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The theorem (again)

Theorem (Berger 1964 (PhD), 1966 (Memoirs of the AMS))
There is no algorithm that decides, given a tileset τ , if τ tiles the plane.

To prove such a statement, we need a formal definition of an
algorithm/program/computable function.
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Computable functions

Many formal definitions of computable functions:
with programs (λ-calculus) (Church 1936)
with axioms (Herbrand-Gödel-Kleene 1936)
with a mechanical device (Turing 1937)

All definitions are equivalent: there is a single notion of a computable
function.

Church-Turing thesis: all reasonable notions of computable functions
agree.

Note: these are notions of computable functions, not of algorithms.
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Remark on encodings

Computable functions and computable sets are either defined on
nonnegative integers or finite words.

To speak about an algorithm that takes tilesets as input, we need to
agree on an encoding of tilesets as integers, or finite words.
The exact encoding doesn’t matter, as long as it is natural.
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Plan

1 The Turing Machine

2 The Fixed Domino Problem

3 The Periodic Domino Problem
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The Turing Machine

The Turing machine is a mathematical abstraction of computations by
a human being, introduced by Turing (1937).

Out of all models of computations, the TM is arguably the one most
suitable for undecidability proofs, due to its mechanical nature.
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The Turing Machine

The TM works in discrete time steps.
At each step, the entire work space of the Turing is represented by
a one-dimensional tape

The tape can be simply infinite or biinfinite. Both models are
equivalent.
Formally, a tape is an element of AN or AZ, for A some given finite
alphabet.
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The tape

a b b a b a b a a b
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The tape

A scanning device is installed on the tape. It is called a head.
The scanning device has an internal state, formally an element of
a finite set Q
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The tape

a b b a b a b a a b

1
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One step at a time

At each step, the Turing machine operates only depending on what the
scanning device can see:

Its internal state
The symbol it sees

and may:
Change its internal state
Change the symbol on the head
Move the head
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One step at a time

Formally, this is given by a (finite) map:

δ : Q × A → Q × A × {←,→}

old state new state

symbol read symbol written

movement
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The tape

a b b a b a b a a b

1

a b

0 a,1,→ b,1,←
1 b,2,→ b,0,→
2 b,0,← a,2,→
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What is moving

In the previous example, the head was moving

Dually, we can keep the head in the same place and move the tape

(if the tape is biinfinite)
The approach we will take depends on the context.
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Moving head

M : AZ × Q × Z → AZ × Q × Z

content of the tape position of the head

internal state

We can switch Z with N for simply infinite tapes.
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Moving tape

M : AZ × Q → AZ × Q

content of the tape

internal state

Head always at position 0.
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Computation

How to compute with a Turing machine ?

We write the input on the tape
We reset the head (at the beginning of the tape, with an initial
internal state)
We run the Turing machine until we go to a special state, called
the Halting state
We read the output from the tape

E. Jeandel and P. Vanier, Undecidability of the Domino Problem 18/79



Computation

A Turing machine defines a function from Σ? to Σ? where Σ is the
input/output alphabet.

(Σ? is the set of finite words over alphabet Σ)

The function may not be defined everywhere: If the Turing machine
does not reach the Halting state, it will not halt, and the function is not
defined.
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Church-Turing thesis

Any algorithm may be simulated by a Turing

Definition
A function is computable if it can be computed by a Turing machine.
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Example

0 1 B

0 B,1,→
1 0,2,→ 0,6,→
2 0,2,→ 1,2,→ B,3,←
3 B,4,←
4 1,5,← 1,4,←
5 0,5,← 0,4,← B,1,→
6 0,8,→ 1,9,→ B,B,→
7 0,7,→ 1,8,→
8 1,7,→ 0,9,→ 1,A,←
9 0,8,→ 1,9,→ 0,8,→
A 0,A,← 1,A,← B,1,→

Initial state: 0
Halting state: B
What is the output starting from 011?
E. Jeandel and P. Vanier, Undecidability of the Domino Problem 21/79



01

2

3

45

6

789

B

A

B/B →
0/0→

1/1→0/0→

B/B ←

1/B ←
0/B ←

1/1←
0/1←

1/0←

0/0←

B/B →B/B →

1/0→

B/B →

0/0→1/1→
0/0→

1/1→

0/1→1/0→

0/0→
B/0→1/1→

B/1←

1/1←
0/0←

B/B →
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How to understand the Turing machine

To understand this particular Turing machine, the input has to be seen
as an number represented in binary from least to most significant bit.

So 011 represents the number 6.
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Form of the Turing Machine

01

A

B

B/B →

0/0→

1/0→

. . .. . .

. . . . . .
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How does this TM work ?

1. If the input begins with 0

do A
else

do B

Our input is 011, so it begins with 0, let’s see A
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Inside block A

1

2

A′

B/B →

0/0→

1/1→0/0→

B/B ←
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How does this TM work ?

