$ be a Delone set. Then X is of finite type if and only if X is finitely generated and any address map is globally Lipschitz on X: there exists C > 0 such that

$$\|\phi(x) - \phi(x')\| \le C \|x - x'\|$$
 for all $x, x' \in X$.

Proof.

Finite type \iff Address map is Lipschitz on X

If $||x - x'|| \leq N$, then

$$\|\phi(x-x')\| = \|\phi(x) - \phi(x')\| \le CN.$$

The map ϕ is 1-to-1 and into \mathbb{Z}^s , hence $(X - X) \cap B(0, N)$ is finite.

イロト イポト イヨト イヨト 二日

Characterization of finite type (cont.)

Note: the address map is usually NOT continuous on [X], which is generically dense in \mathbb{R}^d (unless [X] is a lattice).

Characterization of finite type (cont.)

Note: the address map is usually NOT continuous on [X], which is generically dense in \mathbb{R}^d (unless [X] is a lattice).

Finite type \implies Fin. gen. & the address map is Lipschitz on X

Lemma 1. Let X be a Delone set with parameters (R, r). Then there exist $k, C_1 > 0$ such that for any two points $x, x' \in X$ there is a chain $x = x_0, x_1, \ldots, x_{m-1}, x_m = x'$ in X, with

(a)
$$||x_i - x_{i-1}|| \le kR$$
 for all *i*;
(b) $m \le C_1 ||x - x'||$.

Easy: one can take, e.g., k = 4 and $C_1 = (2R)^{-1}$.

Characterization of finite type (cont.)

Now let $\phi: [X] \to \mathbb{Z}^s$ be an address map, and define

$$C_2 := \max\{\|\phi(y)\|: y \in (X - X) \cap B(0, kR)\}.$$

Using \mathbb{Z} -linearity of ϕ on [X] we have for all $x, x' \in X$, by the Lemma,

$$\begin{aligned} \|\phi(x) - \phi(x')\| &\leq \sum_{i=1}^{m} \|\phi(x_i) - \phi(x_{i-1})\| \\ &= \sum_{i=1}^{m} \|\phi(x_i - x_{i-1})\| \\ &\leq C_2 m \leq C_2 C_1 \|x - x'\|. \end{aligned}$$

Definition. A Delone set X in \mathbb{R}^d is *Meyer* if X - X is uniformly discrete (equivalently, Delone).

Theorem 2 (Meyer 1970, 1972; Lagarias 1999) For a Delone set X in \mathbb{R}^d the following are equivalent:

- (i) X is Meyer, that is, X X is Delone.
- (ii) there is a finite F such that $X X \subset X + F$ (this was the original definition of Y. Meyer).
- (iii) X is fin. generated and the address map $\phi : [X] \to \mathbb{Z}^s$ is almost linear:

 $\exists \text{ linear } L: \mathbb{R}^d \to \mathbb{R}^s, \ C_2 > 0: \quad \|\phi(x) - Lx\| \leq C_2 \ \text{ for all } x \in X.$

(iv) X is a subset of a non-degenerate cut-and-project set.

Definition. Let Λ be a full rank lattice in $\mathbb{R}^n = \mathbb{R}^d \times \mathbb{R}^m$. Let π^{\parallel} and π^{\perp} be the orthogonal projections onto \mathbb{R}^d and \mathbb{R}^m . A window Ω is a bounded open subset of \mathbb{R}^m . The *cut-and-project set* $X(\Lambda, \Omega)$ associated with the data (Λ, Ω) is

$$X(\Lambda,\Omega)=\pi^{\parallel}ig(\{w\in\Lambda:\ \pi^{\perp}(w)\in\Omega\}ig).$$

Sometimes we say that \mathbb{R}^d is the "physical space" and \mathbb{R}^m is the "internal space". The cut-and-project set is *non-degenerate* if $\pi^{\parallel} : \mathbb{R}^n \to \mathbb{R}^d$ is one-to-one. It is *irreducible* if $\pi^{\perp}(\Lambda)$ is dense in \mathbb{R}^m . Cut-and-project set (sometimes with different requirements for the window) are also called *model sets*.

Example of a cut-and-project set

Figure: "Fibonacci set". From the paper *"A short guide to pure point diffraction in cut-and-project sets"* by C. Richard and N. Strungaru, Journal of Physics A: Math. and Theor., Vol. 50, No. 15, 2017

Characterization of Meyer sets (about the proof)

- (i) \Rightarrow (ii), that is, $(X X \text{ Delone}) \Rightarrow (X X \subset X + F \text{ for } F \text{ finite})$ was proved by Lagarias (1996)
- (ii) \Rightarrow (iii), that is

 $X - X \subset X + F \Rightarrow$ the address map is almost linear.

It is clear that X is of finite type. Construct $L : \mathbb{R}^d \to \mathbb{R}^s$ as an "ideal address map": for each $y \in \mathbb{R}^d$ define

$$L(y) = \lim_{k o \infty} rac{\phi(x_k)}{2^k}, ext{ where } x_k \in X ext{ satisfies } \|x_k - 2^k y\| \leq R.$$

Need to prove that the limit exists and is unique (independent of x_k). Then show that it is linear and within a constant from ϕ on X.

Boris Solomyak (Bar-Ilan University, Israel)

イロト 不得下 イヨト イヨト

Characterization of Meyer sets (about the proof, cont.)

• (iii) \Rightarrow (i), that is, address map is almost linear implies X - X is uniformly discrete.

It is enough to show that there is a lower bound on the norm of

$$z\in (X-X)-(X-X),$$

whenever $z \neq 0$. Suppose $||z|| \leq R$. We have $||Lz - \phi(z)|| \leq 4C_2$, since ϕ is \mathbb{Z} -linear on [X], L is linear, and $||\phi(x) - Lx|| \leq C_2$, $x \in X$. Therefore,

$$\|\phi(z)\| \leq 4C_2 + \|L\|R.$$

Since ϕ is 1-to-1 on [X] and $\phi(z) \in \mathbb{Z}^s$, there are only finitely many possibilities for z.

イロン 不良 とくほう イヨン 二日

A (complex) number η is an algebraic integer if $p(\eta) = 0$ for some monic polynomial $p \in \mathbb{Z}[x]$, that is, $p(x) = x^n + \sum_{j=0}^{n-1} a_j x^j$, $a_j \in \mathbb{Z}$. The Galois conjugates of η are the other roots of the minimal polynomial for η .

