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The theorem (again)

Theorem (Berger 1964 (PhD), 1966 (Memoirs of the AMS))
There is no algorithm that decides, given a tileset τ , if τ tiles the plane.

E. Jeandel and P. Vanier, Undecidability of the Domino Problem 2/86



Last time

Algorithms can be represented by Turing machines
Turing machines can be encoded into tilings

However, the encoding has a default: it needs a “catalyst” tile to launch
the computation.
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Proof of the Undecidability of the Domino Problem

Proofs fall into 4 categories:
Berger (64)-Robinson (71) constructions
Aanderaa-Lewis (74)
Kari (07)
Durand-Romashchenko-Shen (08)

Many, many variants of Berger-Robinson.
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Proof of the Undecidability of the Domino Problem

Two different ways to solve the caveat we saw on tuesday:

Force the catalyst tile to appear
(Berger,Robinson,Aanderaa-Lewis,DRS)
Use a different encoding of Turing machines (Kari)

We will present here the two methods
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Proof of the Undecidability of the Domino Problem

Remark

Everything I’m presenting now is very well known
The lecture notes have a third proof (Aanderaa-Lewis) which is
almost completely unknown

If you know everything about Kari and Robinson, read the lecture
notes!
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Plan

1 Berger-Robinson

2 The Kari construction
Encoding of TM

3 Conclusion
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Historical Notes

Inspired by the proof of Berger and Robinson, using ideas of
Ollinger for simplification
Robinson’s proof is not that different from Berger

Berger has an aperiodic set of 103 tiles in his PhD
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The Catalyst tile

We want to force a specific tile to appear so that it can kickstart the
computation
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Reminder

A tileset τ tiles the plane iff it tiles arbitrarily large squares

Corollary
If every tiling of the plane contains a tile t , then there exists n s.t. t
appears in every n × n square
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The Catalyst tile

The specific tile t should appear everywhere.

There should be infinitely many computations in one tiling of the plane.
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How to do it

To obtain the Undecidability of the Domino Problem:

Find an aperiodic tileset τ
Look at occurrences of a specific tile t inside this τ
Build computations around this tile, hoping that they do not overlap
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How to do it

How do you obtain an aperiodic tileset ?

Robinson-Berger: Use substitution-like tilings.
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Substitutions

Definition
A substitution is a map φ from A to An×n for some n.
Given a substitution φ and an initial pattern w , we can iterate φ on w to
obtain arbitrarily large patterns.
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Example
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Example
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Substitutive tilesets

Definition
The subshift Sφ associated to φ is the set of colorings of the plane that
look like φk (w) for some large value of k .

(Of course not an exact definition)

Definition
A tileset τ is substitutive if tilings by τ look like Sφ up to recoloring.

A lot of different substitutive tilesets in the literature. But how can you
obtain them ?
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Intrinsically substitutive tileset

Definition
A tileset τ is intrinsically substitutive if the substitution φ is defined
directly on the tiles of τ , and encoded directly into the local constraints
of τ .
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Intrinsically substitutive tileset

What do we mean exactly ?
φ(w) is a valid tiling iff w is a valid tiling

There is a one-to-one correspondence between the colors on the east
side of τ and colors on the east side of φ(τ).

We can desubstitute: For every tiling x by τ , there exists y s.t
φ(y) = x

All? tilings of a 2× 2 square are of the form φ(t) for t ∈ τ
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Intrinsically substitutive tileset

Theorem (Durand-Levin-Shen 2004, Ollinger 2008)
There is an intrinsically substitutive tileset

These are the first proven examples. However Berger’s set of 103 tiles
IS intrinsically substitutive, and Robinson’s set ISN’T.
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The tileset of Ollinger
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A tiling
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How does it work

= + +

= + +
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First layer

The first layer forces tiles to be grouped into 2× 2 squares.
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Second layer

(16 different tiles)

(4 different tiles)

The second layer is the image of the first layer by the substitution
(more on this later)
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The third layer

The third layer codes the “chair substitution”.
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Substitution

φ is a 2× 2 substitution. When substituting, the original tile is “found”
on the bottom-left of the 2× 2 square.

Layer 1 of w is encoded into layer 2 of φ(w)

Layer 2 and 3 of w are enlarged into φ(w)
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Layer 0→ Layer 1

Every φ(w) is of the form:

7→
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Layer 1→ Layer 2

Layer 1 is enlarged into Layer 2

7→ 7→

7→ 7→
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Layer 2→ Layer 2

Layer 2 is propagated into the adjacent tiles

7→ 7→

7→ 7→

E. Jeandel and P. Vanier, Undecidability of the Domino Problem 30/86



Layer 3→ Layer 3

Layer 3 is also propagated

7→ 7→

7→ 7→

7→
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Two examples

7→

7→
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Theorem

Theorem (Ollinger 2008)
The tileset τ is intrinsically substitutive

Proof: Just? inspect all 2× 2 patterns.
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Theorem

The fact the tileset is substitutive proves it is aperiodic but does not
explain everything

Why do we need the third layer ?