1. If the input begins with 0

go to the end of the input
do A′

else
do B
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1

3

4 = R15 = R0

1/B ←
0/B ←

1/1←

0/1←

1/0←

0/0←

B/B →B/B →
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How does this TM work ?

1. If the input begins with 0

go to the end of the input
shift the input to the left
go back to 1.

else
do B
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How does this TM work ?

1. If n is even
divide n by 2
go back to 1.

else
do B
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1

6B

B′

1/0→

B/B →

0/0→
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How does this TM work ?

1. If n is even
divide n by 2
go back to 1.

else
If n = 1

Output 0 and halt
else

Do B′
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How does this TM work ?

1. If n is even
n← n/2
go back to 1.

else
If n = 1

Output 0 and halt
else

n← 3n + 1
go back to 1.
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1

6

789

A

1/0→

0/0→1/1→ 0/0→

1/1→

0/1→1/0→

0/0→
B/0→1/1→

B/1←

1/1←
0/0←

B/B →
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7 = C08 = C19 = C2

0/0→

1/1→

0/1→1/0→

0/0→
B/0→

1/1→
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Conclusion

The Turing machine, starting from n (seen as a number coded in
binary)

halts and output 0 if the Collatz sequence starting from n
eventually reaches the integer 1
does not halt otherwise.
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The tape

B 0 1 1 B B B B B B

0
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The tape
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The tape

B 0 1 B B B B B B B
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The tape

B 1 1 B B B B B B B

5
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The tape

B 1 1 B B B B B B B

1
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The tape

B 0 1 B B B B B B B

6
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The tape

B 0 1 B B B B B B B

9
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The tape

B 0 1 0 B B B B B B

8
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The tape

B 0 1 0 1 B B B B B

A
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The tape

B 0 1 1 B B B B B B
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The tape

B 0 0 1 B B B B B B

4
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The tape

B 1 0 1 B B B B B B

5
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The tape

B 1 0 1 B B B B B B

1
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Conclusion

With Turing machines, we can code:
Arithmetic
Subroutines
Flow control (if, while)

""""Therefore""""

We can code any algorithm with a Turing machine
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Plan

1 The Turing Machine

2 The Fixed Domino Problem

3 The Periodic Domino Problem
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The theorem (again)

Theorem (Berger 1964 (PhD), 1966 (Memoirs of the AMS))
There is no algorithm that decides, given a tileset τ , if τ tiles the plane.

How to use the concept of a Turing machine to prove this ?

We first need a hard problem on Turing machines
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The Halting problem

Theorem
There is no algorithm that can decide, given a Turing machine M and
an input n, if M halts on input n.
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Proof idea

The set of Turing machines is countable, write Mn for the function
computed by the n-th Turing machine

By Cantor’s diagonal argument, there exists a function which is not
computed by a Turing machine:

f (n) =

{
0 if Mn(n) does not halt
undef if Mn(n) halts
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Proof idea

The set of Turing machines is countable, write Mn for the function
computed by the n-th Turing machine

By Cantor’s diagonal argument, there exists a function which is not
computed by a Turing machine:

f (n) =

{
0 if Mn(n) does not halt
undef if Mn(n) halts

The only thing we need to turn f into an algorithm is to decide in which
case we are
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Proof idea

The set of Turing machines is countable, write Mn for the function
computed by the n-th Turing machine

By Cantor’s diagonal argument, there exists a function which is not
computed by a Turing machine:

f (n) =

{
0 if Mn(n) does not halt
undef if Mn(n) halts

Therefore no algorithm can decide in which case we are

E. Jeandel and P. Vanier, Undecidability of the Domino Problem 42/79



The Halting problem revisited

Theorem
There is no algorithm that can decide, given a Turing machine M, if M
halts on the empty input.

(Given a machine M and an input n, we can build a machine Mn s.t.
Mn on the empty input simulates M on input n.)
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How to use it ?

We will build an algorithm that, starting from a Turing machine M, will
build a tileset τ s.t.

Deciding if τ tiles the plane is the same as deciding if M halts on the
empty input.

Therefore no algorithm can decide if a tileset tiles the plane, as it
would be able to decide if a Turing machine halts.
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How to use it ?

It is easy to see that a tileset τ does not tile the plane: just find an
N s.t. it does not tile a N × N square
It is easy to see that a Turing machine halts : just find an N s.t. it
halts in N steps.

Therefore our transformation should satisfy:

τ tiles the plane iff M does not halt on empty input.
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How to do it?

How to transform a Turing machine into a tileset ?

It is actually very easy! (sadly with a caveat).

E. Jeandel and P. Vanier, Undecidability of the Domino Problem 46/79



Space-time diagram

a b b a b a b a a b

1

a b b b b a b a a b

2

a b b b a a b a a b

2

a b b b a b b a a b

0

a b b b a b b a a b

1

a b b b a b b a a b

0

a b b b a b b a a b

1

a b b b a b b a a b

0
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Space-time diagram

The space-time diagram of a Turing machine is almost a tiling.

