Tiling Dynamical Systems (school) CIRM, November 20-24, 2017

Multiscale Substitution Tilings

Yaar Solomon

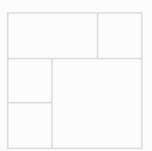
Department of Mathematics Ben-Gurion University of the Negev.

Work in progress, jointy with Yotam Smilansky
November 21st, 2017

Yaar Solomon Ben-Gurion University

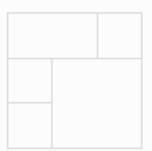
- $\mathcal{F} = \{T_1, \dots, T_n\}$ a finite set of prototiles in \mathbb{R}^d .
- $\zeta_1, \ldots, \zeta_m \in (0,1)$ contraction factors (more than one!).
- $\blacksquare \mathcal{F}^*(\zeta_1,\ldots,\zeta_m)$ patches by tiles of the form $\zeta_j T_i$.
- A multiscale subdivision rule is a mapping $H: \mathcal{F} \to \mathcal{F}^*(\zeta_1, \dots, \zeta_m)$, with $supp(H(T_i)) = T_i$.

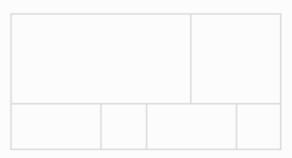
Example:
$$\#\mathcal{F} = 2$$
, $(\zeta_1, \zeta_2) = (\frac{1}{3}, \frac{2}{3})$



- $\mathcal{F} = \{T_1, \dots, T_n\}$ a finite set of prototiles in \mathbb{R}^d .
- $\blacksquare \mathcal{F}^*(\zeta_1,\ldots,\zeta_m)$ patches by tiles of the form $\zeta_j T_i$.
- A multiscale subdivision rule is a mapping $H: \mathcal{F} \to \mathcal{F}^*(\zeta_1, \dots, \zeta_m)$, with $supp(H(T_i)) = T_i$.

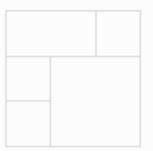
Example:
$$\#\mathcal{F}=2, \quad (\zeta_1,\zeta_2)=\left(\frac{1}{3},\frac{2}{3}\right)$$





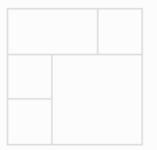
- $\mathcal{F} = \{T_1, \dots, T_n\}$ a finite set of prototiles in \mathbb{R}^d .
- $\zeta_1, \ldots, \zeta_m \in (0, 1)$ contraction factors (more than one!).
- $\blacksquare \mathcal{F}^*(\zeta_1,\ldots,\zeta_m)$ patches by tiles of the form $\zeta_j T_i$.
- A multiscale subdivision rule is a mapping $H: \mathcal{F} \to \mathcal{F}^*(\zeta_1, \dots, \zeta_m)$, with $supp(H(T_i)) = T_i$.

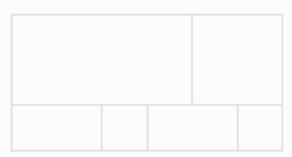
Example:
$$\#\mathcal{F}=2,\quad (\zeta_1,\zeta_2)=\left(\frac{1}{3},\frac{2}{3}\right)$$



- $\mathcal{F} = \{T_1, \dots, T_n\}$ a finite set of prototiles in \mathbb{R}^d .
- $\blacksquare \mathcal{F}^*(\zeta_1,\ldots,\zeta_m)$ patches by tiles of the form $\zeta_j T_i$.
- A multiscale subdivision rule is a mapping $H: \mathcal{F} \to \mathcal{F}^*(\zeta_1, \dots, \zeta_m)$, with $supp(H(T_i)) = T_i$.

