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Plan of the talk

1 Classes of Delone sets: finitely generated, finite type, Meyer

2 Inflation symmetries

3 Substitution Delone sets and tilings

4 Associated dynamical systems and their spectral properties (if time
permits)

Boris Solomyak (Bar-Ilan University, Israel) Delone sets and tilings November 20-24, 2017 2 / 43



Bibliography

1. J. C. Lagarias, Geometric models for quasicrystals I. Delone sets of
finite type, Discrete and Computational Geometry 21 (1999),
161–191.

2. J. C. Lagarias and Y. Wang, Substitution Delone sets, Discrete and
Computational Geometry 29 (2003), 175–209.

3. J. C. Lagarias, Mathematical quasicrystals and the problem of
diffraction, in “Directions in Mathematical Quasicrystals” (ed.
M. Baake and R. V. Moody), CRM Monograph Series, Vol. 13,
AMS, Providence, RI, 2000, 61–93,

4. W. Thurston, “Groups, Tilings, and Finite State Automata,” AMS
lecture notes, 1989.

Boris Solomyak (Bar-Ilan University, Israel) Delone sets and tilings November 20-24, 2017 3 / 43



Delone sets

Definition. A set X ⊂ Rd is Delone if it is

(a) Uniformly discrete: ∃ r > 0 such that ](B(y , r)∩X ) ≤ 1 ∀ y ∈ Rd , and

(b) Relatively dense: ∃R > 0 such that B(y ,R) ∩ X 6= ∅ for all y ∈ Rd .

Definition. A Delone set X in Rd is

finitely generated if [X ] (equivalently [X − X ]) is finitely generated.

[X ] =
{ k∑

i=1

nixi : ni ∈ Z, xi ∈ X , k ∈ N
}
.

of finite type if X − X is a discrete closed set, that is,
(X − X ) ∩ B(0,N) is finite for all N > 0.
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Properties of Delone sets

finitely generated 6=⇒⇐= finite type

finite type ⇐⇒ finite local complexity (FLC)
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Address map

Definition. Let X be a finitely generated Delone set in Rd . Note that [X ]
is a free Abelian group, hence it has a basis (set of free generators):
[X ] = Z[v1, . . . , vs ] for some s ≥ d . Then

φ
( s∑
i=1

nivi

)
= (n1, . . . , ns).

is the address map. It depends on the choice of basis; defined up to
left-multiplication by an element of GL(s,Z).

s = d iff [X ] is a lattice in Rd

the address map describes X using s “internal dimensions”
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Characterization of finite type

Theorem 1 (Lagarias 1999) Let X ⊂ Rd be a Delone set. Then X is of
finite type if and only if X is finitely generated and any address map is
globally Lipschitz on X : there exists C > 0 such that

‖φ(x)− φ(x ′)‖ ≤ C‖x − x ′‖ for all x , x ′ ∈ X .

Proof.

Finite type ⇐= Address map is Lipschitz on X

If ‖x − x ′‖ ≤ N, then

‖φ(x − x ′)‖ = ‖φ(x)− φ(x ′)‖ ≤ CN.

The map φ is 1-to-1 and into Zs , hence (X − X ) ∩ B(0,N) is finite.

Boris Solomyak (Bar-Ilan University, Israel) Delone sets and tilings November 20-24, 2017 7 / 43



Characterization of finite type

Theorem 1 (Lagarias 1999) Let X ⊂ Rd be a Delone set. Then X is of
finite type if and only if X is finitely generated and any address map is
globally Lipschitz on X : there exists C > 0 such that

‖φ(x)− φ(x ′)‖ ≤ C‖x − x ′‖ for all x , x ′ ∈ X .

Proof.

Finite type ⇐= Address map is Lipschitz on X

If ‖x − x ′‖ ≤ N, then

‖φ(x − x ′)‖ = ‖φ(x)− φ(x ′)‖ ≤ CN.

The map φ is 1-to-1 and into Zs , hence (X − X ) ∩ B(0,N) is finite.

Boris Solomyak (Bar-Ilan University, Israel) Delone sets and tilings November 20-24, 2017 7 / 43



Characterization of finite type (cont.)

Note: the address map is usually NOT continuous on [X ], which is
generically dense in Rd (unless [X ] is a lattice).