Definition. Let η be a real algebraic integer greater than one.

- (a) η is a *Pisot number* or *Pisot-Vijayaraghavan (PV)*-number if all Galois conjugates satisfy $|\eta'| < 1$.
- (b) η is a Salem number if for all conjugates $|\eta'| \le 1$ and at least one satisfies $|\eta'| = 1$.
- (c) η is a *Perron number* if for all conjugates $|\eta'| < \eta$.
- (d) η is a *Lind number* if for all conjugates $|\eta'| \le \eta$ and at least one satisfies $|\eta'| = \eta$.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

A Delone set X has an *inflation symmetry* by a real $\eta > 1$ if $\eta X \subset X$.

Theorem 3 (Lagarias 1999 + "folklore") Let X be a Delone set in \mathbb{R}^d such that $\eta X \subseteq X$ for a real number $\eta > 1$.

- (i) If X is finitely generated, then X is an algebraic integer.
- (ii) If X is a Delone set of finite type, then η is a Perron number or a Lind number.
- (ii') If X is repetitive Delone set of finite type, then η is a Perron number.
- (iii) If X is a Meyer set, then η is a Pisot number or a Salem number.

- 3

A B F A B F

A Delone set X has an *inflation symmetry* by a real $\eta > 1$ if $\eta X \subset X$.

Theorem 3 (Lagarias 1999 + "folklore") Let X be a Delone set in \mathbb{R}^d such that $\eta X \subseteq X$ for a real number $\eta > 1$.

- (i) If X is finitely generated, then X is an algebraic integer.
- (ii) If X is a Delone set of finite type, then η is a Perron number or a Lind number.
- (ii') If X is repetitive Delone set of finite type, then η is a Perron number.
- (iii) If X is a Meyer set, then η is a Pisot number or a Salem number.

Definition. A Delone set X is *repetitive* if every X-cluster occurs relatively dense in \mathbb{R}^d .

Fix $\beta > 1$, with $\beta \notin \mathbb{N}$. Let $X_{\beta} = X_{\beta}^+ \bigcup (-X_{\beta}^+)$, where

$$X_{eta}^+ = \left\{ \sum_{j=0}^{N} a_j eta^j, \ a_j \in \{0, 1, \dots, \lfloor eta
floor\}, \ ext{greedy expansion}
ight\}$$

Then X_{β} is relatively dense in \mathbb{R} and $\beta X \subset X$.

X_β is Delone iff the orbit of 1 under T_β(x) = [βx] does not accumulate to 0.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

Fix $\beta > 1$, with $\beta \notin \mathbb{N}$. Let $X_{\beta} = X_{\beta}^+ \bigcup (-X_{\beta}^+)$, where

$$X^+_eta = \left\{ \sum_{j=0}^N a_j eta^j, \ a_j \in \{0, 1, \dots, \lfloor eta
floor\}, \ ext{greedy expansion}
ight\}$$

Then X_{β} is relatively dense in \mathbb{R} and $\beta X \subset X$.

- X_β is Delone iff the orbit of 1 under T_β(x) = [βx] does not accumulate to 0.
- Delone X_{β} is finitely generated iff β is an algebraic integer.

Fix $\beta > 1$, with $\beta \notin \mathbb{N}$. Let $X_{\beta} = X_{\beta}^+ \bigcup (-X_{\beta}^+)$, where

$$X^+_eta = \left\{ \sum_{j=0}^N a_j eta^j, \ a_j \in \{0, 1, \dots, \lfloor eta
floor\}, \ ext{greedy expansion}
ight\}$$

Then X_{β} is relatively dense in \mathbb{R} and $\beta X \subset X$.

- X_β is Delone iff the orbit of 1 under T_β(x) = [βx] does not accumulate to 0.
- Delone X_{β} is finitely generated iff β is an algebraic integer.
- Delone X_{β} is of finite type iff β is a Parry β -number, i.e., the orbit $\{T_{\beta}^{n}(1)\}_{n\geq 0}$ is finite.

Fix $\beta > 1$, with $\beta \notin \mathbb{N}$. Let $X_{\beta} = X_{\beta}^+ \bigcup (-X_{\beta}^+)$, where

$$X^+_{eta} = \left\{ \sum_{j=0}^{N} a_j eta^j, \ a_j \in \{0, 1, \dots, \lfloor eta
floor\}, \ ext{greedy expansion}
ight\}$$

Then X_{β} is relatively dense in \mathbb{R} and $\beta X \subset X$.

- X_β is Delone iff the orbit of 1 under T_β(x) = [βx] does not accumulate to 0.
- Delone X_{β} is finitely generated iff β is an algebraic integer.
- Delone X_{β} is of finite type iff β is a Parry β -number, i.e., the orbit $\{T_{\beta}^{n}(1)\}_{n\geq 0}$ is finite.
- If β is Pisot, then X_{β} is Meyer.

Let \mathcal{T} be a self-similar tiling in \mathbb{R}^d with inflation symmetry by $\eta > 1$ (definition will be given later.) Then the set of *control points* of the tiles is a Delone set with inflation symmetry by $\eta > 1$.

イロト 不得下 イヨト イヨト

Let \mathcal{T} be a self-similar tiling in \mathbb{R}^d with inflation symmetry by $\eta > 1$ (definition will be given later.) Then the set of *control points* of the tiles is a Delone set with inflation symmetry by $\eta > 1$.

 Consider a primitive substitution on a finite alphabet and make it into a tiling. On ℝ: interval tiles with lengths corresponding to the Perron-Frobenius eigenvector; the control points are the endpoints. Obtain a finite type Delone set X(T).

イロト イポト イヨト イヨト 二日

Let \mathcal{T} be a self-similar tiling in \mathbb{R}^d with inflation symmetry by $\eta > 1$ (definition will be given later.) Then the set of *control points* of the tiles is a Delone set with inflation symmetry by $\eta > 1$.

- Consider a primitive substitution on a finite alphabet and make it into a tiling. On ℝ: interval tiles with lengths corresponding to the Perron-Frobenius eigenvector; the control points are the endpoints. Obtain a finite type Delone set X(T).
- For every Perron number $\eta > 1$ there is a finite type Delone set $X = X(\mathcal{T}) \subset \mathbb{R}$, such that $\eta X \subset X$ [D. Lind (1984)].

