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FOR THIS THIRD TALK

v

Answering a question I've been asked

v

Quick summary and conclusions on shape-symmetry

v

A bit more about games (and connections with words)

v

Link between morphisms/substitutions and automata

v

Games with a finite set of moves



Recall the following:

PROPOSITION

A sequence is k-automatic IFF its k-kernel is finite.

DEFINITION

The k-kernel of a sequence x = (z(n)),>0 is a set of subsequences:

Kery,(x) = {(z(k'n + )0 | 1 >0, 0< s < k'}.

Thue—Morse word is 2-automatic.
What about the 3-kernel of Thue—Morse?



g

Transition monoid
0 0
L
1\_1/

abbabaabbaababba - - -
baababbaabbabaab - - -

= #Kery(t) =2



There is an important theorem of Cobham:

THEOREM [COBHAM 1969]

Let k,¢ > 2 be two multiplicatively independent integers.
If a sequence is both k-automatic and ¢-automatic,
then it is ultimately periodic.
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As a consequence of Cobham's theorem, Thue—Morse is not
3-automatic, Kers(t) is infinite.



There is an important theorem of Cobham:

THEOREM [COBHAM 1969]

Let k,¢ > 2 be two multiplicatively independent integers.
If a sequence is both k-automatic and ¢-automatic,
then it is ultimately periodic.

Thue—Morse word has no cube, it is not ultimately periodic.
As a consequence of Cobham's theorem, Thue—Morse is not

3-automatic, Kers(t) is infinite.

Generalizations exist (F. Durand, multidimensional versions, .. .)
Perron—Frobenius eigenvalue is replacing the base.



Let us conclude with shape-symmetric morphisms



Let's try something...

cl|d

YW ar> P

m cn[iT7] dm[i] em[7T7]

=

g|b

hi|d

h|d - .
vy hs[i][m] im

and the coding

?
‘ d
y»—> k— o= [~ o= m»—>

o
S8
o

—
N

/’LW:a7€7g7jJZ’_>17 b707d7f7h7i7k7m’_>0

The morphism ¢ and the coding p give the 2-dimensional
infinite word coding the P-positions of Wythoff.



DEFINITION

Let v: B4(A) — By(A) be a d-dimensional morphism having the
d-dimensional infinite word z as a fixed point.

This word is shape-symmetric with respect to ~ if, for all
permutations v of [1, d]], we have, for all ny,...,ng >0,

(@ (n1, ..oy na))l = (815, 8a)

(2
[v(®(ru@ys - Pu@))] = (Su(ays - -« 5 Su(a))-



Reconsider our map ¢ (one can indeed prove that it is a
d-dimensional morphism having a shape-symmetric fixed point).

hlidl|c|h|d
1] i lml|k|i|lm

cl|d P
a br—>cde»—>Zszb
a alb|i cldl|e|h|d
albli|li|lm

sizes: 1, 2,3, 5



Initial blocks of some 3-dimensional shape-symmetric picture
[12, Maes' thesis p. 107].

o «F = = z ©ace



ASSOCIATED DECISION PROBLEMS
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Some Results from Maes' papers:

» Determining whether or not a
map p: By(A) — By(A) is a
d-dimensional morphism is a
decidable problem.

» If i is prolongable on a letter a,
then it is decidable whether or
not the fixed point u“(a) is
shape-symmetric.

[10, 11, 12]



A bit more about games



We have seen that the Fibonacci word is “coding” the P-positions
of Wythoff's game.

(1,2), (3,5), (4,7), (6,10), ...

abaababaabaababaababa - - -



We have seen that the Fibonacci word is “coding” the P-positions
of Wythoff's game.

(1,2), (3,5), (4,7), (6,10), ...

abaababaabaababaababa - - -

» Several games coded by the same word?

» Given a word, find a game?



ADDING OR REMOVING MOVES

~+ How can we alter the set of moves W to keep the same set of
P-positions?

REMARK

This means that several rule-sets (different “games”) could lead to
the same set of P-positions.

In a subtraction game, observe that a move can be adjoined
(without altering the set of P-positions) if and only if

it does not belong to P — P.