Finite type =⇒ Fin. gen. & the address map is Lipschitz on X

Lemma 1. Let X be a Delone set with parameters (R, r). Then there
exist k,C1 > 0 such that for any two points x , x ′ ∈ X there is a chain
x = x0, x1, . . . , xm−1, xm = x ′ in X , with

(a) ‖xi − xi−1‖ ≤ kR for all i ;

(b) m ≤ C1‖x − x ′‖.

Easy: one can take, e.g., k = 4 and C1 = (2R)−1.
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Characterization of finite type (cont.)

Now let φ : [X ]→ Zs be an address map, and define

C2 := max{‖φ(y)‖ : y ∈ (X − X ) ∩ B(0, kR)}.

Using Z-linearity of φ on [X ] we have for all x , x ′ ∈ X , by the Lemma,

‖φ(x)− φ(x ′)‖ ≤
m∑
i=1

‖φ(xi )− φ(xi−1)‖

=
m∑
i=1

‖φ(xi − xi−1)‖

≤ C2m ≤ C2C1‖x − x ′‖.
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Meyer sets

Definition. A Delone set X in Rd is Meyer if X − X is uniformly discrete
(equivalently, Delone).

Theorem 2 (Meyer 1970, 1972; Lagarias 1999) For a Delone set X in
Rd the following are equivalent:

(i) X is Meyer, that is, X − X is Delone.

(ii) there is a finite F such that X − X ⊂ X + F
(this was the original definition of Y. Meyer).

(iii) X is fin. generated and the address map φ : [X ]→ Zs is almost linear:

∃ linear L : Rd → Rs , C2 > 0 : ‖φ(x)− Lx‖ ≤ C2 for all x ∈ X .

(iv) X is a subset of a non-degenerate cut-and-project set.
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Cut-and-project sets

Definition. Let Λ be a full rank lattice in Rn = Rd × Rm. Let π‖ and π⊥

be the orthogonal projections onto Rd and Rm. A window Ω is a bounded
open subset of Rm. The cut-and-project set X (Λ,Ω) associated with the
data (Λ,Ω) is

X (Λ,Ω) = π‖
(
{w ∈ Λ : π⊥(w) ∈ Ω}

)
.

Sometimes we say that Rd is the “physical space” and Rm is the “internal
space”. The cut-and-project set is non-degenerate if π‖ : Rn → Rd is
one-to-one. It is irreducible if π⊥(Λ) is dense in Rm. Cut-and-project set
(sometimes with different requirements for the window) are also called
model sets.
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Example of a cut-and-project set

Figure: “Fibonacci set”. From the paper “A short guide to pure point diffraction
in cut-and-project sets” by C. Richard and N. Strungaru, Journal of Physics A:
Math. and Theor., Vol. 50, No. 15, 2017
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Characterization of Meyer sets (about the proof)

(i) ⇒ (ii), that is, (X − X Delone) ⇒ (X − X ⊂ X + F for F finite)
was proved by Lagarias (1996)

(ii) ⇒ (iii), that is

X − X ⊂ X + F ⇒ the address map is almost linear.

It is clear that X is of finite type. Construct L : Rd → Rs as an “ideal
address map”: for each y ∈ Rd define

L(y) = lim
k→∞

φ(xk)

2k
, where xk ∈ X satisfies ‖xk − 2ky‖ ≤ R.

Need to prove that the limit exists and is unique (independent of xk).
Then show that it is linear and within a constant from φ on X .
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Characterization of Meyer sets (about the proof, cont.)

(iii) ⇒ (i), that is, address map is almost linear implies X − X is
uniformly discrete.

It is enough to show that there is a lower bound on the norm of

z ∈ (X − X )− (X − X ),

whenever z 6= 0. Suppose ‖z‖ ≤ R. We have ‖Lz − φ(z)‖ ≤ 4C2, since φ
is Z-linear on [X ], L is linear, and ‖φ(x)− Lx‖ ≤ C2, x ∈ X . Therefore,

|φ(z)‖ ≤ 4C2 + ‖L‖R.