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Let \mathcal{T} be a self-similar tiling in \mathbb{R}^d with inflation symmetry by $\eta > 1$ (definition will be given later.) Then the set of *control points* of the tiles is a Delone set with inflation symmetry by $\eta > 1$.

- Consider a primitive substitution on a finite alphabet and make it into a tiling. On ℝ: interval tiles with lengths corresponding to the Perron-Frobenius eigenvector; the control points are the endpoints. Obtain a finite type Delone set X(T).
- For every Perron number $\eta > 1$ there is a finite type Delone set $X = X(\mathcal{T}) \subset \mathbb{R}$, such that $\eta X \subset X$ [D. Lind (1984)].
- Such an X is Meyer if and only if η is Pisot.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Let \mathcal{T} be a self-similar tiling in \mathbb{R}^d with inflation symmetry by $\eta > 1$ (definition will be given later.) Then the set of *control points* of the tiles is a Delone set with inflation symmetry by $\eta > 1$.

- Consider a primitive substitution on a finite alphabet and make it into a tiling. On ℝ: interval tiles with lengths corresponding to the Perron-Frobenius eigenvector; the control points are the endpoints. Obtain a finite type Delone set X(T).
- For every Perron number $\eta > 1$ there is a finite type Delone set $X = X(\mathcal{T}) \subset \mathbb{R}$, such that $\eta X \subset X$ [D. Lind (1984)].
- Such an X is Meyer if and only if η is Pisot.
- For every Salem number η there exists X Meyer such that ηX ⊂ X (not from substitution) [Y. Meyer (1972)].

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Lemma 2. Let X be a finitely generated Delone set in \mathbb{R}^d such that $QX \subset X$ for some expanding linear map $Q : \mathbb{R}^d \to \mathbb{R}^d$. Then all eigenvalues of Q are algebraic integers. <u>Proof</u>.

• $[X] = \mathbb{Z}[v_1, \dots, v_s]$, address map $\phi : [X] \to \mathbb{Z}^s$.

Lemma 2. Let X be a finitely generated Delone set in \mathbb{R}^d such that $QX \subset X$ for some expanding linear map $Q : \mathbb{R}^d \to \mathbb{R}^d$. Then all eigenvalues of Q are algebraic integers. <u>Proof.</u>

- $[X] = \mathbb{Z}[v_1, \dots, v_s]$, address map $\phi : [X] \to \mathbb{Z}^s$.
- $Q([X]) \subset [X] \Rightarrow Qv_j = \sum_{k=1}^s a_{kj}v_k$ for some $a_{kj} \in \mathbb{Z}$.

(本語) (本語) (本語) (語)

Lemma 2. Let X be a finitely generated Delone set in \mathbb{R}^d such that $QX \subset X$ for some expanding linear map $Q : \mathbb{R}^d \to \mathbb{R}^d$. Then all eigenvalues of Q are algebraic integers. <u>Proof.</u>

- $[X] = \mathbb{Z}[v_1, \dots, v_s]$, address map $\phi : [X] \to \mathbb{Z}^s$.
- $Q([X]) \subset [X] \Rightarrow Qv_j = \sum_{k=1}^s a_{kj}v_k$ for some $a_{kj} \in \mathbb{Z}$.
- $V := [v_1, \ldots, v_s]$, $d \times s$ matrix.
- $M := (a_{kj})_{k,j=1}^{s}$ is an *integer* square matrix such that QV = VM.

Lemma 2. Let X be a finitely generated Delone set in \mathbb{R}^d such that $QX \subset X$ for some expanding linear map $Q : \mathbb{R}^d \to \mathbb{R}^d$. Then all eigenvalues of Q are algebraic integers. <u>Proof.</u>

- $[X] = \mathbb{Z}[v_1, \dots, v_s]$, address map $\phi : [X] \to \mathbb{Z}^s$.
- $Q([X]) \subset [X] \Rightarrow Qv_j = \sum_{k=1}^s a_{kj}v_k$ for some $a_{kj} \in \mathbb{Z}$.
- $V := [v_1, \ldots, v_s]$, $d \times s$ matrix.
- $M := (a_{kj})_{k,j=1}^{s}$ is an *integer* square matrix such that QV = VM.
- $\{v_j\}_{j\leq s}$ spans \mathbb{R}^d , hence $\operatorname{rank}(V) = d$.

Lemma 2. Let X be a finitely generated Delone set in \mathbb{R}^d such that $QX \subset X$ for some expanding linear map $Q : \mathbb{R}^d \to \mathbb{R}^d$. Then all eigenvalues of Q are algebraic integers. <u>Proof.</u>

- $[X] = \mathbb{Z}[v_1, \dots, v_s]$, address map $\phi : [X] \to \mathbb{Z}^s$.
- $Q([X]) \subset [X] \Rightarrow Qv_j = \sum_{k=1}^s a_{kj}v_k$ for some $a_{kj} \in \mathbb{Z}$.
- $V := [v_1, \ldots, v_s]$, $d \times s$ matrix.
- $M := (a_{kj})_{k,j=1}^{s}$ is an *integer* square matrix such that QV = VM.
- $\{v_j\}_{j\leq s}$ spans \mathbb{R}^d , hence $\operatorname{rank}(V) = d$.
- Let **e** be a left eigenvector of Q for an eigenvalue λ . Then $\lambda \mathbf{e}V = \mathbf{e}QV = \mathbf{e}VM \Rightarrow \mathbf{e}V$ is a left eigenvector for M.
- $\mathbf{e}V \neq \mathbf{0}$, because the rows of V are linearly independent.
- $M \in \mathbb{Z}^{s \times s}$, so all its eigenvalues are algebraic integers.

- 3

イロト 不得下 イヨト イヨト
<u>*Proof.*</u> Assume $0 \in X$, $\eta X \subset X$ for $\eta > 1$, and $X \subset \mathbb{R}^d$ is a Delone set of finite type. Continue the argument in the Lemma.

- Let γ be a Galois conjugate of η . Since η is an eigenvalue of M, so is γ . We want to prove $|\gamma| \leq \eta$.
- Let $\mathbf{e}_{\gamma} \in \mathbb{R}^{s}$ be an eigenvector.

<u>*Proof.*</u> Assume $0 \in X$, $\eta X \subset X$ for $\eta > 1$, and $X \subset \mathbb{R}^d$ is a Delone set of finite type. Continue the argument in the Lemma.