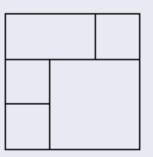
Example:
$$\#\mathcal{F}=2, \quad (\zeta_1,\zeta_2)=\left(\frac{1}{3},\frac{2}{3}\right)$$

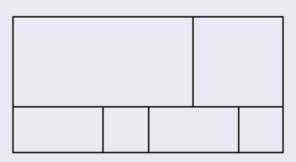




- $\mathcal{F} = \{T_1, \dots, T_n\}$ a finite set of prototiles in \mathbb{R}^d .
- $\blacksquare \mathcal{F}^*(\zeta_1,\ldots,\zeta_m)$ patches by tiles of the form $\zeta_j T_i$.
- A multiscale subdivision rule is a mapping $H: \mathcal{F} \to \mathcal{F}^*(\zeta_1, \dots, \zeta_m)$, with $supp(H(T_i)) = T_i$.

Example: $\#\mathcal{F}=2$, $(\zeta_1,\zeta_2)=\left(\frac{1}{3},\frac{2}{3}\right)$





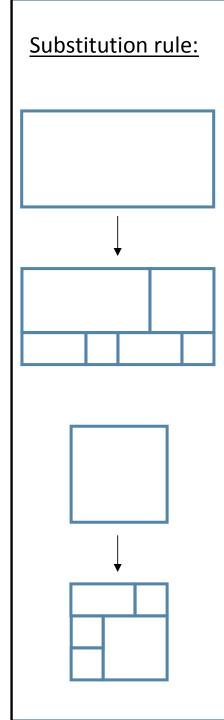
- We define an action of $\mathbb{R}_{\geq 0}$ on patches, S_t (patch) (t is a continuous time parameter).
- For t = 0, $S_0(T_i) = H(T_i)$.
- As time progresses, inflate at constant speed, where every tile that reaches its original size is dissected via *H*.
- A multiscale substitution tiling is a tiling of \mathbb{R}^d that is a limit, in the right topology, of a sequence of elements of the form $S_t(T_i)$ (i may varies), and their translations.

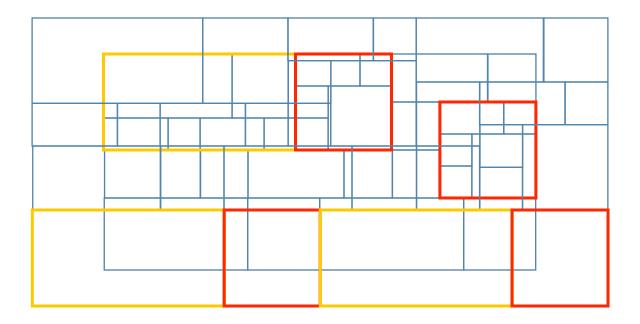
- We define an action of $\mathbb{R}_{\geq 0}$ on patches, S_t (patch) (t is a continuous time parameter).
- For t = 0, $S_0(T_i) = H(T_i)$.
- As time progresses, inflate at constant speed, where every tile that reaches its original size is dissected via *H*.
- A multiscale substitution tiling is a tiling of \mathbb{R}^d that is a limit, in the right topology, of a sequence of elements of the form $S_t(T_i)$ (i may varies), and their translations.

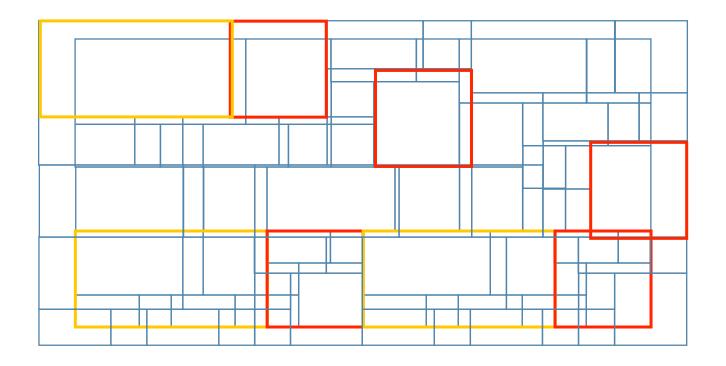
- We define an action of $\mathbb{R}_{\geq 0}$ on patches, S_t (patch) (t is a continuous time parameter).
- For t = 0, $S_0(T_i) = H(T_i)$.
- As time progresses, inflate at constant speed, where every tile that reaches its original size is dissected via H.
- A multiscale substitution tiling is a tiling of \mathbb{R}^d that is a limit, in the right topology, of a sequence of elements of the form $S_t(T_i)$ (i may varies), and their translations.