Since φ is 1-to-1 on [X ] and φ(z) ∈ Zs , there are only finitely many
possibilities for z .
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Classes of algebraic integers

A (complex) number η is an algebraic integer if p(η) = 0 for some monic
polynomial p ∈ Z[x ], that is, p(x) = xn +

∑n−1
j=0 ajx

j , aj ∈ Z. The Galois
conjugates of η are the other roots of the minimal polynomial for η.

Definition. Let η be a real algebraic integer greater than one.

(a) η is a Pisot number or Pisot-Vijayaraghavan (PV)-number if all Galois
conjugates satisfy |η′| < 1.

(b) η is a Salem number if for all conjugates |η′| ≤ 1 and at least one
satisfies |η′| = 1.

(c) η is a Perron number if for all conjugates |η′| < η.

(d) η is a Lind number if for all conjugates |η′| ≤ η and at least one
satisfies |η′| = η.
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Inflation symmetries

A Delone set X has an inflation symmetry by a real η > 1 if ηX ⊂ X .

Theorem 3 (Lagarias 1999 + ”folklore”) Let X be a Delone set in Rd

such that ηX ⊆ X for a real number η > 1.

(i) If X is finitely generated, then X is an algebraic integer.

(ii) If X is a Delone set of finite type, then η is a Perron number or a
Lind number.

(ii’) If X is repetitive Delone set of finite type, then η is a Perron number.

(iii) If X is a Meyer set, then η is a Pisot number or a Salem number.

Definition. A Delone set X is repetitive if every X -cluster occurs
relatively dense in Rd .
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Example: β-integers

Fix β > 1, with β 6∈ N. Let Xβ = X+
β

⋃
(−X+

β ), where

X+
β =


N∑
j=0

ajβ
j , aj ∈ {0, 1, . . . , bβc}, greedy expansion


Then Xβ is relatively dense in R and βX ⊂ X .

Xβ is Delone iff the orbit of 1 under Tβ(x) = bβxc does not
accumulate to 0.

Delone Xβ is finitely generated iff β is an algebraic integer.

Delone Xβ is of finite type iff β is a Parry β-number, i.e., the orbit
{T n

β (1)}n≥0 is finite.

If β is Pisot, then Xβ is Meyer.
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Example: Delone sets from self-similar tilings

Let T be a self-similar tiling in Rd with inflation symmetry by η > 1
(definition will be given later.) Then the set of control points of the tiles is
a Delone set with inflation symmetry by η > 1.

Consider a primitive substitution on a finite alphabet and make it into
a tiling. On R: interval tiles with lengths corresponding to the
Perron-Frobenius eigenvector; the control points are the endpoints.
Obtain a finite type Delone set X (T ).

For every Perron number η > 1 there is a finite type Delone set
X = X (T ) ⊂ R, such that ηX ⊂ X [D. Lind (1984)].

Such an X is Meyer if and only if η is Pisot.

For every Salem number η there exists X Meyer such that ηX ⊂ X
(not from substitution) [Y. Meyer (1972)].
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Algebraicity of inflations

Lemma 2. Let X be a finitely generated Delone set in Rd such that
QX ⊂ X for some expanding linear map Q : Rd → Rd . Then all
eigenvalues of Q are algebraic integers.
Proof.

[X ] = Z[v1, . . . , vs ], address map φ : [X ]→ Zs .

Q([X ]) ⊂ [X ] ⇒ Qvj =
∑s

k=1 akjvk for some akj ∈ Z.

V := [v1, . . . , vs ], d × s matrix.

M := (akj)
s
k,j=1 is an integer square matrix such that QV = VM.

{vj}j≤s spans Rd , hence rank(V ) = d .

Let e be a left eigenvector of Q for an eigenvalue λ. Then
λeV = eQV = eVM ⇒ eV is a left eigenvector for M.

eV 6= 0, because the rows of V are linearly independent.

M ∈ Zs×s , so all its eigenvalues are algebraic integers.
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Inflations for finite type Delone sets are Lind

Proof. Assume 0 ∈ X , ηX ⊂ X for η > 1, and X ⊂ Rd is a Delone set of
finite type. Continue the argument in the Lemma.

Let γ be a Galois conjugate of η. Since η is an eigenvalue of M, so is
γ. We want to prove |γ| ≤ η.

Let eγ ∈ Rs be an eigenvector.