- Let γ be a Galois conjugate of η . Since η is an eigenvalue of M, so is γ . We want to prove $|\gamma| \leq \eta$.
- Let $\mathbf{e}_{\gamma} \in \mathbb{R}^{s}$ be an eigenvector.
- φ(X) spans ℝ^s, hence there exists x ∈ X such that φ(x) has a non-zero e_γ-coefficient.

<u>*Proof.*</u> Assume $0 \in X$, $\eta X \subset X$ for $\eta > 1$, and $X \subset \mathbb{R}^d$ is a Delone set of finite type. Continue the argument in the Lemma.

- Let γ be a Galois conjugate of η . Since η is an eigenvalue of M, so is γ . We want to prove $|\gamma| \leq \eta$.
- Let $\mathbf{e}_{\gamma} \in \mathbb{R}^{s}$ be an eigenvector.
- φ(X) spans ℝ^s, hence there exists x ∈ X such that φ(x) has a non-zero e_γ-coefficient.
- By definition, $\phi(x) \in \mathbb{Z}^s$ is unique such that $x = V\phi(x)$, $x \in X$.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

<u>*Proof.*</u> Assume $0 \in X$, $\eta X \subset X$ for $\eta > 1$, and $X \subset \mathbb{R}^d$ is a Delone set of finite type. Continue the argument in the Lemma.

- Let γ be a Galois conjugate of η . Since η is an eigenvalue of M, so is γ . We want to prove $|\gamma| \leq \eta$.
- Let $\mathbf{e}_{\gamma} \in \mathbb{R}^{s}$ be an eigenvector.
- φ(X) spans ℝ^s, hence there exists x ∈ X such that φ(x) has a non-zero e_γ-coefficient.
- By definition, $\phi(x) \in \mathbb{Z}^s$ is unique such that $x = V\phi(x)$, $x \in X$.
- $\eta V = QV = VM \Rightarrow \eta x = \eta V \phi(x) = VM \phi(x) \Rightarrow \phi(\eta x) = M \phi(x).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

<u>*Proof.*</u> Assume $0 \in X$, $\eta X \subset X$ for $\eta > 1$, and $X \subset \mathbb{R}^d$ is a Delone set of finite type. Continue the argument in the Lemma.

- Let γ be a Galois conjugate of η . Since η is an eigenvalue of M, so is γ . We want to prove $|\gamma| \leq \eta$.
- Let $\mathbf{e}_{\gamma} \in \mathbb{R}^{s}$ be an eigenvector.
- φ(X) spans ℝ^s, hence there exists x ∈ X such that φ(x) has a non-zero e_γ-coefficient.
- By definition, $\phi(x) \in \mathbb{Z}^s$ is unique such that $x = V\phi(x)$, $x \in X$.
- $\eta V = QV = VM \Rightarrow \eta x = \eta V \phi(x) = VM \phi(x) \Rightarrow \phi(\eta x) = M \phi(x).$

•
$$\phi(\eta^n x) = M^n \phi(x).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

<u>*Proof.*</u> Assume $0 \in X$, $\eta X \subset X$ for $\eta > 1$, and $X \subset \mathbb{R}^d$ is a Delone set of finite type. Continue the argument in the Lemma.

- Let γ be a Galois conjugate of η . Since η is an eigenvalue of M, so is γ . We want to prove $|\gamma| \leq \eta$.
- Let $\mathbf{e}_{\gamma} \in \mathbb{R}^{s}$ be an eigenvector.
- φ(X) spans ℝ^s, hence there exists x ∈ X such that φ(x) has a non-zero e_γ-coefficient.
- By definition, $\phi(x) \in \mathbb{Z}^s$ is unique such that $x = V\phi(x)$, $x \in X$.
- $\eta V = QV = VM \Rightarrow \eta x = \eta V \phi(x) = VM \phi(x) \Rightarrow \phi(\eta x) = M \phi(x).$
- $\phi(\eta^n x) = M^n \phi(x).$
- $||M^n \phi(x)|| = ||\phi(\eta^n x)|| = ||\phi(\eta^n x) \phi(0)|| \le C ||\eta^n x|| = C \eta^n ||x||$

by Theorem 1. It follows that $|\gamma| \leq \eta$.

Example revisited: the set of β -integers X_{β}

- Fix β > 1 algebraic integer, such that {Tⁿ_β1}_{n≥0} does not accumulate to zero. Then X_β ⊂ ℝ is Delone and [X_β] = ℤ[β].
- Free generators can be chosen v_j = β^{j-1}, j ≤ s, where s is the degree of β. Let c₀ + c₁x + ··· + c_{s-1}x^{s-1} + x^s be the minimal (with integer coefficients) polynomial for β.
- We have $Qx = \beta x$ on \mathbb{R} , and $QX_{\beta} \subset X_{\beta}$. Then QV = VM, where $V = [v_1, \ldots, v_s]$ (a $1 \times s$ matrix), and

$$M = \begin{pmatrix} 0 & \dots & 0 & -c_0 \\ 1 & 0 & \dots & 0 & -c_1 \\ 0 & 1 & \dots & 0 & -c_2 \\ \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & 0 & -c_{s-2} \\ 0 & 0 & \dots & 1 & -c_{s-1} \end{pmatrix}$$

Boris Solomyak (Bar-Ilan University, Israel)

イロト イポト イヨト イヨト 二日

The set of β -integers (cont.)

• Let ϕ be the associated address map, $\phi : [X_{\beta}] = \mathbb{Z}[\beta] \to \mathbb{R}^{s}$. We have

$$\phi(\beta^n) = M^n \phi(1) = M^n \begin{pmatrix} 1\\0\\\vdots\\0 \end{pmatrix}$$

• Now suppose that β is Pisot. Then we have

(1)
$$\phi(\beta^n) = \beta^n e_{\beta} + O(\varrho^n),$$

where e_{β} is the eigenvector of M corresponding to β and $\varrho \in (0, 1)$ is the maximal absolute value of the Galois conjugates of β .

イロト イポト イモト イモト

•

The set of β -integers (cont.)

