Invariant measures for actions of congruent monotilable amenable groups

Paulina CECCHI B.
(Joint work with María Isabel Cortez)

Institute de Recherche en Informatique Fondamentale
Université Paris Diderot - Paris 7

Departamento de Matemática y Ciencia de la Computación
Facultad de Ciencia. Universidad de Santiago de Chile

CIRM, Marseille, November 2017
Framework

Dynamical System: \((X, T, G)\) such that
- \(X\) compact metric space (usually Cantor),
- \(G\) countable group.
- \(T\) action of \(G\) on \(X\) by homeomorphisms.

Example: \(X = A^G\), \(T\) is the \(G\)-shift on \(X\).

Invariant measure: \(\mu\) probability measure on \(X\) such that \(\forall A \in B(X), \mu(T^g(A)) = \mu(A) \forall g \in G\).

\(G\) amenable \(\iff\) the set of invariant measures \(\mathcal{M}(X, T, G)\) is a nonempty convex set. Extreme points: ergodic measures.

\(\Rightarrow\) Amenable group: \(G\) admits a Følner sequence of finite subsets \((F_n)_{n \geq 0}\).

\[
\lim_{n \to \infty} \frac{|F_n g \setminus F_n|}{|F_n|} = 0 \quad \forall g \in G
\]

\(\mathcal{M}(X, T, G)\) is a Choquet Simplex: convex set in which any element is written in a unique way in terms of the extreme points.
Framework

Dynamical System: \((X, T, G)\) such that

- \(X\) compact metric space (usually Cantor)
- \(G\) countable group
- \(T\) action of \(G\) on \(X\) by homeomorphisms

Example:

- \(X = A^G\), \(T\) is the \(G\)-shift on \(X\).

Invariant measure:

- \(\mu\) probability measure on \(X\) such that
 \[\mu(T^g(A)) = \mu(A) \quad \forall g \in G. \]

Amenable \(\iff\) the set of invariant measures \(M(X, T, G)\) is a nonempty convex set. Extreme points: ergodic measures.

\(\Rightarrow\) Amenable group: \(G\) admits a Følner sequence of finite subsets \((F_n)_{n \geq 0}\).

\[\lim_{n \to \infty} \frac{|F_n g \setminus F_n|}{|F_n|} = 0 \quad \forall g \in G. \]

\(\Rightarrow\) \(M(X, T, G)\) is a Choquet Simplex: convex set in which any element is written in a unique way in terms of the extreme points.
Framework

Dynamical System: \((X, T, G)\) such that

- \(X\) compact metric space (usually Cantor), \(G\) countable group.

Invariant measure: \(\mu\) probability measure on \(X\) such that \(\forall A \in B(X), \mu(T^g(A)) = \mu(A)\) \(\forall g \in G\).

\(G\) amenable \(\iff\) the set of invariant measures \(\mathcal{M}(X, T, G)\) is a nonempty convex set. Extreme points: ergodic measures.

\(\Rightarrow\) Amenable group: \(G\) admits a Følner sequence of finite subsets \((F_n)_{n \geq 0}\).

\(\lim_{n \to \infty} \frac{|F_n g \setminus F_n|}{|F_n|} = 0\) \(\forall g \in G\).

\(\mathcal{M}(X, T, G)\) is a Choquet Simplex: convex set in which any element is written in a unique way in terms of the extreme points.
Framework

Dynamical System: \((X, T, G)\) such that

- \(X\) compact metric space (usually Cantor), \(G\) countable group.
- \(T\) action of \(G\) on \(X\) by homeomorphisms.
 Ex.: \(X = \mathcal{A}^G\), \(T\) is the \(G\)-shift on \(X\).

Invariant measure: \(\mu\) probability measure on \(X\) such that
\[
\mu(T_g(A)) = \mu(A) \quad \forall g \in G.
\]

\(G\) amenable \(\iff\) the set of invariant measures \(\mathcal{M}(X, T, G)\) is a nonempty convex set. Extreme points: ergodic measures.