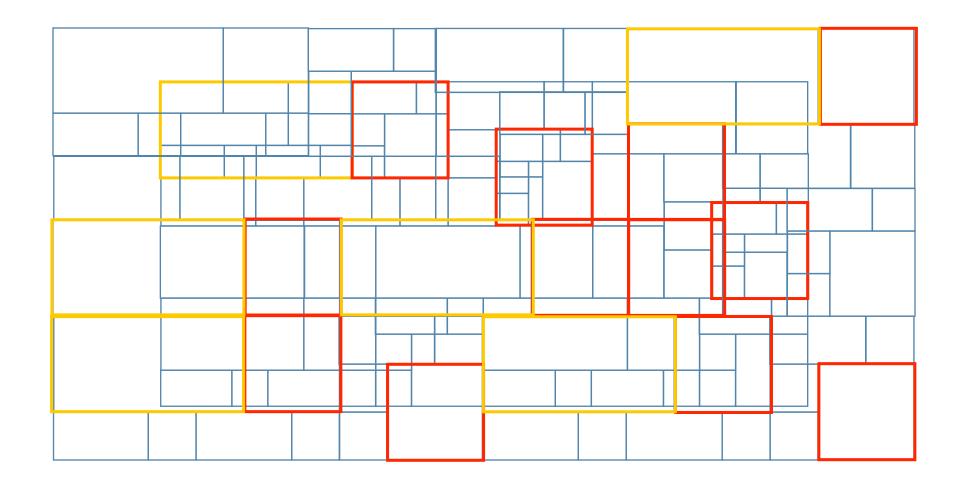
メロト (日) (日) (日) (日) 日 り(0)

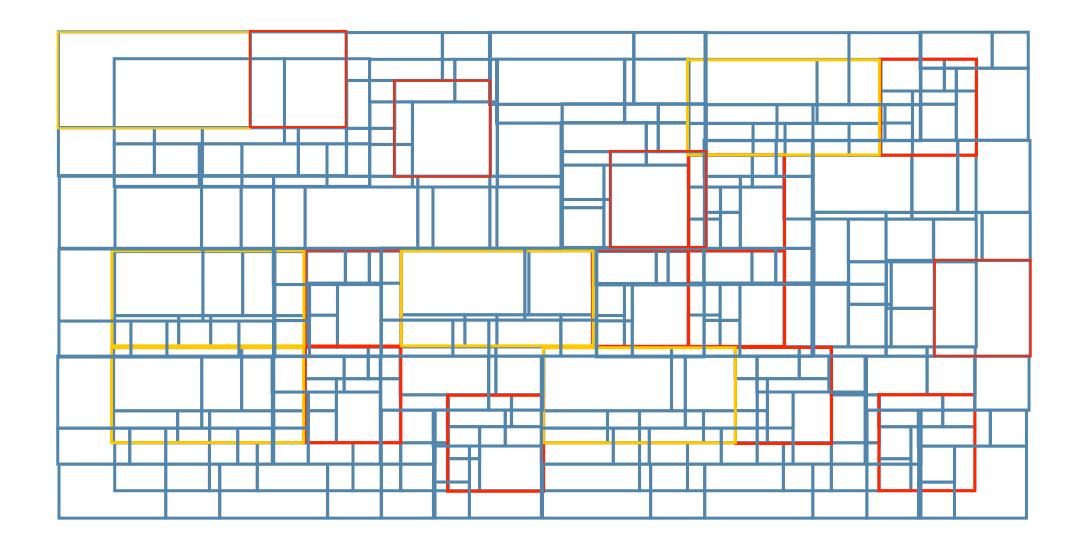
- We define an action of $\mathbb{R}_{\geq 0}$ on patches, S_t (patch) (t is a continuous time parameter).
- For t = 0, $S_0(T_i) = H(T_i)$.
- As time progresses, inflate at constant speed, where every tile that reaches its original size is dissected via H.
- A multiscale substitution tiling is a tiling of \mathbb{R}^d that is a limit, in the right topology, of a sequence of elements of the form $S_t(T_i)$ (i may varies), and their translations.