What are the rules between the layers ?
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The substitution again

Every φ(w) is of the form:

7→ A H

V C

A: any tile
C: corner tile
H: horizontal tile: propagate signal from A horizontally
V : vertical tile: propagate signal from A vertically
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The substitution again

What if we have something of the form

7→
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The substitution again

What if we have something of the form

7→H
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The substitution again

What if we have something of the form

7→H

The corner at the top right of the square determines what kind of tiles
we can put at the bottom left of the square

That’s what the third layer is ensuring.
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More details

7→ A H

V C

What color appear on the blue part determines which corner is in C.
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Rules for V

Here are the possible rules for the tile at the top left (tile of type V ):

Similar rules for the tile at the bottom right.
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Theorem

Theorem (Ollinger 2008)
The tileset τ is instrinsically substitutive, and we more or less
understand why.
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What do we do now ?

We will encode computations inside the tilings s.t. there is a tiling iff
some Turing Machine does not halt.

First, we simplify the tilings by looking only at the red color at layer 2
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What we have

We obtain squares in which we could put a Turing machine

Squares have a designated corner in which we could put the catalytic
tile.
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Problem

Squares intersect

Solution: Keep only half the squares.
Technically: two different shades of red (dark/light), dark red can only
cross light red.
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Problem

Squares inside squares.

We cannot change this

Technical trick due to Robinson: Use on bigger square only the space
that is not hindered by the smaller squares.
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What to do now

We now put our Turing machine in the space left blank
It will be initialized by the bottom left corner of a square, which is
always free (blank)
The free (blank) space inside a square is not connected, however
we can use the gray cells to transmit information(colors) between
two blank cells on the same row/column
Lot of technical details.
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Idea

Suppose there is a tiling of the plane
Then there are tilings of arbitrarily large red squares
These squares contains computation of the Turing machine for an
arbitrarily long time
Therefore the Turing machine does not halt
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Idea

Suppose the TM does not halt
Build a tiling of the plane by putting in each red square the
beginning of the computation of the TM.

Therefore there exists a tiling iff the TM does not halt.
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Remarks

Essentially Robinson’s proof
Robinson is not substitutive. Ollinger is a cover of Robinson that is
intrinsically substitutive.

Berger’s proof builds infinite vertical strips rather than squares
The vertical strips overlap, so same trick is used

Berger’s set of 104 103 tiles is almost the same as
Robinson/Ollinger !
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Plan

1 Berger-Robinson

2 The Kari construction
Encoding of TM

3 Conclusion
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Kari construction

Main idea :

Use a different encoding of Turing machines into tilings that do not
have the problems we encountered
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Problems (from last time)

Erratic configurations:

tilings with no head per row
tilings with more than one head per row
tilings may no start from the initial state
tilings using only the blank tile
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New encoding

This new encoding (to be defined) forces that there is exactly one head
per row.

Which problem remains ?
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The Immortality Problem

Theorem (Hooper 1966)
There is no algorithm that decides, given a Turing machine, if there
exists SOME configuration on which it runs forever.

Configuration can be arbitrarily (arbitrarily initial state, arbitrarily initial
filling of the tape)

New encoding + Hooper Theorem = WIN

Note: Proof of Hooper’s Theorem is very hard.
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Kari’s idea

Two steps:

It is very easy to simulate affine maps with tilesets

A Turing Machine can be encoded into piecewise affine maps.
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How to encode Turing machines

A Turing Machine can be encoded into piecewise affine maps.

Idea: use the moving tape model.
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Idea

Suppose the states and symbols of the Turing machine are integers.

1 2 0 1 2 2 0 1 0 3 2

1
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Idea

Suppose the states and symbols of the Turing machine are integers.

1 2 0 1 2 2 0 1 0 3 2

1

Code it into:
L = 0.021 . . .
R = 0.12201032 . . .
S = 1
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Encoding

Every configuration of the Turing machine will be encoded into a tuple
(L,R,S) ∈ R3, representing the left part, the right part, and the state of
the configuration.
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How does it work

The TM is in state q and reads an x is the same as

S ∈ [q,q + 1[ and R ∈ [x/10, x/10 + 0.1[
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How does it work

We replace the x by a y is the same as

R ← R + (y − x)/10
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How does it work

We move the head to the right is the same as

L← (L + x)/10

R ← 10(R − x/10)
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How does it work

If we are in state q and read x , we output y , change to state q′ and we
move to the right:

f (L,R,S) = ((L + y)/10,10(R − x/10),q′)

if S ∈ [q,q + 1[ and R ∈ [x/10, x/10 + 0.1[
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Result

A Turing machine is essentially the same as a piecewise affine map
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Caveats

The base in which we represent the tape should be strictly bigger
than the alphabet.

To avoid 0.099999 · · · = 0.100000 . . .