\(\Rightarrow\) Amenable group: \(G\) admits a Følner sequence of finite subsets \((F_n)_{n \geq 0}\).

\[
\lim_{n \to \infty} \frac{|F_n g \setminus F_n|}{|F_n|} = 0 \quad \forall g \in G.
\]

\(\mathcal{M}(X, T, G)\) is a Choquet Simplex: convex set in which any element is written in a unique way in terms of the extreme points.
Dynamical System: \((X, T, G)\) such that

- \(X\) compact metric space (usually Cantor), \(G\) countable group.
- \(T\) action of \(G\) on \(X\) by homeomorphisms.
 Ex.: \(X = A^G\), \(T\) is the \(G\)-shift on \(X\).
- Invariant measure: \(\mu\) probability measure on \(X\) such that \(\forall A \in B(X), \mu(T^g(A)) = \mu(A)\) \(\forall g \in G\).
Framework

Dynamical System: \((X, T, G)\) such that

- \(X\) compact metric space (usually Cantor), \(G\) countable group.
- \(T\) action of \(G\) on \(X\) by homeomorphisms.
 Ex.: \(X = A^G\), \(T\) is the \(G\)-shift on \(X\).
- Invariant measure: \(\mu\) probability measure on \(X\) such that \(\forall A \in \mathcal{B}(X),\)
 \(\mu(T^g(A)) = \mu(A)\) \(\forall g \in G\).
- \(G\) amenable \(\iff\) the set of invariant measures \(\mathcal{M}(X, T, G)\) is a nonempty convex set. Extreme points: ergodic measures.
Framework

Dynamical System: (X, T, G) such that

- X compact metric space (usually Cantor), G countable group.
- T action of G on X by homeomorphisms. Ex.: $X = A^G$, T is the G-shift on X.
- Invariant measure: μ probability measure on X such that $\forall A \in \mathcal{B}(X)$, $\mu(T^g(A)) = \mu(A)$ $\forall g \in G$.
- G amenable \iff the set of invariant measures $\mathcal{M}(X, T, G)$ is a nonempty convex set. Extreme points: ergodic measures.

\iff Amenable group: G admits a Følner sequence of finite subsets $(F_n)_{n \geq 0}$.

$$\lim_{n \to \infty} \frac{|F_ng \setminus F_n|}{|F_n|} = 0 \quad \forall g \in G$$
Framework

Dynamical System: \((X, T, G)\) such that

- \(X\) compact metric space (usually Cantor), \(G\) countable group.
- \(T\) action of \(G\) on \(X\) by homeomorphisms.
 Ex.: \(X = \mathcal{A}^G\), \(T\) is the \(G\)-shift on \(X\).
- Invariant measure: \(\mu\) probability measure on \(X\) such that \(\forall A \in \mathcal{B}(X), \mu(T^g(A)) = \mu(A)\) \(\forall g \in G\).
- \(G\) amenable \(\iff\) the set of invariant measures \(\mathcal{M}(X, T, G)\) is a nonempty convex set. Extreme points: ergodic measures.

\[\iff \text{Amenable group: } G \text{ admits a Følner sequence of finite subsets } (F_n)_{n \geq 0}. \]

\[\lim_{n \to \infty} \frac{|F_ng \setminus F_n|}{|F_n|} = 0 \quad \forall g \in G \]

- \(\mathcal{M}(X, T, G)\) is a Choquet Simplex: convex set in which any element is written in a unique way in terms of the extreme points.
Questions

Given any Choquet simplex K, is there a (minimal) action of G on a Cantor space X such that $M(X, T, G)$ is affine homeomorphic to K? If we prescribed G as well? Also...

$M(X, T, G)$ is an invariant for Orbit Equivalence. (X, T, G) and (Y, S, Γ) are Orbit equivalent if there exists an homeomorphism $h: X \rightarrow Y$ such that for all $x \in X \{ Tg(x) : g \in G \} = \{ S\gamma(h(x)) : \gamma \in \Gamma \}$.