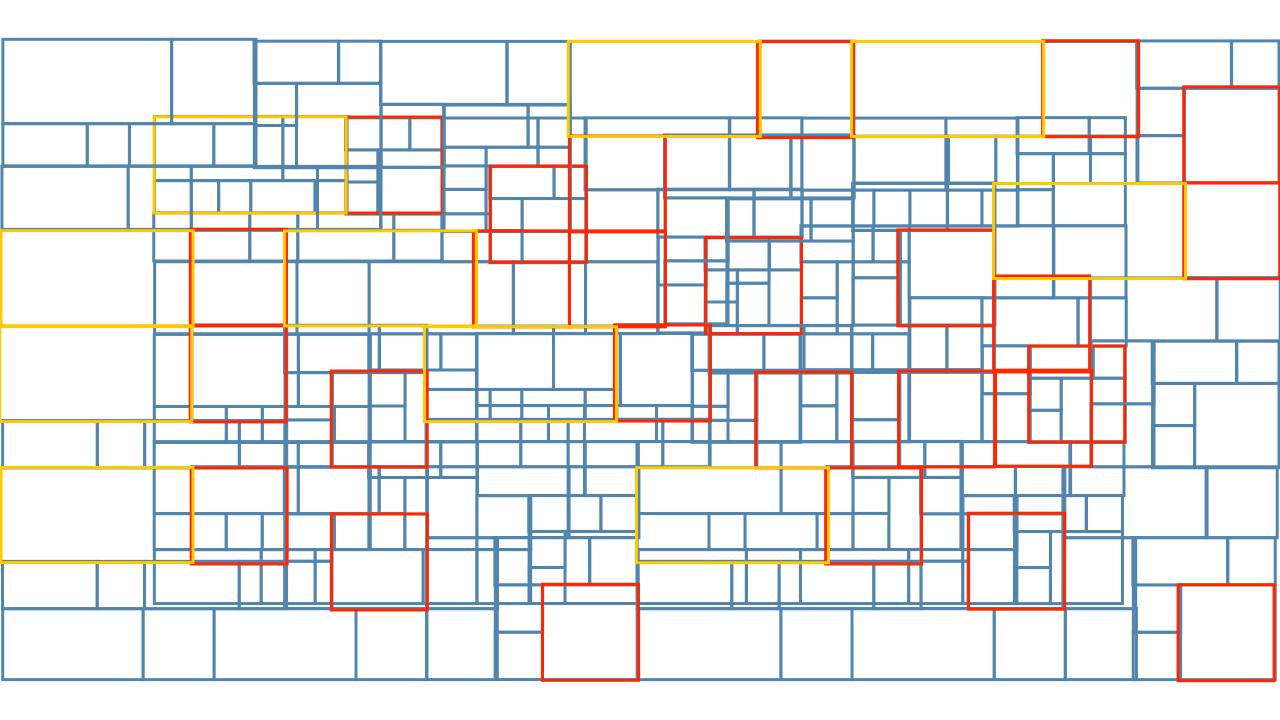


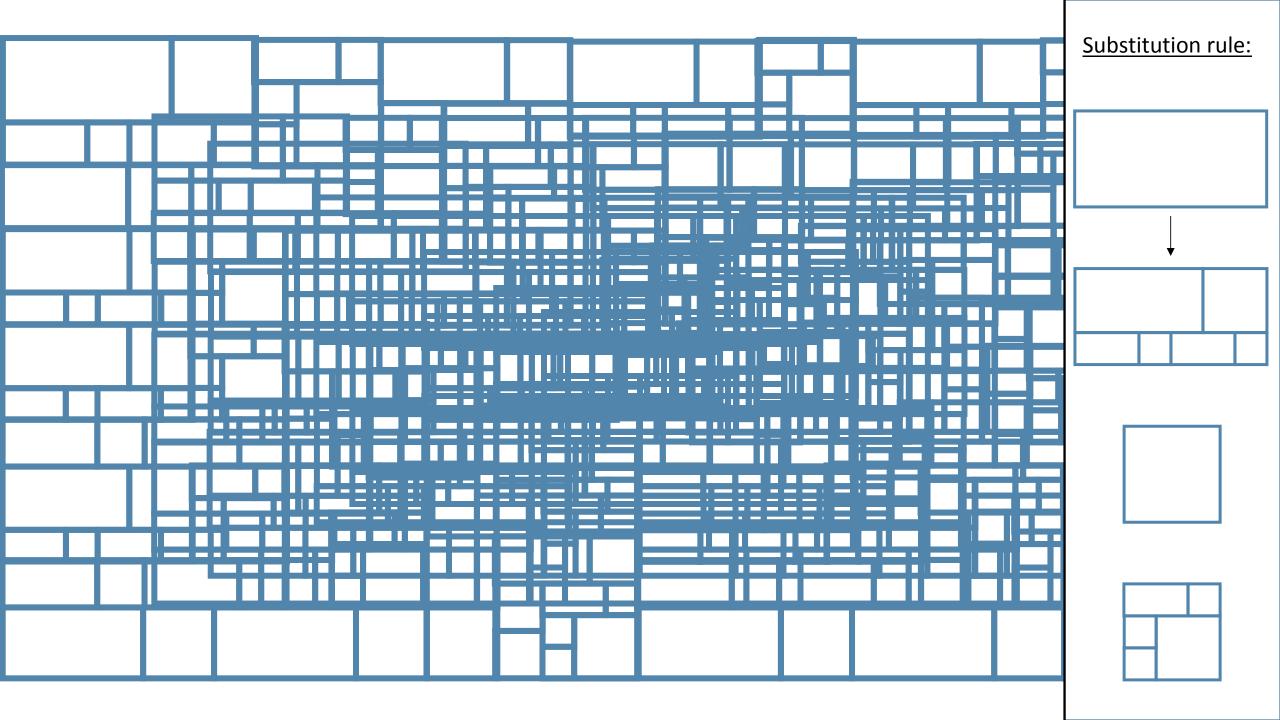












Let \mathcal{X} be the space of closed subsets of \mathbb{R}^d . For $F_1, F_2 \in \mathcal{X}$ define:

$$D(F_1, F_2) \stackrel{\text{def}}{=} \inf \left(\left\{ \varepsilon > 0 : \begin{matrix} F_1 \cap B(0, 1/\varepsilon) \subseteq U_\varepsilon(F_2) \\ F_2 \cap B(0, 1/\varepsilon) \subseteq U_\varepsilon(F_1) \end{matrix} \right\} \cup \{1\} \right)$$

- \blacksquare (\mathcal{X} , D) is a compact metric space!
- $\chi_H \neq \varnothing$: If $t_k \to \infty$ the $supp[S_{t_k}(T_i)]$ exhaust \mathbb{R}^d , and hence every partial limit of $(S_{t_k}(T_i))_{k=1}^\infty$ is a tiling of \mathbb{R}^d .
- Every tile in every tiling in \mathcal{X}_H is similar to a prototile.
- Questions: In what ways this construction is similar/different from the standard substitution framework?