COROLLARY

We can adjoined the move (i,]);<; to Wythoff's rule-set iff
(i,59) # (lnw] = lme), [n@*] = [m@?]) ¥n >m >0

and (i,5) # (Ln @) — lm¢?], [n¢?| = me]) ¥rn > m > 0.



THEOREM (E. DUCHENE ET AL. 2010 [8

(,7)i<; may be adjoined iff there exist valid F-representations
u, u’ such that one the three properties is satisfied :

> (repp(i —1),repp(j — 1)) = (u0, u01)
> (repp(i —2),repp(j — 2)) = (u0, u01)
> (repp(j — Liw] —2),repp(j — Liv] — 2 +1)) = (ul, '0),

0001 0O01O0UO0O0O0
01001000 O0O0O0
0 000O0OT1TO0O0TO0OTO0OO
01001000 O0O0O0
001 01 0O0O0O0O0T1
0001 0O0O0O0T1TTU 0O
01000011010
001 001O0O0O0O01
01010010O0O00O0
001 01001010
0 000O0O0OO0OTO0ODO0OTO 0O




» There is no redundant move in Wythoff's game.

Question: Does the infinite 2-dimensional word on the previous
slide have a shape-symmetric morphic structure?

We conjectured a morphism over 26 letters.



Given a word, e.g. Tribonacci word: abacabaabacab - - - [9]



Given a word, e.g. Tribonacci word: abacabaabacab - - - [9]

I. Any positive number of tokens from up to two piles can be

removed.

Let «, 3,7 be three positive integers such that
2max{a, 3,7} <a+ B +7.

Then one can remove « (resp. /3, 7y) from the first (resp.
second, third) pile.

Let 8 > 2a > 0. From position (a, b, ¢) one can remove the
same number « of tokens from any two piles and (3 tokens
from the unchosen one with the following condition. If a’
(resp. ', ¢’) denotes the number of tokens in the pile which
contained a (resp. b, ¢) tokens before the move, then the
configuration a’ < ¢’ < b’ is not allowed.



Another direction leads to the concept of invariant games [13, 14].

A game G : N™ — 2V" (assigning each position to a set of
available moves) is invariant if there exists a set I C N" such that,
for all positions p, we have

Gp)=IN{me N" | m < p}.

Otherwise stated, we may apply exactly the same moves to every
position, with the only restriction that there are enough tokens left.

EXAMPLE

The game of Nim is invariant:
I = {(4,0) [ ¢ > 1} U{(0,4) | j = 1}
Wythoff's game is invariant:

Kyyrraorr = Inmva U {(k, k) | k > 1}.



For an example of non-invariant game, consider the following map,

. N2 N2
GEVEN-N — 2 s

{(4,0) | 7 € [1, 2]}, if z+ y is even;
(z,y) = { {(i,9) | i € [1, min{z, y}]}, otherw:iyse.

THEOREM (E. DUCHENE, A. PARREAU, M.R.

Under some conditions, one can decide whether or not there exists
an invariant game for a given morphic word.

Making use of Presburger arithmetic...

For instance, one can decide if there exists an invariant set of rules
for the Tribonacci game.



Back to the link between morphisms and automata



From Lecture 1:

» Image under a coding of a fixed point of a k-uniform
morphism;

» Sequence of outputs of a DFAQO fed with base-k expansions;

a +— abc
f:¢ b — cbc
c +— bca

0,2

f“(a) = abccbebeabecacbebeacbebeaabe - - -

g(f“(a)) = 100000001001000001000001100 - - -



From Lecture 2:
0
8/1\\/@
0

e, 1,10,100, 101, 1000, 1001, 1010, 10000, 10001, 10010, 10100, . ..

This is exactly the language of (greedy) Fibonacci representations
repr(N). We have a "Fibonacci-automatic sequence”.

Jn=a- repF(n)'



An extra example: Tribonacci a — ab, b +— ac, c+— a

e, 1,10,11,100,101,110, 1000, 1001, 1010,1011,1100, 1101, . ..

This is exactly the language of (greedy) Tribonacci representations
rep(N). We have a “Tribonacci-automatic sequence”.

t, = a-repp(n).



There is a difference between the first example and the last two
ones...