Paulina CECCHI B. (IRIF/USACH)
Inv. measures and group actions
CIRM, Nov. 2017 3 / 6
Natural Questions

Given any Choquet simplex K, is there a (minimal) action of G on a Cantor space X such that $\mathcal{M}(X, T, G)$ is affine homeomorphic to K?
Natural Questions

- Given any Choquet simplex K, is there a (minimal) action of G on a Cantor space X such that $\mathcal{M}(X, T, G)$ is affine homeomorphic to K?
- If we prescribed G as well?
Questions

Natural Questions

- Given any Choquet simplex K, is there a (minimal) action of G on a Cantor space X such that $\mathcal{M}(X, T, G)$ is affine homeomorphic to K?

- If we prescribed G as well?

Also...

- $\mathcal{M}(X, T, G)$ is an invariant for **Orbit Equivalence.**
Questions

Natural Questions

- Given any Choquet simplex K, is there a (minimal) action of G on a Cantor space X such that $\mathcal{M}(X, T, G)$ is affine homeomorphic to K?
- If we prescribed G as well?

Also...

- $\mathcal{M}(X, T, G)$ is an invariant for **Orbit Equivalence**.
- (X, T, G) and (Y, S, Γ) are **Orbit equivalent** if there exists an homeomorphism $h : X \rightarrow Y$ such that for all $x \in X$

\[
\{ T^g(x) : g \in G \} = \{ S^\gamma(h(x)) : \gamma \in \Gamma \}
\]
It is known...

Given any Choquet simplex K, there is a Toeplitz subshift $\left(X, T, Z \right)$ on $X = \{0, 1\}$ such that $K \sim M(\left(X, T, Z \right))$.

Given any Choquet simplex K and any residually finite countable amenable group G, there exists a Toeplitz G-subshift $\left(X, T, G \right)$ on a Cantor space X such that $K \sim M(\left(X, T, G \right))$.

\Rightarrow Residually finite: G admits a decreasing sequence of finite index normal subgroups with trivial intersection.
It is known...

- (Downarowicz 91) Given any Choquet simplex K there is a Toeplitz subshift (X, T, \mathbb{Z}) on $X = \{0, 1\}^\mathbb{Z}$ such that $K \cong \mathcal{M}(X, T, \mathbb{Z})$.
It is known...

- (Downarowicz 91) Given any Choquet simplex K there is a Toeplitz subshift (X, T, \mathbb{Z}) on $X = \{0, 1\}^\mathbb{Z}$ such that $K \cong \mathcal{M}(X, T, \mathbb{Z})$.

- (Cortez-Petite 14) Given any Choquet simplex K and any residually finite countable amenable group G, there exists a Toeplitz G-subshift (X, T, G) on a Cantor space X such that $K \cong \mathcal{M}(X, T, G)$.
It is known...

- (Downarowicz 91) Given any Choquet simplex K there is a Toeplitz subshift (X, T, \mathbb{Z}) on $X = \{0, 1\}^\mathbb{Z}$ such that $K \cong \mathcal{M}(X, T, \mathbb{Z})$.

- (Cortez-Petite 14) Given any Choquet simplex K and any residually finite countable amenable group G, there exists a Toeplitz G-subshift (X, T, G) on a Cantor space X such that $K \cong \mathcal{M}(X, T, G)$.

\[\text{Residually finite: } G \text{ admits a decreasing sequence of finite index normal subgroups with trivial intersection.}\]
If G is amenable, we may assume

1) $1_G \in F_n \subseteq F_{n+1}$

2) $G = \bigcup_{n \geq 0} F_n$
If G is amenable, we may assume

(1) $1_G \in F_n \subseteq F_{n+1}$

(2) $G = \bigcup_{n \geq 0} F_n$

It is not clear...
If \(G \) is amenable, we may assume

1. \(1_G \in F_n \subseteq F_{n+1} \)
2. \(G = \bigcup_{n \geq 0} F_n \)

It is not clear...