- Define $L : \mathbb{R} \to \mathbb{R}^s$ by $L(x) = xe_\beta$, a linear map.
- We want to show that $\|\phi(x) Lx\| \leq C$ on X_{β} , whence X_{β} is a Meyer set.
- In view of (1) we have for $x = \sum_{j=0}^{N} a_j \beta^j \in X_{\beta}^+$:

$$\|\phi(x) - Lx\| = \left\| \phi\left(\sum_{j=0}^{N} a_{j}\beta^{j}\right) - L\left(\sum_{j=0}^{N} a_{j}\beta^{j}\right) \right\|$$
$$= O\left(\max_{j} |a_{j}| \cdot \sum_{j=0}^{N} \varrho^{j}\right) = O(1).$$

イロト イポト イヨト イヨト 二日

The set of β -integers (cont.)

- Define $L : \mathbb{R} \to \mathbb{R}^s$ by $L(x) = xe_\beta$, a linear map.
- We want to show that $\|\phi(x) Lx\| \leq C$ on X_{β} , whence X_{β} is a Meyer set.
- In view of (1) we have for $x = \sum_{j=0}^{N} a_j \beta^j \in X_{\beta}^+$:

$$\|\phi(x) - Lx\| = \left\| \phi\left(\sum_{j=0}^{N} a_{j}\beta^{j}\right) - L\left(\sum_{j=0}^{N} a_{j}\beta^{j}\right) \right\|$$
$$= O\left(\max_{j} |a_{j}| \cdot \sum_{j=0}^{N} \varrho^{j}\right) = O(1).$$

 The same proof works e.g. for the set of endpoints of a self-similar tiling on ℝ with a Pisot inflation factor.

イロッ イボッ イヨッ イヨッ 三日

Consider Delone sets where each point has a "color" or "type" from a finite list. Formally:

Definition. An *m*-multiset in \mathbb{R}^d is

•
$$\overline{\Lambda} = \Lambda_1 \times \cdots \times \Lambda_m \subset \mathbb{R}^d \times \cdots \times \mathbb{R}^d$$
 (*m* copies).

• We also write
$$\overline{\Lambda} = (\Lambda_1, \dots, \Lambda_m) = (\Lambda_i)_{i \leq m}$$
.

• $\overline{\Lambda} = (\Lambda_i)_{i \leq m}$ is a *Delone m-set* in \mathbb{R}^d if each Λ_i is Delone and

$$\operatorname{supp}(\overline{\Lambda}) := \bigcup_{i=1}^m \Lambda_i \subset \mathbb{R}^d$$
 is Delone.

Boris Solomyak (Bar-Ilan University, Israel)

イロト 不得下 イヨト イヨト 二日

Definition. Let $Q : \mathbb{R}^d \to \mathbb{R}^d$ be a linear expanding map (i.e. all eigenvalues are greater than one in absolute value).

• $\overline{\Lambda} = (\Lambda_i)_{i \leq m}$ is a substitution Delone m-set with expanding map Q if there are finite sets \mathcal{D}_{ij} for $i, j \leq m$ (possibly empty) such that

(2)
$$\Lambda_i = \bigoplus_{j=1}^m (Q\Lambda_j + \mathcal{D}_{ij}), \quad i \leq m.$$

• The substitution matrix S is $S_{ij} = \sharp(\mathcal{D}_{ij})$.

Lemma 3. Suppose that $\overline{\Lambda}$ is a substitution Delone m-set with expansion map Q. If $\operatorname{supp}(\overline{\Lambda})$ is finitely generated, then all eigenvalues of Q are algebraic integers.

Proof sketch. Consider the set of "inter-atomic vectors"

$$\Xi(\overline{\Lambda}) := \bigcup_{i=1}^m (\Lambda_i - \Lambda_i).$$

We have $[\Xi(\overline{\Lambda})]$ finitely generated, and $Q(\Xi(\overline{\Lambda})) = \Xi(\overline{\Lambda})$. Then the proof proceeds as in Lemma 2 above.

Theorem 4 (Lagarias and Wang 2003). If $\overline{\Lambda}$ is a primitive substitution Delone m-set with expansion map Q, then the Perron-Frobenius (PF) eigenvalue of the substitution matrix S equals $|\det(Q)|$.

Theorem 4 (Lagarias and Wang 2003). If $\overline{\Lambda}$ is a primitive substitution Delone m-set with expansion map Q, then the Perron-Frobenius (PF) eigenvalue of the substitution matrix S equals $|\det(Q)|$.

Denote $\lambda(S) = PF$ eigenvalue of S. In fact,

$$\begin{split} \overline{\Lambda} & \text{ is relatively dense } & \Rightarrow & \lambda(\mathsf{S}) \geq |\det(Q)| \\ \overline{\Lambda} & \text{ is uniformly discrete } & \Rightarrow & \lambda(\mathsf{S}) \leq |\det(Q)| \\ & \mathrm{supp}(\overline{\Lambda}) & \text{ is Delone } & \Rightarrow & \lambda(\mathsf{S}) = |\det(Q)|. \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Adjoint system of equations

Given

$$\Lambda_i = \biguplus_{j=1}^m (Q\Lambda_j + \mathcal{D}_{ij}), \quad i \leq m,$$

set up the adjoint system of equations

(3)
$$QA_j = \bigcup_{i=1}^m (\mathcal{D}_{ij} + A_i), \quad j \leq m.$$

3

18 A.

- 4 A b

Adjoint system of equations

Given

$$\Lambda_i = \biguplus_{j=1}^m (Q\Lambda_j + \mathcal{D}_{ij}), \quad i \leq m,$$

set up the *adjoint system of equations*

(3)
$$QA_j = \bigcup_{i=1}^m (\mathcal{D}_{ij} + A_i), \quad j \leq m.$$

Theory of (graph-directed) iterated function systems: (3) has a unique solution (A_1, \ldots, A_m) where $\emptyset \neq A_i \subset \mathbb{R}^d$ are compact.

イロト イポト イモト イモト

Adjoint system of equations

Given

$$\Lambda_i = \biguplus_{j=1}^m (Q\Lambda_j + \mathcal{D}_{ij}), \quad i \leq m,$$

set up the *adjoint system of equations*

(3)
$$QA_j = \bigcup_{i=1}^m (\mathcal{D}_{ij} + A_i), \quad j \leq m.$$

Theory of (graph-directed) iterated function systems: (3) has a unique solution (A_1, \ldots, A_m) where $\emptyset \neq A_i \subset \mathbb{R}^d$ are compact.

Theorem 4 (Lagarias and Wang 2003). If $(\Lambda_i)_{i \le m}$ is a primitive substitution Delone m-set, then all $A_i = clos(A_i^{\circ})$ (closure of the interior), and interiors in the RHS of (3) are disjoint.

