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The Airy ensemble

I Consider the Airy ensemble or Airy point process characterized by
correlation functions

ρk(x1, . . . , xk) = det
(
KAi(xi , xj)

)
i ,j=1,...,k

,

where KAi is the Airy kernel

KAi(x , y) =
Ai (x)Ai ′(y)−Ai ′(x)Ai (y)

x − y

distributions of individual eigenvalues are well understood
what about distributions of quantities involving more than 1
eigenvalue, such as spacing distributions?
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The Airy ensemble

I This process appears as limiting process for

largest eigenvalues in many random matrix ensembles as the size
goes to infinity
lengths of first rows of random partitions of n following the
Plancherel measure
random tilings
non-intersecting Brownian paths

I We order the random points as

ζ1 > ζ2 > ζ3 > . . .

(the largest particle exists almost surely)
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Distribution of largest values

I The distribution of the largest particle is given by the Fredholm
determinant

P (ζ1 < x) = det
(

1− KAi
∣∣
(x ,+∞)

)
I The distribution of the k-th largest particle ζk is generated by the

Fredholm determinant

F (x ; s) := det
(

1− (1− s) KAi
∣∣
(x ,+∞)

)
= E (sn(x,+∞))

I It is given by

P (ζk < x) =
k−1∑
j=0

1

j!

d j

ds j
F (x ; s)|s=0
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Tracy-Widom formula’s

I The Fredholm determinants F (x ; s) = det
(

1− (1− s) KAi
∣∣
(x ,+∞)

)
can be expressed in terms of solutions to the Painlevé II equation
(Tracy-Widom ’93):

F (x ; s) = exp

(
−
∫ +∞

x
(ξ − x)q2(ξ; s)dξ

)
where q is the Ablowitz-Segur (for s 6= 0) or Hastings-McLeod (for
s = 0) solution of Painlevé II characterized by

qxx = xq + 2q3, q(x ; s) ∼
√

1− s Ai(x), x → +∞
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Joint distributions

I What can we say about the distribution of quantities involving
more than one particle? For instance

distribution P (ζk − ζ` < x) of the spacing between ζk and ζ`, k < `,

k = 1, ` = 2: see (Bornemann-Forrester-Witte ’12, Perret-Schehr ’14,
Deift-Trogdon ’16)

distribution P (ζ1 + ζ2 + . . .+ ζk < x) of the sum of the k largest
particles,
joint distribution of k particles

ζi1 > . . . > ζik

distribution of truncated linear statistics (Grabsch-Majumdar-Texier
’16)

k∑
j=1

f (ζj)
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Generating function

I Distributions of quantities involving k particles ζi1 , . . . , ζik are
generated by Fredholm determinants with k discontinuities of the
form

F (x1, . . . , xk ; s1, . . . , sk) = det

1−
k∑

j=1

(1− sj)χ(xj ,xj−1)K
Aiχ(xj ,xj−1)


where

+∞ =: x0 > x1 > x2 > . . . > xk
χA is the characteristic function of the set A
s1, . . . , sk ∈ [0, 1]

I Our goal: find a Tracy-Widom type expression for this Fredholm
determinant F (~x ;~s) for general k , in terms of Painlevé type ODEs
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Main result

Theorem (Claeys-Doeraene, in progress)

F (~x ;~s) =
k∏

j=1

exp

(
−
∫ +∞

0
ξu2j (ξ; ~x , ~s)dξ

)
and u1, . . . , uk solve the system of k ODEs

u′′j (x) = (x + xj)uj(x) + 2uj(x)
k∑

i=1

u2i (x), j = 1, . . . , k

with asymptotic behaviour

uj(x) ∼
√

sj+1 − sj Ai(x + xj), x → +∞

where we write sk+1 = 1.
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Coupled Painlevé II equations

I Some remarks

system of equations depends on x1, . . . , xk , relevant solutions depend
on s1, . . . , sk
for k = 1, the system reduces to the (shifted) Painlevé II equation

u′′1 = (x + x1)u1 + 2u31 , u1(x) ∼
√

1− s1Ai (x + x1), x → +∞

q(x ; s) = u1(x − x1; s) is the Ablowitz-Segur/Hastings-McLeod
solution, and we recover the standard Tracy-Widom formula
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Coupled Painlevé II equations

I If sj−1 < sj , uj(x) is real-valued for real x ; if sj−1 > sj , uj(x) is purely
imaginary for real x

I if s1 < s2 < . . . < sk , all uj ’s are real, and then

F (~x ;~s) = exp

(
−
∫ +∞

0
ξ‖~u(ξ)‖2dξ

)
,

with

u′′j (x) = (x + xj)uj(x) + 2uj(x)‖~u(x)‖2, j = 1, . . . , k

with ‖.‖ the 2-norm of the vector ~u = (u1, . . . , uk).
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Coupled Painlevé II equations