マロトマロトマミトマミト モーぞくの

Let \mathcal{X} be the space of closed subsets of \mathbb{R}^d . For $F_1, F_2 \in \mathcal{X}$ define:

$$D(F_1, F_2) \stackrel{\text{def}}{=} \inf \left(\left\{ \varepsilon > 0 : \begin{matrix} F_1 \cap B(0, 1/\varepsilon) \subseteq U_{\varepsilon}(F_2) \\ F_2 \cap B(0, 1/\varepsilon) \subseteq U_{\varepsilon}(F_1) \end{matrix} \right\} \cup \{1\} \right)$$

- \blacksquare (\mathcal{X} , D) is a compact metric space!
- $\underline{\mathcal{X}_H \neq \varnothing}$: If $t_k \to \infty$ the $supp[S_{t_k}(T_i)]$ exhaust \mathbb{R}^d , and hence every partial limit of $(S_{t_k}(T_i))_{k=1}^{\infty}$ is a tiling of \mathbb{R}^d .
- Every tile in every tiling in \mathcal{X}_H is similar to a prototile.
- Questions: In what ways this construction is similar/different from the standard substitution framework?

Let \mathcal{X} be the space of closed subsets of \mathbb{R}^d . For $F_1, F_2 \in \mathcal{X}$ define:

$$D(F_1, F_2) \stackrel{\text{def}}{=} \inf \left(\left\{ \varepsilon > 0 : \begin{matrix} F_1 \cap B(0, 1/\varepsilon) \subseteq U_{\varepsilon}(F_2) \\ F_2 \cap B(0, 1/\varepsilon) \subseteq U_{\varepsilon}(F_1) \end{matrix} \right\} \cup \{1\} \right)$$

- \blacksquare (\mathcal{X} , D) is a compact metric space!
- $\underline{\mathcal{X}_H \neq \varnothing}$: If $t_k \to \infty$ the $supp[S_{t_k}(T_i)]$ exhaust \mathbb{R}^d , and hence every partial limit of $(S_{t_k}(T_i))_{k=1}^{\infty}$ is a tiling of \mathbb{R}^d .
- Every tile in every tiling in \mathcal{X}_H is similar to a prototile.
- Questions: In what ways this construction is similar/different from the standard substitution framework?

(□) (□) (□) (□) (□) (□)

Let \mathcal{X} be the space of closed subsets of \mathbb{R}^d . For $F_1, F_2 \in \mathcal{X}$ define:

$$D(F_1, F_2) \stackrel{\text{def}}{=} \inf \left(\left\{ \varepsilon > 0 : \begin{matrix} F_1 \cap B(0, 1/\varepsilon) \subseteq U_{\varepsilon}(F_2) \\ F_2 \cap B(0, 1/\varepsilon) \subseteq U_{\varepsilon}(F_1) \end{matrix} \right\} \cup \{1\} \right)$$

- \blacksquare (\mathcal{X} , D) is a compact metric space!
- $\underline{\mathcal{X}_H \neq \varnothing}$: If $t_k \to \infty$ the $supp[S_{t_k}(T_i)]$ exhaust \mathbb{R}^d , and hence every partial limit of $(S_{t_k}(T_i))_{k=1}^{\infty}$ is a tiling of \mathbb{R}^d .
- Every tile in every tiling in \mathcal{X}_H is similar to a prototile.
- Questions: In what ways this construction is similar/different from the standard substitution framework?

(□) (□) (□) (□) (□) (□)

Let \mathcal{X} be the space of closed subsets of \mathbb{R}^d . For $F_1, F_2 \in \mathcal{X}$ define:

$$D(F_1, F_2) \stackrel{\text{def}}{=} \inf \left(\left\{ \varepsilon > 0 : \begin{matrix} F_1 \cap B(0, 1/\varepsilon) \subseteq U_{\varepsilon}(F_2) \\ F_2 \cap B(0, 1/\varepsilon) \subseteq U_{\varepsilon}(F_1) \end{matrix} \right\} \cup \{1\} \right)$$

- \blacksquare (\mathcal{X} , D) is a compact metric space!
- $\underline{\mathcal{X}_H \neq \varnothing}$: If $t_k \to \infty$ the $supp[S_{t_k}(T_i)]$ exhaust \mathbb{R}^d , and hence every partial limit of $(S_{t_k}(T_i))_{k=1}^{\infty}$ is a tiling of \mathbb{R}^d .
- Every tile in every tiling in \mathcal{X}_H is similar to a prototile.
- Questions: In what ways this construction is similar/different from the standard substitution framework?