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Non-colliding brownie bridges

t = 0

t = 1 Non-colliding brownian motions  
have deteminantal correlations. 

Paths are level lines for a random  
surface. 

Fluctuations of the surface around  
its mean are governed by the  
Gaussian Free Field 

This is a universal phenomenon.



Multi-time fluctuations
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t = 1

A way to capture the GFF  
correlations is by studying  
multi-time linear statistics 
 
 
 
 
and ask whether there is a CLT 
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Single time fluctuations
We will explain the method by  
looking at single time fluctuations  
mainly.  
 
Then we take a smooth test function 
and consider the linear statistic 
 
 
 
 
Linear statistic for determinantal  
point processes satisfy CLT  
 
 
 
where the variance is a half Sobolev 
 norm.
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Biorthogonal Ensembles
• We consider probability measures of the form  
 
 
 
 
where       is a background measure and                     and  
are biorthogonal families  
 
 

• We will study fluctuations of the linear statistic  
around its mean and ask whether we have, as 
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Examples

• Orthogonal polynomials on the real line wrt  

• varying weight 
GUE, LUE, general UE with potential V,… 

• non-varying weight  
JacUE, UE,… 

• Discrete weight  
Tiling models,… 

• Multiple orthogonal polynomials 
External source random matrices, two-matrix models, multiple speed dynamics on 
interlacing particles, … 

• Orthogonal polynomials on the unit circle 
CUE and other unitary ensembles on the circle,..

dµ



• It is too much to ask that a CLT  holds for any biorthogonal ensemble, so 
we need to narrow our class. We do this by assuming that there is a 
recurrence relation for the biorthogonal family.  

• We start by defining the matrix      by  
 
 

• In other words: 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Assumption: 
We assume that      is well-defined and banded   
 
In other words, we assume there exists a recurrence for the biorthogonal 
family 

• In case of orthogonal polynomials on the real line,      is called the Jacobi 
operator associated to the background measure       and is a symmetric 
tridiagonal matrix with positive off-diagonal entries. 

• In case of  the circle, we can take     to be the CMV matrix which is a 
pentadiagonal unitary matrix. 
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Lemma 
The characteristic function for the linear statistic                               is 
given by  
 
 
 
 
Proof:

Andreiéf’s identity
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Non-colliding processes

We define a matrix         for each  
time       and assume that they  
are all banded.  
 
Then in D’15 the starting point was 
to show that the linear statistic 
 
 
 
has the moment generating  
function
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Simplification

• So the question of CLTs for single and multi-time linear statistics boils down 
to asking whether the following objects have gaussian limits: 

• Biorthogonal ensembles 

• Non-colliding processes  
 
 

• In this talk we will focus on the single time case. But many statements and  
techniques have extensions to multi-time statistics for non-colliding processes
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• Using                                                      and further expansions we find 
 
 
 
 
where

A cumulant type expansion ……
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• For  
 
 
 
 
and thus, for            ,  
 
 
 

• Each term in the summand can be written as
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Bounding the ”cumulants”

Theorem (Breuer-D. ’14) 
For            sufficiently close to the origin, we have  
 
 
 
 
where 
 
 

This can be interpreted as a Bernstein-type inequality for biorthogonal 
ensembles and can be used define concentration inequalities for linear 
statistics. (which also work on mesoscopic scales)
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Comparison Principle

Theorem (Breuer-D ’15) 
 
Let         and         be two banded and bounded matrices such that  
 
 
 
 as             .  Then, for               we have  
 
 
 
as
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Gaussian limits

Theorem (D-Kohzan ’16 based on Breuer-D ’15) 

If     is a banded matrix such that  
 
 
 
for a bounded matrix      that can be decomposed as  
such that  
1)         lower triangular  
2)         upper triangular  
3)                 is of trace class. 

Then 
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Some remarks on the condition

• In certain examples (but certainly not all), the matrix     can be taken to be a 
Toeplitz matrix and then the condition always holds.  (Breuer-D ’16) 

• OPRL in Nevai class (beyond ”solvable models”) 

• OPRL for Unitary Ensembles in one-cut situation. 

• In other examples the matrix     can be a block Toeplitz matrix and then the 
condition  sometimes holds. 

• Multiple Hermite polynomials corresponding to  
external source models. (D. unpublished) 

• OPUC for measures supported on a single arc. (D-Kozhan ’16) 

• OPRL in multi-cut cases it does not hold in general!
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• Let     be a Borel measure with an infinite number of points in its support.  
Consider the probability measure  
 
 

• Vandermonde determinant:  
 
 

• Which can be written as

Unitary Ensembles on the circle

Y

1j<kn

|zj � zk|2dµ(z1) · · · dµ(zn)

µ

det
�
zkj

�n
j,k=1

det
�
z�k
j

�n
j,k=1

dµ(z1) · · · dµ(zn)

det
⇣
z
k�bn

2 c
j

⌘n

j,k=1
det

⇣
z
�(k�bn

2 c)
j

⌘n

j,k=1
dµ(z1) · · · dµ(zn)

⇠

⇠

⇠



Orthogonalization

• Orthogonalization: Apply Gram-Schmidt to  
 
 
 
leading to a orthogonormal system  
 
 

• Then the probability measure can be written as
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CMV matrices

• Verblunsky coefficients: There exists                 with                 such that  
 
 
 
 
 
where      is the CMV matrix (Cantero-Moral-Valezques ’03) 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Example

• CUE: If                          then  
 
 

• Theorem (Rakhmanov) 
If                                                  and                  a.e. on              then 
 
 
 
Thus, under that condition
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Theorem (D-Kozhan 16) 

Let                                                  with                    a.e. on 
 
Then for any                                  such that                      and  
 
 
 
 
we have 
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Some words on the proof
• We start with 

• Then              is bounded and banded 
 

• Under the condition we know 
 

• For                   we use either the well-known results for CUE or apply the 
condition of our theorem and obtain the statement for  

• We can then get the result for                         by applying the concentration 
inequality. 
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Measure on an arc

• If                 then the measure  
is a.c. and  supported on an arc.  
 
 
 

• Theorem (Bello-Lopez ’98, Simon ’05)  
If                                                 has                         and                   a.e. 
on             then  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Theorem (D.-Kohzan ’16)  
Let                                                such that                          and 
a.e. on 
 
Then for any                                   such that                     and 
 
 
 
we have 
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Thank you for your attention!