φ(X ) spans Rs , hence there exists x ∈ X such that φ(x) has a
non-zero eγ-coefficient.

By definition, φ(x) ∈ Zs is unique such that x = Vφ(x), x ∈ X .

ηV = QV = VM ⇒ ηx = ηVφ(x) = VMφ(x) ⇒ φ(ηx) = Mφ(x).

φ(ηnx) = Mnφ(x).

‖Mnφ(x)‖ = ‖φ(ηnx)‖ = ‖φ(ηnx)− φ(0)‖ ≤ C‖ηnx‖ = Cηn‖x‖

by Theorem 1. It follows that |γ| ≤ η.
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Example revisited: the set of β-integers Xβ

Fix β > 1 algebraic integer, such that {T n
β 1}n≥0 does not accumulate

to zero. Then Xβ ⊂ R is Delone and [Xβ] = Z[β].

Free generators can be chosen vj = βj−1, j ≤ s, where s is the degree
of β. Let c0 + c1x + · · ·+ cs−1x

s−1 + x s be the minimal (with integer
coefficients) polynomial for β.

We have Qx = βx on R, and QXβ ⊂ Xβ. Then QV = VM, where
V = [v1, . . . , vs ] (a 1× s matrix), and

M =



0 . . . . . . 0 −c0

1 0 . . . 0 −c1

0 1 . . . 0 −c2

. . . . . . . . . . . . . . .

. . . . . . . . . 0 −cs−2

0 0 . . . 1 −cs−1
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The set of β-integers (cont.)

Let φ be the associated address map, φ : [Xβ] = Z[β]→ Rs . We have

φ(βn) = Mnφ(1) = Mn


1
0
...
0

 .

Now suppose that β is Pisot. Then we have

(1) φ(βn) = βneβ + O(%n),

where eβ is the eigenvector of M corresponding to β and % ∈ (0, 1) is
the maximal absolute value of the Galois conjugates of β.
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The set of β-integers (cont.)

Define L : R→ Rs by L(x) = xeβ, a linear map.

We want to show that ‖φ(x)− Lx‖ ≤ C on Xβ, whence Xβ is a
Meyer set.

In view of (1) we have for x =
∑N

j=0 ajβ
j ∈ X+

β :

‖φ(x)− Lx‖ =

∥∥∥∥∥∥φ
( N∑
j=0

ajβ
j
)
− L
( N∑
j=0

ajβ
j
)∥∥∥∥∥∥

= O
(

max
j
|aj | ·

N∑
j=0

%j
)

= O(1).

The same proof works e.g. for the set of endpoints of a self-similar
tiling on R with a Pisot inflation factor.
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Delone m-sets

Consider Delone sets where each point has a “color” or “type” from a
finite list. Formally:

Definition. An m-multiset in Rd is

Λ = Λ1 × · · · × Λm ⊂ Rd × · · · × Rd (m copies).

We also write Λ = (Λ1, . . . ,Λm) = (Λi )i≤m.

Λ = (Λi )i≤m is a Delone m-set in Rd if each Λi is Delone and

supp(Λ) :=
m⋃
i=1

Λi ⊂ Rd is Delone.
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Substitution Delone sets

Definition. Let Q : Rd → Rd be a linear expanding map (i.e. all
eigenvalues are greater than one in absolute value).

Λ = (Λi )i≤m is a substitution Delone m-set with expanding map Q if
there are finite sets Dij for i , j ≤ m (possibly empty) such that

(2) Λi =
m⊎
j=1

(QΛj +Dij), i ≤ m.

The substitution matrix S is Sij = ](Dij).
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Algebraicity of expansion map

Lemma 3. Suppose that Λ is a substitution Delone m-set with expansion
map Q. If supp(Λ) is finitely generated, then all eigenvalues of Q are
algebraic integers.

Proof sketch. Consider the set of “inter-atomic vectors”

Ξ(Λ) :=
m⋃
i=1

(Λi − Λi ).

We have [Ξ(Λ)] finitely generated, and Q(Ξ(Λ)) = Ξ(Λ). Then the proof
proceeds as in Lemma 2 above.

