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Non-colliding brownie bridges

Non-colliding brownian motions

have deteminantal correlations.

Paths are level lines for a random
surface.

Fluctuations of the surface around
its mean are governed by the
Gaussian Free Field

This is a universal phenomenon.




Multi-time fluctuations
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A way to capture the GFF
correlations is by studying
multi-time linear statistics

(F) = 32D fmj(t)

and ask whether there is a

CLT
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Xn(f) —EXn(f) = N(0,onr(f)")
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Single time fluctuations

We will explain the method by
looking at single time fluctuations

mainly.

Then we take a smooth test function
and consider the linear statistic

Xn(f) = f;(8)

Linear statistic for determinantal
point processes satisfy CLT

Xn(f) —EXu(f) = N(0,0(f)7)

where the variance is a half Sobolev
norm.



Biorthogonal Ensembles

*  We consider probability measures of the form

et (9 (1)) det (95 (21)) ey dpn) - dp(in)

n!

where dy, is a background measure and {9;(z)}52, and  {y(2)1%2,
are biorthogonal families

/qu(x)wk(w)du(x) = 0jk

n

»  We will study fluctuations of the linear statistic ~ X,,(f) = Z f(z;)
around its mean and ask whether we have, as n — oo j=1

Xo(f) —EX,(f) = N(0,0(f)%)



Examples

 Orthogonal polynomials on the real line wrt dp

* varying weight
GUE, LUE, general UE with potential V,...

* non-varying weight
JacUE, UE,...

* Discrete weight
Tiling models, ...

* Multiple orthogonal polynomials
External source random matrices, two-matrix models, multiple speed dynamics on
interlacing particles, ...

* Orthogonal polynomials on the unit circle
CUE and other unitary ensembles on the circle, ..



The matrix J

* Itis too much to ask that a CLT holds for any biorthogonal ensemble, so
we need to narrow our class. We do this by assuming that there is a
recurrence relation for the biorthogonal family.

« We start by defining the matrix 7 by

Tt = / robe (@) () dpa(x)

* |n other words:



Main Assumption

Assumption:
We assume that 7 is well-defined and banded

In other words, we assume there exists a recurrence for the biorthogonal
family
56 (@) = > Tjirkbirr(z)

k|<p

* In case of orthogonal polynomials on the real line, 7 is called the Jacobi
operator associated to the background measure di and is a symmetric
tridiagonal matrix with positive off-diagonal entries.

* In case of the circle, we can take 7 to be the CMV matrix which is a
pentadiagonal unitary matrix.



Andreiéf’s identity

Lemma n
The characteristic function for the linear statistic X,,(f) = Z f(z;) is
given by j=1

E[e™X»(f)] = det P,e/ TP,

Proof:

1 - i :
- / / 51 19 det (¢ (1)) oy det (15 (@) oy dpalr) - - - dpa(an)

- 1 . n n
] / o /det (eltf(xk)%' (fﬁk))] - det (1), (xk))j,kzl dp(ze) - - - dp(en)

n

= det [ 10, ()dn(o))

7,k=1



Non-colliding processes

JIN

We define a matrix Jm for each

time t,, and assume that they

are all banded.

Then in D’15 the starting point was

to show that the linear statistic

— Z Zf(maxj(tm))

Xn(f)
j2 m=1 j=1

J has the moment generating

function

E[e’itXn(f)] — det Pneitf(lajl)e’itf(Q,JQ) .. eitf(N,JN)Pn



Simplification

So the question of CLTs for single and multi-time linear statistics boils down
to asking whether the following objects have gaussian limits:

Biorthogonal ensembles

det P,e'” P, .
B=if(J)
Non-colliding processes
det P,etPretB2 ... etBN p By, =if(m, Jm)

In this talk we will focus on the single time case. But many statements and
techniques have extensions to multi-time statistics for non-colliding processes



A cumulant type expansion ......

* Using logdet(l1+ A)=Trlog(1+ A) and further expansions we find

det P’ P, = exp (Z th’éﬁ'f)(B)>

m=1

where

i +1 %) 0
gy~ N DT Tt P,B% - - P,B%P,
Cy/(B) = Z Z AT



e For m > 2

m +1 /1 /. m
() py - N DT TrP,B" ... P,B% P,— Tr P,B"P,
(B =2 2. AT

 FEach term in the summand can be written as

v P,B".--P,B%P,—TrP,B"P, =% TrP,B"---[B,P,|B*P,...[B,P,]

(Sum of terms that all contain
two factors | B, P,])



Bounding the "cumulants”

Theorem (Breuer-D. '14)
For ¢ € C sufficiently close to the origin, we have

42
det P, etBP = exp (tTrP BP, + — 1 Tr|B, P, ] 2 4 Zth(”) )

where

C(B) < emm®2|| Bl (I[Pn, Blll s

This can be interpreted as a Bernstein-type inequality for biorthogonal
ensembles and can be used define concentration inequalities for linear
statistics. (which also work on mesoscopic scales)