There is a difference between the first example and the last two
ones...

f:a—ab, b—c, c—cd, d—a

g:a,d—1, b,c—0

f¥(a) = abcededacdaabedaab - - -
9(f*(a)) = 100010110111001110 - - -

Can you relate this sequence to Fibonacci system?



fiam—ab, b—c, c—cd, d—a
g:a,d—1, b,c—0
0

—

9(f“(a)) = 100010110111001110 - - -



f:a—ab, b—c, c—cd, d—a

g:a,d—1, b,c—0

We see that the accepted language is again Fibonacci!

Ty = a-repp(n).



fiam—ab, b—c, c—cd, d—a

g:a,d—1, b,c—0

0
. 1

0

We see that the accepted language is again Fibonacci!

Ty = a-repp(n).



GENERAL THEOREM ‘MORPHIC = AUTOMATIC” [5
Let A be an ordered alphabet. Let w € AN be an infinite word,
fixed point f“(a) of a morphism f: A* — A*.
> associate with f a DFA M over the alphabet
{0,...,max|f(b)] — 1};
» A is the set of states:

» the initial state is a, all states are final;
> if f(b) = co- - Cm, then b -1 ¢, j < m;

» consider the language L accepted by M except words starting
with 0;

» genealogically order L: L ={wy < wy < wp < --- }.

The nth symbol of w, n >0, is .



As a summary, we have two ingredients to re-obtain a
morphic/substitutive word:

» A regular language (accepted by M);
base-k, Fibonacci, Tribonacai, ...

One can have the same underlying language for various
morphisms.

» An automaton fed (in a prescribed order) with words from this
language. The automaton is given by the morphism.



LiNnK wiTH ANS

Actually, we have already seen Abstract Numeration Systems. . .

DEFINITION |15

An abstract numeration system & = (L, A, <) is a regular language
L over a totally ordered finite alphabet (A4, <).

» Enumerating the words in L using genealogical ordering
provides a one-to-one correspondence between N and L :

reps : N —= L, vals : L — N.

» This generalizes any positional system U for which rep;(N) is
regular.

P. Lecomte, M.R., Numeration systems on a regular language, Theory
Comput. Syst. 34 (2001), 27-44.



ABSTRACT NUMERATION SYSTEMS

Example : consider a prefix-closed language L = {b,e}{a, ab}*

n | repg(n)
0 e
1 a
2 b
3 aa
4 ab
5 ba
6 aaa
7 aab
8 aba
9 baa
10 bab



ABSTRACT NUMERATION SYSTEMS

A non-positional ANS L = a*b*
#HO

n | reps(n)
0 =
1 a

2 b

3 aa

4 ab

5 bb

6 aaa

7 aab

8 abb

9 bbb
10 aaaaq




ABSTRACT NUMERATION SYSTEMS

A non-positional ANS L = a*b*
#HO

n | reps(n)
0 €
1 a

2 b
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7 aab

8 abb

9 bbb
10 aaaaq
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A non-positional ANS L = a*b*
#HO

n | reps(n)
0 €
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ABSTRACT NUMERATION SYSTEMS

A non-positional ANS L = a*b*
#HO

n | reps(n)
0 €

1 a

2 b

3 aa

4 ab

5 bb

6 aaa

7 aab
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ABSTRACT NUMERATION SYSTEMS

A non-positional ANS L = a*b*
#HO

n | reps(n)
0 €

1 a

2 b

3 aa

4 ab

b} bb

6 aaa

7 aab

8 abb

o—o 9 bbb
10 aaaaq




ABSTRACT NUMERATION SYSTEMS

A non-positional ANS L = a*b*
#HO

n | reps(n)
0] £

1 a

2 b

3 aa

4 ab

5 bb

6 aaa

o 7 aab
8 abb

o—o 9 bbb
10 aaaaq




ABSTRACT NUMERATION SYSTEMS

A non-positional ANS L = a*b*
#HO

n | reps(n)
0] £
1 a
2 b
3 aa
4 ab
@ 5 bb
6 aaa
o @ 7 aab
8 abb
o—o ® 9 bbb
10 aaaaq

