Uncountably Many Ergodic Maximizing Measures for Dense Continuous Functions

Mao Shinoda

Keio University

November 20, 2017

Ergodic Optimization

 $\begin{array}{ll} X & \text{compact metric space} \\ \mathcal{T}: X \to X & \text{continuous map} \end{array}$

The aim of ergodic optimization is to describe maximizing measures for a given continuous function ϕ .

Definition 1 $\mu \in \mathcal{M}(X, T)$ is a ϕ -maximizing measure if $\sup_{\nu \in \mathcal{M}(X, T)} \int \phi \ d\nu = \int \phi \ d\mu.$

where $\mathcal{M}(X, T)$ denotes the space of all invariant Borel probability measures

Motivation to study maximizing measures

 \cdot Birkhoff's ergodic theorem enables us to interpret maximization of time average as that of space average.

For all continuous function ϕ on X we have

$$\sup_{x \in X} \limsup_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \phi \circ T^k(x) = \max_{\nu \in \mathcal{M}(X,T)} \int \phi \, d\nu$$

 \cdot Maximizing measures appear as the zero temperature limit of equilibrium measures.

 $\{\mu_{\beta}\}$ a sequence of equilibrium measures of $\beta\phi$

$$egin{aligned} &rac{1}{eta}\mathcal{P}(eta\phi) = \sup\left\{rac{1}{eta} h(\mu) + \int \phi \,\, d\mu: \mu \in \mathcal{M}(X,\,T)
ight\} \ & o \sup\left\{\int \phi \,\, d\mu: \mu \in \mathcal{M}(X,\,T)
ight\} \,\,\,\,\, ext{as}\,\,\,eta o \infty \end{aligned}$$

Main Theorems

C(X) the space of continuous functions on X with the supremum norm. $\mathcal{M}_e(X, T)$ the set of all ergodic Borel probability measures on X

Theorem 2 (Jenkinson)

There exists a residual subset \mathcal{R} of C(X) such that for every $\phi \in \mathcal{R}$ there exists a unique ϕ -maximizing measure

Theorem A

Assume T is not uniquely ergodic and $\mathcal{M}_e(X, T)$ is arcwise-connected. Then there exists a dense subset \mathcal{D} of C(X) such that for every $\phi \in \mathcal{D}$ there exist uncountably many ergodic maximizing measures.