Comparison Principle

Theorem (Breuer-D '15)

Let B and B® be two banded and bounded matrices such that
1 2
VEk, b€ Z Bilknie = Bilinie =0
as n — oo. Then, for m > 2 we have

cin)(BW) — ¢n)(B®2)) - 0

as N — o0



Gaussian limits

Theorem (D-Kohzan ’16 based on Breuer-D ’15)

If B is a banded matrix such that
(B)n+k,n+€ — (B)er,n—% — 0

for a bounded matrix B that can be decomposed as B =B, + B_
such that

1) B, lower triangular

2) B_ upper triangular

3) [B4,B_] is of trace class.

t2
Then detP,etP’P, = exp (t Tr P,BP, + Bl Tr[IB%+,B_]) (14 0(1))

n — o0



Some remarks on the condition

In certain examples (but certainly not all), the matrix B can be taken to be a
Toeplitz matrix and then the condition always holds. (BreuerD "16)

e OPRL in Nevai class (beyond ”solvable models”)

« OPRL for Unitary Ensembles in one-cut situation. m
>

<

In other examples the matrix B can be a block Toeplitz matrix and then the
condition sometimes holds.

« Multiple Hermite polynomials corresponding to
external source models.

« OPUC for measures supported on a single arc.

° I I- . . |
OPRL in multi-cut cases it does not hold in general! O\ I LM\




Unitary Ensembles on the circle

Let 1 be a Borel measure with an infinite number of points in its support.
Consider the probability measure

~ ] s slPdulz) - dulen)

1<3<k<n

Vandermonde determinant:

n

~ det (Z;C)j,kzl det (Z;k)zkzl du(z1) - - - dp(zp)

Which can be written as

~ det (zk_L%J) det (z-_(k_L%J)) du(z1) - - dp(zn)

’ jk=1 g jk=1



Orthogonalization

* Orthogonalization: Apply Gram-Schmidt to

{1,2,271,2%,272,...}

leading to a orthogonormal system

{¢O(Z)7 le (Z)a ¢2(2)7 . }

* Then the probability measure can be written as

1

n! i j k=1

—  det (gbk(zj))?kzl det (m(zj))n du(z1) -

- dp(zn)



CMV matrices

* Verblunsky coefficients: There exists {@nfn—1 with |an| <1 such that

Po(2) Po(2)

where C is the CMV matrix (Cantero-Moral-Valezques ‘03)

( Qg Q1o PoP1 0 0 0 \
po  —Qph1  —Qpp1 0 0 0 '
0  Qop1r —o1aa  Qzpo P23 0
C = 0 p1p2  —Q1p2 —Qa03  —QgpP3 0
0 0 0 Qup3  —Q304 QP4
0 0 0 pP3ps  —Q3py  —QuQs

Pn = \/1 — |, |?



Example

. do
CUE: If du(e'?) = - then a, =0

a

|
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Theorem (Rakhmanov)
If du(e'®) = w(0)dd + dus(e?) and w(f) > 0 a.e.on [0,27] then

Oén%oa as n — oo

Thus, under that condition

(C)n—l—k,n—l—e o (CCUE)n—I—k,n—I—E — 0



Theorem (D-Kozhan 16)

| et d,u(eie) = w(6)do + d,us(eie) with w(f) >0 a.e.on 0, 27]

Then forany h(z) = Z h;jzl suchthat h; =h_; and

J=—00
> Vilhs| < o0
J
we have

X,(h) —EX,(h) = N (o, 2 i hﬂ)

H=I



Some words on the proof

N
We start with An(2) = Z hiz’

j=-

Then hn(C) is bounded and banded
E[eit 2.j=1 hN(Zj)] — det P, e't"~ O p
Under the condition we know

(hN(C))n+k,n—|—€ o (hN(CCUE))n+k,n—|—£ — 0

For hn(Cour)we use either the well-known results for CUE or apply the
condition of our theorem and obtain the statement for hp

We can then get the result for h = ]\;im hn by applying the concentration
inequality. B



Measure on an arc

* If a, = a then the measure
is a.c. and supported on an arc.

{e”]0¢€[¢,2m—¢)},
¢ = 2 arcsin |«.
* Theorem (Bello-lopez ‘98, Simon "05)
If du(e'?) = w(9)dd + dus(e'?) has oess(p) =T and w(f) > 0 a.e.
on [0, 2] then

{nmnm an| = |o

: Qnt1




Theorem (D.-Kohzan "16)
Let du(e?) = w(0)df + dus(e?) such that cess(n) =Ty and w(h) > 0
a.e.on: 'y

Then for any h(z) = Z h;jz) suchthat p; =h_; and

j=—00

> Vilhj| < o
j

we have

Xn(h) =EXn(h) = N(0,Qa(h))

The function Q«(h) is explicit, but slightly complicated.



Thank you for your attention!