Boris Solomyak (Bar-Ilan University, Israel)

イロッ イボッ イヨッ イヨッ 二日

Substitution tilings

Definition.

- $\mathcal{A} = \{T_1, \ldots, T_m\}$ is a set of *tiles* in \mathbb{R}^d ; these will be our *prototiles*.
- Each tile is the closure of its interior and has a "type" (or "color").
- $\mathcal{P}_{\mathcal{A}}$ is the set of patches made up of *translated* prototiles.
- $\omega : \mathcal{A} \to \mathcal{P}_{\mathcal{A}}$ is a *tile-substitution* with expanding map Q if there exist finite sets $\mathcal{D}_{ij} \subset \mathbb{R}^d$ for $i, j \leq m$, such that

(4)
$$\omega(T_j) = \bigcup_{i=1}^m (T_i + \mathcal{D}_{ij}),$$

and $\operatorname{supp}(\omega(T_j)) = QA_j$ for all $j \leq m$.

- 4 周 ト - 4 日 ト - 1 日

Self-affine and self-similar tilings

- The substitution (4) is extended by $\omega(x + T_j) = Qx + \omega(T_j)$, and to patches and tilings by $\omega(P) = \bigcup \{ \omega(T) : T \in P \}.$
- ω can be iterated, producing larger and larger patches $\omega^k(T_j)$.
- Substitution matrix: S_{ij} := #(D_{ij}). The substitution ω is primitive if S is primitive.
- If $\omega(\mathcal{T}) = \mathcal{T}$ for a primitive ω , we say that \mathcal{T} is *self-affine*. Usually FLC is also assumed.
- If $Q = \eta \mathcal{O}$ for some $\eta > 1$ and an orthogonal linear transformation \mathcal{O} , then \mathcal{T} is *self-similar*.
- For a self-similar tiling in ℝ² ≅ C consider the complex expansion factor λ ∈ C, |λ| > 1, by identifying Q with z → λz.

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = ののの

From a substitution tiling to a substitution Delone set

If
$$\omega(\mathcal{T}) = \mathcal{T}$$
, then $\mathcal{T} = \bigcup_{j=1}^{m} (T_j + \Lambda_j)$ for some Delone Λ_j , hence

$$\begin{split}
& \bigoplus_{i=1}^{m} (\mathcal{T}_i + \Lambda_i) = \mathcal{T} = \omega(\mathcal{T}) &= \bigoplus_{j=1}^{m} (\omega(T_j) + Q\Lambda_j) \\
& = \bigoplus_{j=1}^{m} (\bigoplus_{i=1}^{m} (T_i + \mathcal{D}_{ij}) + Q\Lambda_j) \\
& = \bigoplus_{i=1}^{m} (T_i + \bigoplus_{j=1}^{m} (Q\Lambda_j + \mathcal{D}_{ij})). \end{split}$$

Thus $\Lambda_i = \biguplus_{j=1}^m (Q\Lambda_j + D_{ij}), \quad i \leq m$. In general, Λ_i need not be disjoint, but can be made so by translating T_j 's. Then $(\Lambda_i)_{i \leq m}$ is a substitution Delone *m*-set.

Boris Solomyak (Bar-Ilan University, Israel)

Let $\overline{\Lambda} = (\Lambda_i)_{i \leq m}$ be a substitution Delone set with expansion Q. Consider the solution of the adjoint equation (A_1, \ldots, A_m) and define the prototiles to be $T_i = (A_i, i)$.

Question. Is $\biguplus_{i=1}^{m}(T_j + \Lambda_j)$ necessarily a tiling of \mathbb{R}^d ?

Let $\overline{\Lambda} = (\Lambda_i)_{i \leq m}$ be a substitution Delone set with expansion Q. Consider the solution of the adjoint equation (A_1, \ldots, A_m) and define the prototiles to be $T_i = (A_i, i)$.

Question. Is $\biguplus_{i=1}^{m}(T_j + \Lambda_j)$ necessarily a tiling of \mathbb{R}^d ?

[Lagarias and Wang (2003)] showed that, in general, "no". However, there are verifiably sufficient conditions for "yes". Then we say that $\overline{\Lambda}$ is *representable*.

This was extended in [Lee, Moody and Solomyak (2003)].

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Definition. For a substitution Delone *m*-set $\overline{\Lambda} = (\Lambda_i)_{i \leq m}$ satisfying (2), define a matrix $\Phi = (\Phi_{ij})_{i,j=1}^m$ whose entries are finite (possibly empty) families of linear affine transformations on \mathbb{R}^d given by

$$\Phi_{ij} = \{f: x \mapsto Qx + a: a \in \mathcal{D}_{ij}\}.$$

We define $\Phi_{ij}(\mathcal{X}) := \bigcup_{f \in \Phi_{ij}} f(\mathcal{X})$ for a set $\mathcal{X} \subset \mathbb{R}^d$. For an *m*-set $\overline{\mathcal{X}} = (\mathcal{X}_i)_{i \leq m}$ let

$$\Phi(\overline{\mathcal{X}}) = \left(\bigcup_{j=1}^{m} \Phi_{ij}(\mathcal{X}_j)\right)_{i \leq m}.$$

Thus $\Phi(\overline{\Lambda}) = \overline{\Lambda}$ by definition. We say that Φ is an *m*-set substitution.

Let $\overline{\Lambda}$ be a substitution Delone *m*-set and Φ the associated *m*-set substitution.

- $\overline{\Lambda}$ -cluster $\overline{P} = (P_i)_{i \le m}$ is *legal* if it is a translate of a subcluster of $\Phi^k(\{x_j\})$ for some $x_j \in \Lambda_j$ and $k \in \mathbb{N}$. (Here $\{x_j\}$ is an *m*-set which is empty in all coordinates other than *j*, for which it is a singleton.)
- $\overline{\Lambda}$ is representable if and only if every $\overline{\Lambda}$ -cluster is legal [LMS (2003)]
- $\overline{\Lambda}$ -cluster \overline{P} is generating if $\overline{P} \subset \Phi(\overline{P})$ and $\overline{\Lambda} = \lim_{n \to \infty} \Phi^n(\overline{P})$.
- $\overline{\Lambda}$ is representable if there exists a legal generating cluster.