@ @ @ @ #a




ABSTRACT NUMERATION SYSTEMS

A non-positional ANS L = a*b*
#HO

n | reps(n)
0] £
1 a
2 b
® 3 aa
4 ab
@ ® 5 bb
6 aaa
o @ @ 7 aab
8 abb
oo o ¢ 9 bbb
10 aaaaq
o—0 0 0 ° #a




ABSTRACT NUMERATION SYSTEMS

A non-positional ANS L = a*b*

vals(a?b?) = %(P +a)ptg+l)+ag= (p +g+ 1> + (f)

€ a b aa ab bb aaa
01 2 3 4 5 6
Uo=1, U1 =2, w(a) =1,w(b) =2

l .
T 0
Generalization : valy(a;" - ;") = E (nl oot et Z).
i=1

{—i+1

R 2 20—1 21
VHEN,HZL...,Z(.TL—<€>—|—<£_1>—|— _|_(1>

with the condition zp > 21 > --- > 2 >0

Katona, Gel'fand, Lehmer, Fraenkel, Lew, Morales, ... [16, 17, 18]




There was already some form of abstract numeration system in
Maes' Ph.D. thesis (1999) [12].

Rem. 6.9, p. 134, “The set of codes of N given by the above
automaton is of course a regular language ... The language read by
A is 0* L. However, the above coding is not a numeration system
in the sense of [6]. Indeed, the representation of a natural number
is not obtained using a 'Euclidian division’ algorithm.”



S-AUTOMATIC SEQUENCES

Two ingredients: an ANS S = (a*b*,a < b) and a DFAO M [4]

‘xn =M -repg(n) ‘

x = 01023031200231010123023031203120231002310123010123 - - -



S-AUTOMATIC SEQUENCES

Two ingredients: an ANS S = (a*b*,a < b) and a DFAO M [4]

‘xn =M -repg(n) ‘

x = 01023031200231010123023031203120231002310123010123 - - -

This can be extended to a multidimensional setting.



S = (a*b*,a < b) padding symbol: #

220200200020000
112222222222222
020200200020000
200000000000000
022222222222222
220200200020000
112122122212222
001011011101111 - - -



THEOREM (A. MAES, M.R.

An infinite word is morphic if and only if it is S-automatic for some
abstract numeration system §.

= Already proven.
< We need to get rid off erasing morphisms.
Simulate the product of the two automata.

THEOREM (E. CHARLIER, T. KARKI, M.R. [19

Let d > 1. The d-dimensional infinite word x is S-automatic,
for some abstract numeration system S = (L, %, <) where ¢ € L,
if and only if z is the image by a coding of a shape-symmetric
infinite d-dimensional word.




SUMMARY

k-automatic sequence

)

k-uniform morphism
+ coding

[A. Cobham’72] [2]

S-automatic sequence

)

non-erasing morphism
+ coding

[A. Maes, M.R.'02] [4, 5]

multidimensional setup
z:N* 5 A

k-automatic sequence

i)

morphism g : A — (A¥)¢

+ coding

[O. Salon'87] [?]

S-automatic sequence
“shape-symmetric” morphism
+ coding

[E. Charlier, T. Kirki, M.R.'09] [19]



Some work in progress
It permits me a few words about Presburger arithmetic...



(GAMES WITH A FINITE SET OF MOVES

Games like Nim or Wythoff have an infinite set of moves.

IN ONE DIMENSION |1

Every (invariant) finite subtraction game on one pile,
i.e., I C N is finite, has an ultimately periodic Grundy function.

Proof:
Let m = #I (max. number of options), then G(n) < m for all n.

Let k = max I, there are (m + 1)* possible k-tuples taking values
in {0,...,m}. G(n) depends only on G(n — i) for 1 < i < k.

Hence, there exist ¢ < j
G(i+n)=G({+n)forallne{0,...,k—1}.

Thus j7 — i is a period of G with preperiod 1. O



Another similar result

[1, A. SIEGEL, P. 188]

Consider an (invariant) finite subtraction game on one pile, with
I C N as set of moves. If there exist N > 0 and p > 1 such that

Gn+p)=G(n), VYN <n<N+maxI

then G(n 4+ p) = G(n) forall n > N.



If we may optionally split a pile. ..

Definition from Wikipedia:

An octal game is played with tokens divided into heaps.