Some inputs of the piecewise affine map do not correspond to
“real” tapes

This is usually not a problem
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Result

Theorem (Hooper 1966)
There is no algorithm that decides, given a Turing machine, if there
exists SOME configuration on which it runs forever.

Theorem
There is no algorithm that decides, given a 3D piecewise affine map f ,
if there exists x s.t f n(x) is defined for all n.

Now it remains to..
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Kari’s idea

It is very easy to simulate affine maps with tilesets

(if they have rational coefficients)

We will only explain how to simulate a map f : x → ax + b. Adding
linear constraints (x < c) or going to higher dimensions is easy.
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Idea

One row of colors will represent a real number x .

One row of a tiling represents transitions between two rows of color
(the colors at the south, and the colors at the north)

We will design the tileset so that one row of the tiling will represent the
operation x → f (x).
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Question

How do we represent real numbers as biinfinite sequences ?
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The β-sequence

Definition
The β-sequence for a number x is the biinfinite sequence

βn(x) = bnxc − b(n − 1)xc

Examples:
β(0) = . . . 000000000000000000000000 . . . .
β(1/2) = . . . 010101010101010101010101 . . . .
β(1/3) = . . . 100100100100100100100100 . . . .
β(
√

2− 1) = . . . 001010010100101010010100 . . . .
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Properties of β-sequences

βn(x) ∈ {bxc, bx + 1c}
n consecutive bits of β(x) gives a good approximation of x :∑k+n

i=k+1 βi(x)
n

=
b(k + n)xc − bkxc

n
∈ [x − 1

n
, x +

1
n
]
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Backwards

We have obtained a map from real numbers to biinfinite sequences of
0 and 1.

We need a reverse map, for example:

r(w) = lim inf
n→+∞

∑n
i=−n wi

2n + 1

Notice that r(β(x)) = x .
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Main theorem

Theorem
For every q ∈ Q there exists a tileset τ s.t.

For every x, there exists a tiling of a row with β(x) at the bottom
and β(qx) at the top
In a tiling of a row by τ , we have r(t) = qr(b) where t and b
denote the colors on the top and bottom of the row.

First item: The tileset simulates multiplication by q if fed the right input.
Second item: It also simulates multiplication by q on bad inputs.
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Idea of the proof

The tileset τ consists of all tiles of the form

c c′
b

a

with c, c′ ∈ [−q,1] and
qa + c = b + c′

Ideally we would like qa = b. c represents a carry from the past, and c′

a carry we will give to our future.
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First point

This works if we have β(x) on bottom and β(qx) on top

qb(n − 1)xc − bq(n − 1)xc qbnxc − bqnxc

βn(qx)

βn(x)
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Second point

Suppose we have t on top and b at bottom.
Then

q
n∑

i=−n

bi + c−n =
n∑

i=−n

ti + cn

Therefore
q
∑n

i=−n bi

2n + 1
=

∑n
i=−n ti

2n + 1
+

cn − c−n

2n + 1
And

qr(b) = r(t)

as cn − c−n = O(1)
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Slight problem

Note: we need a finite tileset

We only need carries that can occur on the β-sequences. If q = n/m
we only need carries in [−q,1] that are rational fractions of m, and
there are finitely many of them.
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Main theorem

Theorem
For every piecewise affine map f with rational coefficients, there exists
a tileset τ s.t.

For every x, there exists a tiling of a row with β(x) at the bottom
and β(f (x)) at the top
In a tiling of a row by τ , we have r(t) = f (r(b)) where t and b
denote the colors on the top and bottom of the row.

E. Jeandel and P. Vanier, Undecidability of the Domino Problem 80/86



End of the proof

Let f be a piecewise affine map.

Suppose there exist n s.t. f n(x) is defined for all n.

Then there exists a tiling of a half plane with β(f n(x)) as the bottom
color of the n-th row

(By the first point)

Therefore there exists a tiling of the plane by compactness
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End of the proof

Let f be a piecewise affine map.

Suppose there exist a tiling of the plane

Let bn be the color at the bottom of the n-th row.

Then r(bn) = f (r(bn−1)) and therefore r(bn) = f n(x) for x = r(b0)

(By the second point)

Therefore f n(x) is defined for all n.
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End of the proof

There is a tiling of the plane by τ iff there exists x s.t. f n(x) is defined
for all n.

No algorithm can solve the latter problem, therefore no algorithm can
solve the former.

E. Jeandel and P. Vanier, Undecidability of the Domino Problem 83/86



Final remark

The proof is considerably simpler, but we have to admit the theorem of
Hooper.

Somehow, the difficulty has been shifted into the proof of the
theorem of Hooper
The proof of Hooper’s theorem uses tricks similar to Robinson (in
particular substitutions)
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Plan

1 Berger-Robinson

2 The Kari construction
Encoding of TM

3 Conclusion

E. Jeandel and P. Vanier, Undecidability of the Domino Problem 85/86



Conclusion

Two different proofs of the Undecidability of the Domino Problem

One more proof in the lecture notes
One last proof will be given in the full version of the lecture notes.
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