Application: pseudo-self-affine tilings

Definition. A repetitive FLC tiling \mathcal{T} of \mathbb{R}^d is *pseudo-self-affine with expansion* Q if \mathcal{T} is *locally derivable* from $Q\mathcal{T}$ (see N. P. Frank's Lecture Notes for precise definition).

- E. A. Robinson, Jr. conjectured that every pseudo-self-affine tiling is mutually locally derivable with a self-affine tiling. This was settled for d = 2 in [Frank and Solomyak (2001)] and in higher dimensions in [Solomyak (2005)]
- Caveat: in both papers we had to pass from Q to a higher power Q^k , that is, a pseudo-self-affine tiling with expansion Q was proved to be MLD with a self-affine tiling with expansion Q^k for some $k \in \mathbb{N}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Application: pseudo-self-affine tilings

Definition. A repetitive FLC tiling \mathcal{T} of \mathbb{R}^d is *pseudo-self-affine with expansion* Q if \mathcal{T} is *locally derivable* from $Q\mathcal{T}$ (see N. P. Frank's Lecture Notes for precise definition).

- E. A. Robinson, Jr. conjectured that every pseudo-self-affine tiling is mutually locally derivable with a self-affine tiling. This was settled for d = 2 in [Frank and Solomyak (2001)] and in higher dimensions in [Solomyak (2005)]
- Caveat: in both papers we had to pass from Q to a higher power Q^k, that is, a pseudo-self-affine tiling with expansion Q was proved to be MLD with a self-affine tiling with expansion Q^k for some k ∈ N.
- It is simpler to construct a substitution Delone *m*-set and then use the adjoint system of equations to obtain the self-affine tiling.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Application: pseudo-self-affine tilings

Definition. A repetitive FLC tiling \mathcal{T} of \mathbb{R}^d is *pseudo-self-affine with expansion* Q if \mathcal{T} is *locally derivable* from $Q\mathcal{T}$ (see N. P. Frank's Lecture Notes for precise definition).

- E. A. Robinson, Jr. conjectured that every pseudo-self-affine tiling is mutually locally derivable with a self-affine tiling. This was settled for d = 2 in [Frank and Solomyak (2001)] and in higher dimensions in [Solomyak (2005)]
- Caveat: in both papers we had to pass from Q to a higher power Q^k, that is, a pseudo-self-affine tiling with expansion Q was proved to be MLD with a self-affine tiling with expansion Q^k for some k ∈ N.
- It is simpler to construct a substitution Delone *m*-set and then use the adjoint system of equations to obtain the self-affine tiling.
- Caveat: it is harder to control topological properties.

イロト 不得 トイヨト イヨト 二日

Question (Thurston): which expansion maps *Q* may appear as expansions of self-similar (self-affine) tilings?

- 4 同 6 4 日 6 4 日 6

Question (Thurston): which expansion maps *Q* may appear as expansions of self-similar (self-affine) tilings?

Theorem (Thurston). If \mathcal{T} is a self-similar tiling of $\mathbb{R}^2 \cong \mathbb{C}$, then its expansion constant $\lambda \in \mathbb{C}$ is complex Perron.

- Thurston also conjectured that this is sufficient. Proved (?) by R. Kenyon (1996).
- (My personal view: more likely to work for some power λ^k .)

Question (Thurston): which expansion maps *Q* may appear as expansions of self-similar (self-affine) tilings?

Theorem (Thurston). If \mathcal{T} is a self-similar tiling of $\mathbb{R}^2 \cong \mathbb{C}$, then its expansion constant $\lambda \in \mathbb{C}$ is complex Perron.

- Thurston also conjectured that this is sufficient. Proved (?) by R. Kenyon (1996).
- (My personal view: more likely to work for some power λ^k .)
- What about self-affine? Higher dimensions?

イロン 不良 とくほう イヨン 二日

Theorem (Kenyon 1990, Kenyon and Solomyak 2010). Let Q be a diagonalizable (over \mathbb{C}) expansion map on \mathbb{R}^d , and let \mathcal{T} be a self-affine tiling of \mathbb{R}^d with expansion Q. Then every eigenvalue of Q is an algebraic integer, and if λ is an eigenvalue of Q and γ is a Galois conjugate of λ , then either $|\gamma| < |\lambda|$, or γ is also an eigenvalue of Q of greater or equal multiplicity.

イロト イポト イヨト イヨト 二日

Theorem (Kenyon 1990, Kenyon and Solomyak 2010). Let Q be a diagonalizable (over \mathbb{C}) expansion map on \mathbb{R}^d , and let \mathcal{T} be a self-affine tiling of \mathbb{R}^d with expansion Q. Then every eigenvalue of Q is an algebraic integer, and if λ is an eigenvalue of Q and γ is a Galois conjugate of λ , then either $|\gamma| < |\lambda|$, or γ is also an eigenvalue of Q of greater or equal multiplicity.

• Recently extended (by a different method) to the general, non-diagonalizable case, by J. Kwapisz (2016).

イロン 不良 とくほう イヨン 二日

Theorem (Kenyon 1990, Kenyon and Solomyak 2010). Let Q be a diagonalizable (over \mathbb{C}) expansion map on \mathbb{R}^d , and let \mathcal{T} be a self-affine tiling of \mathbb{R}^d with expansion Q. Then every eigenvalue of Q is an algebraic integer, and if λ is an eigenvalue of Q and γ is a Galois conjugate of λ , then either $|\gamma| < |\lambda|$, or γ is also an eigenvalue of Q of greater or equal multiplicity.

- Recently extended (by a different method) to the general, non-diagonalizable case, by J. Kwapisz (2016).
- It is conjectured that the "generalized Perron condition" is also sufficient, at least in the weak sense: given a generalized Perron Q, there exists a self-affine tiling with expansion Q^k for some k.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Theorem (Kenyon 1990, Kenyon and Solomyak 2010). Let Q be a diagonalizable (over \mathbb{C}) expansion map on \mathbb{R}^d , and let \mathcal{T} be a self-affine tiling of \mathbb{R}^d with expansion Q. Then every eigenvalue of Q is an algebraic integer, and if λ is an eigenvalue of Q and γ is a Galois conjugate of λ , then either $|\gamma| < |\lambda|$, or γ is also an eigenvalue of Q of greater or equal multiplicity.