Every constraint can be expressed locally
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Space-time diagram

a b b a b a b a a b

1

a b b b b a b a a b

2

a b b b a a b a a b

2

a b b b a b b a a b

0

a b b b a b b a a b

1

a b b b a b b a a b

0

a b b b a b b a a b

1

a b b b a b b a a b
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Space-time diagram

a b b a1 b a b a a b

a b b b b2 a b a a b

a b b b a a2 b a a b

a b b b a0 b b a a b

a b b b a b1 b a a b

a b b b a b b0 a a b

a b b b a b1 b a a b

a b b b a b b0 a a b
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Tiles

a

a

a

a
q→

(q ,a)

a

a
q←

(q ,a)

a

q

(q

a
q′←

a′

,a)

if δ(q,a) = (q′,a′,←)

q

(q

a
q′→

a′

,a)

if δ(q,a) = (q′,a′,→)
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The encoding

Every infinite computation of a Turing machine gives rise to a tiling of
the upper half plane

It can be completed into a tiling of the entire plane by adding “blank
tiles” in the bottom half plane.

E. Jeandel and P. Vanier, Undecidability of the Domino Problem 52/79



Bad news

Not every tiling of the plane is an infinite computation of a Turing
machine.
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Problems

Erratic configurations:

tilings with no head per row
tilings with more than one head per row
tilings may no start from the initial state
tilings using only the blank tile
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Good news

If one row of a tiling represents a configuration of the TM, then the
upper lane above it is correct.

If we can force one row, we can force everything above.
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Semi-solution

B
← ←

B

W

B
← →

(q0,B)

W

q0 B
→ →

B

W

W W

W

W
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The Fixed Domino Problem

Let t be the tile at the middle of the previous slide.
Then there exists a tiling that contains t iff the TM does not halt on the
empty input.

Theorem (Wang, Kahr-Moore-Wang)
There is no algorithm that decides, given a tileset τ and a tile t
whethere there exist a tiling by τ that contains t.
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Variants

Theorem
There is no algorithm that decides, given a tileset τ and a tile t
whethere there exist a tiling of a quarter of the plane by τ with t at the
bottom left.

Use a Turing machine with a simply infinite tape, and “border tiles”.

Theorem
There is no algorithm that decides, given a tileset τ and two tiles t1, t2 if
there is a tiling of a square by τ with t1 at the bottom left and t2 at the
top right.

Use border tiles to form a square, and take t2 to contain the halting
state of M.
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The Domino Problem

What is missing to prove the undecidability of the Domino Problem ?
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The Domino Problem

Two methods:
Find a way to force the tile t to appear
Change the coding to be certain that a head will appear in every
row

Does not solve everything.

We will explain this next time.
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Plan

1 The Turing Machine

2 The Fixed Domino Problem

3 The Periodic Domino Problem
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The Periodic Domino Problem

We are missing some ingredients for the Domino Problem, but we are
almost ready to prove the undecidability of the Periodic Domino
Problem.

Theorem (Gurevich-Koryakov)
There is no algorithm that decides, given a tileset τ whethere there
exist a periodic tiling by τ .
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First Ingredient

Assume there is an aperiodic tileset.

E. Jeandel and P. Vanier, Undecidability of the Domino Problem 63/79



Periodic tilings ?

None
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Second Ingredient

for each color that appear in the aperiodic tileset.
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Periodic tilings ?

p p
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Third Ingredient. Goal
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Third Ingredient. Concept

A red particle that teleports once it reads a vertical wall
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Third Ingredient. Formalization

The particle is a 1, the void is 0

Each line is therefore a word in 0?10?.
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Third Ingredient. A transducer

The transducer takes one line to the next one.

q0

q′0

q2 q3

q4 q5

0|0

1|0 0|1

0|0

0|1

0|0

1|0
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Third Ingredient. White tiles

q0 q0

0

0
q0 q2
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1
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Third Ingredient. Black tiles

q3 q0 q5 q′0 q5 q0 q3 q′0
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Third Ingredient. Proof of concept
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Third Ingredient. Goal: ACHIEVED
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Fourth Ingredient

The previous result:

Theorem
There is no algorithm that decides, given a tileset τ and two tiles t1, t2 if
there is a tiling of a square by τ with t1 at the bottom left and t2 at the
top right.
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Fourth Ingredient

Given a tileset τ with colors in C, and tiles t1, t2, superimpose the
tileset τ with the tileset we built:

Every tile inside a square can hold an element of τ
Tiles on the border of squares can hold anything with colors in C
(even if not in τ )
The tile on the bottom-left on the square should be t1.
The tile on the top-right on the square should be t2.

Last condition are easy to ensure, as the corners can be spotted easily.
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The proof

There exists a tiling of period n
↓

This tiling contains a square of size p
↓

This square contains a tiling of τ
with t1 at the bottom left

and t2 at the top right
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The proof

There exist a tiling of a square by τ
with t1 at the bottom left
and t2 at the top right.

↓
There exist a tiling of period p + 1
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Next time

The proof of the undecidability of the Domino Problem (finally!)
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