Two players take turns moving until no moves are possible.

Every move consists of selecting just one of the heaps, and either
» removing all of the tokens in the heap, leaving no heap,

» removing some but not all of the tokens,
leaving one smaller heap, or

» removing some of the tokens and dividing the remaining
tokens into two nonempty heaps.

Heaps other than the selected heap remain unchanged.
The last player to move wins in normal play.



Coding of an octal game (Conway code)

dy e dydods--- diE{O,...,'?}

d; written in base 2: eéi)efi)eéi) gives the conditions under which ¢
token may be removed.

(4)

» ¢;° =1, then a (full) heap with i token can be suppressed

> efi) =1, then a heap with n > ¢ token can be replaced with a
heap with n — ¢ token left

> eéi) =1, then a heap with n token can be replaced with two
heaps containing respectively a and b token, a,b > 1,
a+b=mn—71.

EXAMPLE

The game of NIM is coded by 0 @ 3333 - - -, repg(3) = 011.

A finite subtraction game I = {3,5,6} is of the form 0 e 003033.



THEOREM (OCTAL GAME PERIODICITY

Consider a finite octal game dy e dids - - - di, dp # 0. If there exist
N >0 and p > 1 such that

Gn+p)=G(n), YN<n<2N-+p+k
then G(n 4+ p) = G(n) for alln > N.

Are all finite octal games ultimately periodic? [20, R. Guy]

0 @ 07 has period 34 and preperiod 53 [Guy, Smith 1956]

0 @ 007 no known periodicity. . .

0 @ 165 has period 1550 and preperiod 5181 [21, Austin, 1976]

0 @ 106 has period ~ 3.10!' and preperiod ~ 4.10'!
[Flammenkamp, 2002]

http://wwwhomes.uni-bielefeld.de/achim/octal.html



With more than one pile (let's say two piles).

NATURAL QUESTION

What is the structure of the G-values for a finite subtraction game
over k piles? Do we get a Presburger definable set, i.e., each value
determines a semi-linear set?

Cobham—Semenov’ theorem: Let p, ¢ > 2 be multiplicatively
independent integers. If X C N¥ is both p-recognizable and
g-recognizable, then it is definable by a first-order formula in the
Presburger arithmetic (N, +) [3].

Work in progress: X. Badin De Montjoye, V. Gledel, V. Marsault,
A. Massuir, M.R.



A FEW WORDS ABOUT AN EXTENSION OF (N, +)

https://www.youtube.com/watch?v=U9t10GAsnlk
Vi(n) is the largest power of k dividing n > 0.



A FEW WORDS ABOUT AN EXTENSION OF (N, +)

https://www.youtube.com/watch?v=U9t10GAsnlk
Vi(n) is the largest power of k dividing n > 0.

Reformulation by Charlier, Rampersad, Shallit

BUcHI-BRUYERE THEOREM

Let £ > 2.
If one can express a property of a k-automatic sequence x using:

(first-order) quantifiers, logical operations, integer variables,
addition, subtraction, indexing into x and comparison of integers
or elements of x,

then this property is decidable.



A FEW WORDS ABOUT AN EXTENSION OF (N, +)

https://www.youtube.com/watch?v=U9t10GAsnlk
Vi(n) is the largest power of k dividing n > 0.

Reformulation by Charlier, Rampersad, Shallit

BUcHI-BRUYERE THEOREM

Let £ > 2.
If one can express a property of a k-automatic sequence x using:

(first-order) quantifiers, logical operations, integer variables,
addition, subtraction, indexing into x and comparison of integers
or elements of x,

then this property is decidable.

Honkala (1986) vs. (3p)(3N)(Vi > N)x(7) = x(i + p).



A. THUE (1906)

The Thue—Morse word t is overlap-free.

~(3)(3 > DIV < O +7) = t(i+E+5)) At(E) = t(i+20)]



A. THUE (1906)

The Thue—Morse word t is overlap-free.