Boris Solomyak (Bar-Ilan University, Israel) Delone sets and tilings November 20-24, 2017 26 / 43



Perron-Frobenius condition

Theorem 4 (Lagarias and Wang 2003). If Λ is a primitive substitution
Delone m-set with expansion map Q, then the Perron-Frobenius (PF)
eigenvalue of the substitution matrix S equals | det(Q)|.

Denote λ(S) = PF eigenvalue of S. In fact,

Λ is relatively dense ⇒ λ(S) ≥ | det(Q)|
Λ is uniformly discrete ⇒ λ(S) ≤ | det(Q)|

supp(Λ) is Delone ⇒ λ(S) = | det(Q)|.
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Adjoint system of equations

Given
Λi =

m⊎
j=1

(QΛj +Dij), i ≤ m,

set up the adjoint system of equations

(3) QAj =
m⋃
i=1

(Dij + Ai ), j ≤ m.

Theory of (graph-directed) iterated function systems: (3) has a unique
solution (A1, . . . ,Am) where ∅ 6= Ai ⊂ Rd are compact.

Theorem 4 (Lagarias and Wang 2003). If (Λi )i≤m is a primitive
substitution Delone m-set, then all Ai = clos(A◦i ) (closure of the interior),
and interiors in the RHS of (3) are disjoint.
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Substitution tilings

Definition.

A = {T1, . . . ,Tm} is a set of tiles in Rd ; these will be our prototiles.

Each tile is the closure of its interior and has a “type” (or “color”).

PA is the set of patches made up of translated prototiles.

ω : A → PA is a tile-substitution with expanding map Q if there exist
finite sets Dij ⊂ Rd for i , j ≤ m, such that

(4) ω(Tj) =
m⋃
i=1

(Ti +Dij),

and supp(ω(Tj)) = QAj for all j ≤ m.
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Self-affine and self-similar tilings

The substitution (4) is extended by ω(x + Tj) = Qx + ω(Tj), and to
patches and tilings by ω(P) =

⋃
{ω(T ) : T ∈ P}.

ω can be iterated, producing larger and larger patches ωk(Tj).

Substitution matrix: Sij := ](Dij). The substitution ω is primitive if S
is primitive.

If ω(T ) = T for a primitive ω, we say that T is self-affine. Usually
FLC is also assumed.

If Q = ηO for some η > 1 and an orthogonal linear transformation O,
then T is self-similar.

For a self-similar tiling in R2 ∼= C consider the complex expansion
factor λ ∈ C, |λ| > 1, by identifying Q with z 7→ λz .
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From a substitution tiling to a substitution Delone set

If ω(T ) = T , then T =
⋃m

j=1(Tj + Λj) for some Delone Λj , hence

m⊎
i=1

(Ti + Λi ) = T = ω(T ) =
m⊎
j=1

(
ω(Tj) + QΛj

)
=

m⊎
j=1

( m⊎
i=1

(Ti +Dij) + QΛj

)
=

m⊎
i=1

(
Ti +

m⊎
j=1

(QΛj +Dij)
)
.

Thus Λi =
⊎m

j=1(QΛj +Dij), i ≤ m. In general, Λi need not be disjoint,
but can be made so by translating Tj ’s. Then (Λi )i≤m is a substitution
Delone m-set.
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From a substitution Delone set to a substitution tiling

Let Λ = (Λi )i≤m be a substitution Delone set with expansion Q. Consider
the solution of the adjoint equation (A1, . . . ,Am) and define the prototiles
to be Ti = (Ai , i).

Question. Is
⊎m

j=1(Tj + Λj) necessarily a tiling of Rd?

[Lagarias and Wang (2003)] showed that, in general, “no”. However, there
are verifiably sufficient conditions for “yes”. Then we say that Λ is
representable.

This was extended in [Lee, Moody and Solomyak (2003)].
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Representable substitution Delone sets

Definition. For a substitution Delone m-set Λ = (Λi )i≤m satisfying (2),
define a matrix Φ = (Φij)

m
i ,j=1 whose entries are finite (possibly empty)

families of linear affine transformations on Rd given by

Φij = {f : x 7→ Qx + a : a ∈ Dij} .