(Tile) Each \(F_n \) is a monotile of \(G \).

\[
G = \bigsqcup_{c \in C} cF_n
\]
If G is amenable, we may assume

1. $1_G \in F_n \subseteq F_{n+1}$

2. $G = \bigcup_{n\geq 0} F_n$

It is not clear...

Tile Each F_n is a monotile of G.

$$ G = \bigsqcup_{c \in C} cF_n $$

Cong F_{n+1} is a disjoint union of translated copies of F_n
If G is amenable, we may assume

(1) $1_G \in F_n \subseteq F_{n+1}$

(2) $G = \bigcup_{n \geq 0} F_n$

It is not clear...

(Tile) Each F_n is a monotile of G.

$$G = \bigsqcup_{c \in C} cF_n$$

(Cong) F_{n+1} is a disjoint union of translated copies of F_n
If G is amenable, we may assume

1. $1_G \in F_n \subseteq F_{n+1}$
2. $G = \bigcup_{n\geq 0} F_n$

It is not clear...

Tile Each F_n is a monotile of G.

$$G = \bigsqcup_{c \in C} cF_n$$

Cong F_{n+1} is a disjoint union of translated copies of F_n
If G is amenable, we may assume

(1) $1_G \in F_n \subseteq F_{n+1}$

(2) $G = \bigcup_{n \geq 0} F_n$

It is not clear...

(Tile) Each F_n is a monotile of G.

$$G = \bigsqcup_{c \in C} cF_n$$

(Cong) F_{n+1} is a disjoint union of translated copies of F_n
If G is amenable, we may assume

1. $1_G \in F_n \subseteq F_{n+1}$

2. $G = \bigcup_{n \geq 0} F_n$

It is not clear...

(Tile) Each F_n is a monotile of G.

$G = \bigsqcup_{c \in C} cF_n$

(Cong) F_{n+1} is a disjoint union of translated copies of F_n
If G is amenable, we may assume

1. $1_G \in F_n \subseteq F_{n+1}$

2. $G = \bigcup_{n \geq 0} F_n$

It is not clear...

(Tile) Each F_n is a monotile of G.

$G = \bigsqcup_{c \in C} cF_n$

(Cong) F_{n+1} is a disjoint union of translated copies of F_n
If G is amenable, we may assume

1. $1_G \in F_n \subseteq F_{n+1}$
2. $G = \bigcup_{n \geq 0} F_n$

It is not clear...

(Tile) Each F_n is a monotile of G.

$$G = \bigsqcup_{c \in C} cF_n$$

(Cong) F_{n+1} is a disjoint union of translated copies of F_n
If G is amenable, we may assume

1. $1_G \in F_n \subseteq F_{n+1}$

2. $G = \bigcup_{n \geq 0} F_n$

It is not clear...

(Tile) Each F_n is a monotile of G.

$G = \bigsqcup_{c \in C} cF_n$

(Cong) F_{n+1} is a disjoint union of translated copies of F_n
If G is amenable, we may assume

1. $1_G \in F_n \subseteq F_{n+1}$
2. $G = \bigcup_{n \geq 0} F_n$

It is not clear...

(Tile) Each F_n is a monotile of G.

$$G = \bigsqcup_{c \in C} cF_n$$

(Cong) F_{n+1} is a disjoint union of translated copies of F_n
If G is amenable, we may assume

(1) $1_G \in F_n \subseteq F_{n+1}$

(2) $G = \bigcup_{n \geq 0} F_n$

It is not clear...

(Tile) Each F_n is a monotile of G.

$G = \bigsqcup_{c \in C} cF_n$

(Cong) F_{n+1} is a disjoint union of translated copies of F_n
If G is amenable, we may assume

1. $1_G \in F_n \subseteq F_{n+1}$
2. $G = \bigcup_{n \geq 0} F_n$

It is not clear...

(Tile) Each F_n is a monotile of G.