~(3)(3 > DIV < O +7) = t(i+E+5)) At(E) = t(i+20)]

Quite a few properties that can be checked for k-automatic
sequences:

v

(arbitrarily large) unbordered factors

v

reccurrent word

v

linearly recurrent word

Fac(x) C Fac(y)

Fac(x) = Fac(y)

existence of an unbordered factor of length n

v

v

v
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Automatic proof that the Thue—Morse word is overlap-free
—(3)(3 = DV < O)(t(i +4) = t(i + L +7)) At(i) = (2 + 20)]

Up to 97 states in an intermidiate step

rigo@x1:~/Walnut/Walnut/Walnut/bin$ java Main.prover
eval test "~(EL El 150 & (Aj j<l => ((T[1+3]=T[(1+3)+1]) & (T[LI=TL((L+L)+1)I1)))":
Il>0 has 2 states: 14ms
j<l has 2 states: oms
TL(i+3)I=T[((i+3)+1)] has 12 states: 136ms
T[i]=T[((1+1)+1)] has 6 states: 39ms
(TLCL+3)1=TIC(L+3)+ ) 1&T[L]=T[((i+1)+1)]) has 72 states: 4ims
(F<U=>(TL(i+3) I=TLC(L+3)+ 1) J&T[L]=T[((i+1)+1)])) has 97 states: 62ms
(A § (Gel==(TI(+3)I=TL((L+3)+ 1) I&T[L]=T[((i+1)+1)]))) has 1 states: 186ms
(1>0&(A § (F<l=>(T[(1+3)]=T[((i+3)+L)I&T[1]=T[((i+1)+1)]1)))) has 1 states: ims
(E L (1>0&(A j (G<l==(T[(i+3)1=TL((i+3)+1)I&T[L1]=T[((i+1)+1)]1))))) has 1 states: Oms
(E1 (E 1 (1>0&(A j (F<1=>(TL(i+3)I=TL((i+3)+1)I&T[1I=T[((i+1)+1)1)))))) has 1 states: ims
~(E1 (E 1 (1>0&(A j (F<l=>(T[(i+3)I=TL((L+3)+L)I&T[LI=T[((1+1)+1)1)))))) has 1 states: Oms
‘total computation time: 506ms

GraphViz / xdot ../Result/test.gv

*

(): ~(Ei El 1>0 & (Aj j<I => ((Ti+j1=TL(i+j)+11) & (THI=TL((i+D+D)D)))



FROBENIUS’ PROBLEM

Chicken McNuggets can be purchased only in 6, 9, or 20 pieces.
The largest number of nuggets that cannot be purchased is 43.

(Vn)(n >43 — (3z,y,2 > 0)(n = 62 + 9y + 20z))
A=((3z,y,z > 0)(43 = 62 + 9y + 202)) .



What about Pisot numbers?



What about Pisot numbers?

<N7+7 VU>

We need addition to be computable by an automaton...
Frougny's paper from 1992: addition is normalization.



What about Pisot numbers?

<N7+7 VU>

We need addition to be computable by an automaton...
Frougny's paper from 1992: addition is normalization.

For instance, you can answer automatically many questions about
Fibonacci word, Tribonacci word, . ..



WHAT DOES A SEMI-LINEAR SETS LOOK LIKE?

The subsets of N definable in (N, +) are exactly the ultimately
periodic sets.

| |
Ty = 311 . .
0] 2=
pattern from p3
[l ]

AN [ | [ ] [ | ]
1] 1] T ] ] ] pattern from py
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%!7 [ (] /F
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/l (] m | m ]

B /. | [m | | | | ]
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] [ ] [ ] ] [ ] pattern from py
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What about Grundy values for games with a finite set of rules?



If we let T ={(2,1), (3,5)}, we get

PROPOSITION

If #£1 = 2, then the set of G-values is Presburger definable.




{(1,3), (3,1), (4,4)}, we get

If we let I

120

100
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40

20




{(1,2), (2,1), (3,5), (5,3)}, we get

If we let 1




If we let T ={(1,2), (2,1), (3,5), (5,3), (2,2)}, we get

We think that this one is NOT Presburger definable,



{(10,2), (2,10), (32,5), (5,32), (10,10)}, we get

If we let 1




If we let T = {(10,2), (2,10), (32,5), (5,32), (10,10)}, we get

1000




Cellular automata — kind of space-time diagram with bounded
memory, the rules are (1,2) and (3,1)
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