- Recently extended (by a different method) to the general, non-diagonalizable case, by J. Kwapisz (2016).
- It is conjectured that the "generalized Perron condition" is also sufficient, at least in the weak sense: given a generalized Perron Q, there exists a self-affine tiling with expansion Q^k for some k.
- Possible strategy: construct a substitution Delone *m*-set.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Dynamical systems from Delone sets and tilings (in brief)

- For a Delone *m*-set Λ in ℝ^d let X_Λ be the collection of all *m*-sets each of whose clusters is a translate of a Λ-cluster.
- X_{Λ} is the "hull" of Λ . Natural \mathbb{R}^d action by translations.
- Introduce the usual "big ball" metric ρ, so that (X_Λ, ℝ^d) is compact and (X_Λ, ℝ^d) is a topological dynamical system (ℝ^d-action).
Dynamical systems from Delone sets and tilings (in brief)

- For a Delone *m*-set Λ in ℝ^d let X_Λ be the collection of all *m*-sets each of whose clusters is a translate of a Λ-cluster.
- X_{Λ} is the "hull" of Λ . Natural \mathbb{R}^d action by translations.
- Introduce the usual "big ball" metric ρ, so that (X_Λ, ℝ^d) is compact and (X_Λ, ℝ^d) is a topological dynamical system (ℝ^d-action).
- Invariant (Borel probability) measures.
- Assuming FLC, the system (X_Λ, ℝ^d) is uniquely ergodic iff Λ has Uniform Cluster Frequencies (UCF), i.e. for any cluster P, the limit

$$\operatorname{freq}(P,\Lambda) = \lim_{N \to \infty} \frac{\sharp \{ x \in \mathbb{R}^d : x + P \subset B(0,N) \cap \Lambda \}}{Vol(B(0,N))} \ge 0$$

exists uniformly in $x \in \mathbb{R}^d$.

 For a measure-preserving system (X_Λ, ℝ^d, μ) consider the associated group of unitary operators {U_g}_{g∈ℝ^d} on L²(X_Λ, μ):

$$U_g f(\Gamma) = f(-g + \Gamma), \ \ \Gamma \in X_{\Lambda}, \ g \in \mathbb{R}^d.$$

A vector α = (α₁,..., α_d) ∈ ℝ^d is an *eigenvalue* for the ℝ^d-action if there exists an eigenfunction 0 ≠ f ∈ L²(X_Λ, μ):

$$U_g f = e^{2\pi i \langle g, \alpha \rangle} f, \ g \in \mathbb{R}^d.$$

Here $\langle g, \alpha \rangle$ is the scalar product in \mathbb{R}^d .

Spectrum of systems from substitution Delone sets

A primitive FLC substitution Delone *m*-set has UCF ⇒ uniquely ergodic system (X_Λ, ℝ^d, μ).

Spectrum of systems from substitution Delone sets

- A primitive FLC substitution Delone *m*-set has UCF ⇒ uniquely ergodic system (X_Λ, ℝ^d, μ).
- Parallel theory for self-affine tilings; in fact, many of the proofs use the link with tilings.

Spectrum of systems from substitution Delone sets

- A primitive FLC substitution Delone *m*-set has UCF \Rightarrow uniquely ergodic system $(X_{\Lambda}, \mathbb{R}^{d}, \mu)$.
- Parallel theory for self-affine tilings; in fact, many of the proofs use the link with tilings.

Theorem 5 (Lee-Solomyak 2008). Let Λ be a representable primitive FLC substitution Delone m-set. The set of eigenvalues for the \mathbb{R}^d -action is relatively dense in \mathbb{R}^d if and only if $\operatorname{supp}(\Lambda)$ is a Meyer set.

Corollary. A representable primitive FLC substitution Delone m-set is "pure point diffractive" if and only if its support is Meyer.

This answered a question of Lagarias.

イロト イポト イヨト イヨト 二日

• The new part was

relatively dense eigenvalues \Rightarrow Meyer set

- The proof proceeds via Pisot families. A set \mathcal{P} of algebraic integers is a *Pisot family* if for every $\lambda \in \mathcal{P}$ and every Galois conjugate λ' of λ , if $\lambda' \notin \mathcal{P}$, then $|\lambda'| < 1$.
- If λ is a Pisot number, then {λ} is a Pisot family. If λ is a complex Pisot number, then {λ, λ̄} is a Pisot family. Let ||x|| := dist(x, ℤ).

Theorem (Körnei 1987, Mauduit 1989) Let $\lambda_1, \ldots, \lambda_r$ be distinct algebraic numbers $|\lambda_i| \ge 1$, $i \le r$, and let P_1, \ldots, P_r be nonzero polynomials with complex coefficients. If $\sum_{i=1}^r P_i(n)\lambda_i^n \in \mathbb{R}$ for all n and

$$\lim_{n\to\infty} \left\|\sum_{i=1}^r P_i(n)\lambda_i^n\right\| = 0 \implies \{\lambda_1,\ldots,\lambda_r\} \text{ is a Pisot family}$$

イロト イポト イヨト イヨト 二日

The link from eigenvalues to number theory proceeds via the following (restated in different terms here):

Theorem (Solomyak 1997) Let $\Lambda = (\Lambda_i)_{i \le m}$ be a representable primitive *FLC* substitution Delone m-set. Let $\Xi(\Lambda) = \bigcup_{i=1}^{m} (\Lambda_i - \Lambda_i)$ be the set of "inter-atomic" vectors. If $\alpha \in \mathbb{R}^d$ is an eigenvalue for $(X_{\Lambda}, \mathbb{R}^d, \mu)$, then

$$\lim_{n\to\infty} \|\langle Q^n x, \alpha \rangle\| = 0 \text{ for all } x \in \Xi(\Lambda).$$

Theorem (Lee-Solomyak 2012) Let $\Lambda = (\Lambda_i)_{i \leq m}$ be a representable primitive FLC substitution Delone m-set. Suppose that the expansion map Q has irreducible over \mathbb{C} characteristic polynomial. Then the following are equivalent:

- (i) The spectrum of Q is a Pisot family;
- (ii) the set of eigenvalues of $(X_{\Lambda}, \mathbb{R}^d, \mu)$ is relatively dense in \mathbb{R}^d ;
- (iii) $(X_{\Lambda}, \mathbb{R}^{d}, \mu)$ is not weakly mixing (i.e. has a non-zero eigenvalue); (iv) supp(Λ) is a Meyer set.