We define Φij(X ) :=
⋃

f ∈Φij
f (X ) for a set X ⊂ Rd . For an m-set

X = (Xi )i≤m let

Φ(X ) =
( m⋃
j=1

Φij(Xj)
)
i≤m

.

Thus Φ(Λ) = Λ by definition. We say that Φ is an m-set substitution.
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Representable substitution Delone sets (cont.)

Let Λ be a substitution Delone m-set and Φ the associated m-set
substitution.

Λ-cluster P = (Pi )i≤m is legal if it is a translate of a subcluster of
Φk({xj}) for some xj ∈ Λj and k ∈ N. (Here {xj} is an m-set which is
empty in all coordinates other than j , for which it is a singleton.)

Λ is representable if and only if every Λ-cluster is legal [LMS (2003)]

Λ-cluster P is generating if P ⊂ Φ(P) and Λ = limn→∞Φn(P).

Λ is representable if there exists a legal generating cluster.
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Application: pseudo-self-affine tilings

Definition. A repetitive FLC tiling T of Rd is pseudo-self-affine with
expansion Q if T is locally derivable from QT (see N. P. Frank’s Lecture
Notes for precise definition).

E. A. Robinson, Jr. conjectured that every pseudo-self-affine tiling is
mutually locally derivable with a self-affine tiling. This was settled for
d = 2 in [Frank and Solomyak (2001)] and in higher dimensions in
[Solomyak (2005)]

Caveat: in both papers we had to pass from Q to a higher power Qk ,
that is, a pseudo-self-affine tiling with expansion Q was proved to be
MLD with a self-affine tiling with expansion Qk for some k ∈ N.

It is simpler to construct a substitution Delone m-set and then use
the adjoint system of equations to obtain the self-affine tiling.

Caveat: it is harder to control topological properties.
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Characterization of expansion maps

Question (Thurston): which expansion maps Q may appear as
expansions of self-similar (self-affine) tilings?

Theorem (Thurston). If T is a self-similar tiling of R2 ∼= C, then its
expansion constant λ ∈ C is complex Perron.

Thurston also conjectured that this is sufficient. Proved (?) by R.
Kenyon (1996).

(My personal view: more likely to work for some power λk .)

What about self-affine? Higher dimensions?
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Characterization of expansion maps (cont.)

Theorem (Kenyon 1990, Kenyon and Solomyak 2010). Let Q be a
diagonalizable (over C) expansion map on Rd , and let T be a self-affine
tiling of Rd with expansion Q. Then every eigenvalue of Q is an algebraic
integer, and if λ is an eigenvalue of Q and γ is a Galois conjugate of λ,
then either |γ| < |λ|, or γ is also an eigenvalue of Q of greater or equal
multiplicity.

Recently extended (by a different method) to the general,
non-diagonalizable case, by J. Kwapisz (2016).

It is conjectured that the “generalized Perron condition” is also
sufficient, at least in the weak sense: given a generalized Perron Q,
there exists a self-affine tiling with expansion Qk for some k.

Possible strategy: construct a substitution Delone m-set.
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It is conjectured that the “generalized Perron condition” is also
sufficient, at least in the weak sense: given a generalized Perron Q,
there exists a self-affine tiling with expansion Qk for some k.

Possible strategy: construct a substitution Delone m-set.

Boris Solomyak (Bar-Ilan University, Israel) Delone sets and tilings November 20-24, 2017 37 / 43



Characterization of expansion maps (cont.)

Theorem (Kenyon 1990, Kenyon and Solomyak 2010). Let Q be a
diagonalizable (over C) expansion map on Rd , and let T be a self-affine
tiling of Rd with expansion Q. Then every eigenvalue of Q is an algebraic
integer, and if λ is an eigenvalue of Q and γ is a Galois conjugate of λ,
then either |γ| < |λ|, or γ is also an eigenvalue of Q of greater or equal
multiplicity.

Recently extended (by a different method) to the general,
non-diagonalizable case, by J. Kwapisz (2016).

It is conjectured that the “generalized Perron condition” is also
sufficient, at least in the weak sense: given a generalized Perron Q,
there exists a self-affine tiling with expansion Qk for some k.

Possible strategy: construct a substitution Delone m-set.