$G = \bigsqcup_{c \in C} cF_n$

(Cong) F_{n+1} is a disjoint union of translated copies of F_n
If G is amenable, we may assume

1. $1_G \in F_n \subseteq F_{n+1}$
2. $G = \bigcup_{n \geq 0} F_n$

It is not clear...

(Tile) Each F_n is a monotile of G.

$$G = \bigsqcup_{c \in C} cF_n$$

(Cong) F_{n+1} is a disjoint union of translated copies of F_n
If G is amenable, we may assume

1) $1_G \in F_n \subseteq F_{n+1}$

2) $G = \bigcup_{n \geq 0} F_n$

It is not clear...

(Tile) Each F_n is a monotile of G.

\[G = \bigsqcup_{c \in C} cF_n \]

(Cong) F_{n+1} is a disjoint union of translated copies of F_n
If G is amenable, we may assume

1. $1_G \in F_n \subseteq F_{n+1}$
2. $G = \bigcup_{n \geq 0} F_n$

It is not clear...

Tiles Each F_n is a monotile of G.

$$G = \bigsqcup_{c \in C} cF_n$$

Congruent F_{n+1} is a disjoint union of translated copies of F_n
If G is amenable, we may assume

(1) $1_G \in F_n \subseteq F_{n+1}$

(2) $G = \bigcup_{n \geq 0} F_n$

It is not clear...

(Tile) Each F_n is a monotile of G.

$G = \bigsqcup_{c \in C} cF_n$

(Cong) F_{n+1} is a disjoint union of translated copies of F_n
Congruent Monotileable Amenable Groups

If G is amenable, we may assume

1. $1_G \in F_n \subseteq F_{n+1}$
2. $G = \bigcup_{n \geq 0} F_n$

It is not clear...

(Tile) Each F_n is a monotile of G.

$$G = \bigsqcup_{c \in C} cF_n$$

(Cong) F_{n+1} is a disjoint union of translated copies of F_n
Congruent Monotileable Amenable Groups

If G is amenable, we may assume

1. $1_G \in F_n \subseteq F_{n+1}$
2. $G = \bigcup_{n \geq 0} F_n$

It is not clear...

(Tile) Each F_n is a monotile of G.

$G = \bigsqcup_{c \in C} cF_n$

(Cong) F_{n+1} is a disjoint union of translated copies of F_n

\rightsquigarrow Amenable residually finite groups are congruent monotileable

(Cortez-Petite 14).
Results

Theorem (C., Cortez 17)
For any Choquet simplex K and any congruent monotileable amenable group G, there exists a minimal action T of G on the Cantor set X (a G-subshift), such that $K \sim M(X, T, G)$. If G is abelian, the action is free.

Theorem (C., Cortez 17)
Any countable amenable nilpotent group is congruent monotileable.

Corollary
Any Choquet simplex can be seen as the set of invariant measures of a free minimal action of Q on the Cantor space.
Theorem (C., Cortez 17)

For any Choquet simplex K and any congruent monotileable amenable group G, there exists a minimal action T of G on the Cantor set X (a G-subshift), such that $K \cong \mathcal{M}(X, T, G)$. If G is abelian, the action is free.
Results

Theorem (C., Cortez 17)

For any Choquet simplex K and any congruent monotileable amenable group G, there exists a minimal action T of G on the Cantor set X (a G-subshift), such that $K \cong \mathcal{M}(X, T, G)$. If G is abelian, the action is free.

Theorem (C., Cortez 17)

Any countable amenable nilpotent group is congruent monotileable.
Theorem (C., Cortez 17)

For any Choquet simplex K and any congruent monotileable amenable group G, there exists a minimal action T of G on the Cantor set X (a G-subshift), such that $K \cong \mathcal{M}(X, T, G)$. If G is abelian, the action is free.

Theorem (C., Cortez 17)

Any countable amenable nilpotent group is congruent monotileable.

Corollary

Any Choquet simplex can be seen as the set of invariant measures of a free minimal action of \mathbb{Q} on the Cantor space.