Boris Solomyak (Bar-Ilan University, Israel) Delone sets and tilings November 20-24, 2017 37 / 43



Dynamical systems from Delone sets and tilings (in brief)

For a Delone m-set Λ in Rd let XΛ be the collection of all m-sets each
of whose clusters is a translate of a Λ-cluster.

XΛ is the “hull” of Λ. Natural Rd action by translations.

Introduce the usual “big ball” metric ρ, so that (XΛ,Rd) is compact
and (XΛ,Rd) is a topological dynamical system (Rd -action).

Invariant (Borel probability) measures.

Assuming FLC, the system (XΛ,Rd) is uniquely ergodic iff Λ has
Uniform Cluster Frequencies (UCF), i.e. for any cluster P, the limit

freq(P,Λ) = lim
N→∞

]{x ∈ Rd : x + P ⊂ B(0,N) ∩ Λ}
Vol(B(0,N))

≥ 0

exists uniformly in x ∈ Rd .
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Spectral Theory

For a measure-preserving system (XΛ,Rd , µ) consider the associated
group of unitary operators {Ug}g∈Rd on L2(XΛ, µ):

Ug f (Γ) = f (−g + Γ), Γ ∈ XΛ, g ∈ Rd .

A vector α = (α1, . . . , αd) ∈ Rd is an eigenvalue for the Rd -action if
there exists an eigenfunction 0 6≡ f ∈ L2(XΛ, µ):

Ug f = e2πi〈g ,α〉f , g ∈ Rd .

Here 〈g , α〉 is the scalar product in Rd .
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Spectrum of systems from substitution Delone sets

A primitive FLC substitution Delone m-set has UCF ⇒ uniquely
ergodic system (XΛ,Rd , µ).

Parallel theory for self-affine tilings; in fact, many of the proofs use
the link with tilings.

Theorem 5 (Lee-Solomyak 2008). Let Λ be a representable primitive
FLC substitution Delone m-set. The set of eigenvalues for the Rd -action is
relatively dense in Rd if and only if supp(Λ) is a Meyer set.

Corollary. A representable primitive FLC substitution Delone m-set is
“pure point diffractive” if and only if its support is Meyer.

This answered a question of Lagarias.
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About the proof of Theorem 5

The new part was

relatively dense eigenvalues ⇒ Meyer set

The proof proceeds via Pisot families. A set P of algebraic integers is
a Pisot family if for every λ ∈ P and every Galois conjugate λ′ of λ, if
λ′ 6∈ P, then |λ′| < 1.

If λ is a Pisot number, then {λ} is a Pisot family. If λ is a complex
Pisot number, then {λ, λ} is a Pisot family. Let ‖x‖ := dist(x ,Z).

Theorem (Körnei 1987, Mauduit 1989) Let λ1, . . . , λr be distinct
algebraic numbers |λi | ≥ 1, i ≤ r , and let P1, . . . ,Pr be nonzero
polynomials with complex coefficients. If

∑r
i=1 Pi (n)λni ∈ R for all n and

lim
n→∞

∥∥∥ r∑
i=1

Pi (n)λni

∥∥∥ = 0 =⇒ {λ1, . . . , λr} is a Pisot family
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About the proof of Theorem 5 (cont.)

The link from eigenvalues to number theory proceeds via the following
(restated in different terms here):

Theorem (Solomyak 1997) Let Λ = (Λi )i≤m be a representable primitive
FLC substitution Delone m-set. Let Ξ(Λ) =

⋃m
i=1(Λi − Λi ) be the set of

“inter-atomic” vectors. If α ∈ Rd is an eigenvalue for (XΛ,Rd , µ), then

lim
n→∞

‖〈Qnx , α〉‖ = 0 for all x ∈ Ξ(Λ).
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Partial converse

Theorem (Lee-Solomyak 2012) Let Λ = (Λi )i≤m be a representable
primitive FLC substitution Delone m-set. Suppose that the expansion map
Q has irreducible over C characteristic polynomial. Then the following are
equivalent:

(i) The spectrum of Q is a Pisot family;

(ii) the set of eigenvalues of (XΛ,Rd , µ) is relatively dense in Rd ;

(iii) (XΛ,Rd , µ) is not weakly mixing (i.e. has a non-zero eigenvalue);

(iv) supp(Λ) is a Meyer set.
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