I If the sj ’s are increasing, the system of coupled Painlevé II equations
is a traveling wave reduction of the defocusing vector nonlinear
Schrödinger equation

i~qt = ~qxx − x~q − 2~q‖~q‖2, ~q = (q1, . . . , qk)

for k = 2, this is called the Manakov system
If a solution ~q(x , t) has the form qj(x , t) = uj(x)e−ixj t , then ~u has to
satisfy the system of coupled Painlevé II equations

u′′j (x) = (x + xj)uj(x) + 2uj(x)‖~u(x)‖2, j = 1, . . . , k
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Probabilistic interpretation

I We have

F (x1, . . . , xk ; s1, . . . , sk) = E

 k∏
j=1

s
n(xj ,xj−1)

j


I Joint distribution of k particles ζi1 > . . . > ζik :

P (ζi1 < x1, . . . , ζik < xk)

=
∑ 1

j1! . . . jk !

∂j1+...+jk

∂s j11 . . . ∂s
jk
k

F (x1, . . . , xk ; s1, . . . , sk)

∣∣∣∣∣
~s=0

where the sum is taken over all j1, . . . , jk such that

j1 < i1, j1 + j2 < i2, . . . , j1 + . . .+ jk < ik
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Example 1: gap probability

I The probability of having no particles in a finite interval (x2, x1) is
given by

F (x1, x2; 1, 0) = exp

(∫ +∞

0
ξ|u1(ξ)|2dξ

)
exp

(
−
∫ +∞

0
ξ|u2(ξ)|2dξ

)
with

u′′j (x) = (x + xj)uj(x) + 2uj(x)
k∑

i=1

ui (x)2, j = 1, 2

and
u1,2(x)2 ∼ ∓Ai(x + x1,2)2, x → +∞
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Example 2: thinning

I Thinned Airy ensemble is the process obtained by removing each
particle independently with probability s ∈ (0, 1) (Bohigas-de
Carvalho-Pato ’09, Bothner-Buckingham ’17)

interpret remaining particles as observed, removed as unobserved
interpolates between Airy (s = 0) and Poisson process (s → 1)

I Distribution of the largest particle ζ1, conditioned on the position
of the largest observed particle ξ1 being less than y can be
expressed in terms of F (x , y ; 0, s)
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Example 2: thinning

I Distribution of the largest particle ζ1, conditioned on the position
of the largest observed particle ξ1 being less than y can be
expressed in terms of F (x , y ; 0, s): if y < x ,

P (ζ1 < x |ξ1 < y) =
F (x , y ; 0, s)

FTW(y ; s)

=
1

FTW(y ; s)
exp

(
−
∫ +∞

0
ξu1(ξ)2dξ

)
exp

(
−
∫ +∞

0
ξu2(ξ)2dξ

)
with

u1(ξ)2 ∼ sAi(ξ + x)2, ξ → +∞
u2(ξ)2 ∼ (1− s)Ai(ξ + y)2, ξ → +∞
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Example 3: first spacing

I Distribution of the first spacing ζ1 − ζ2:

P (ζ1 − ζ2 > σ) =

∫
R
v(ζ + σ, ζ)FTW(ζ; 0)dζ

where

v(x1, x2) =

∫
R
ξ
−∂2

∂s2∂x1

(
u21(ξ; x1, x2; 0, s2) + u22(ξ; x1, x2; 0, s2)

)∣∣∣∣
s2=0

dξ

different expressions in terms of Hastings-McLeod solution to Painlevé
II equation and associated ψ-functions (fundamental solutions to the
Lax pair for Painlevé II), obtained by Bornemann-Forrester-Witte ’12,
Perret-Schehr ’14
related to limit distribution of first halting time for the Toda algorithm
applied to random matrices (Deift-Trogdon ’16)
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Example 4: sum of k largest particles

I Distribution of the sum ζ1 + . . .+ ζk : for k = 2,

P (ζ1 + ζ2 < σ) =

∫
R
v(σ − ζ, ζ)FTW(ζ; 0)dζ

limit distribution of sum of k first components of a random partition
w.r.t. Plancherel measure
limit distribution of maximal sum of lengths of k disjoint increasing
subsequences of a random permutation (Baik-Deift-Johansson ’99,
Borodin-Okounkov-Olshanski ’00, Okounkov ’00, Johansson ’01)

Tom Claeys (UCLouvain) Near-extreme eigenvalues of random matrices March 2, 2017 17 / 22



Sketch of proof

I Step 1: approximate the Airy ensemble by the GUE for large size n

Fredholm determinant as limit of Hankel determinants

F (~x ;~s) = lim
n→+∞

Hn(wn,~x,~s)

Hn(e−
n
2 x

2
)

where

Hn(w) = det

(∫
R
ξj+kw(ξ)dξ

)n−1

j,k=0

and the weights are given by

wn,~x,~s(ξ) = sje
− n

2 ξ
2

, ξ ∈
(

2 + xjn
−2/3, 2 + xj−1n

−2/3
)
, j = 1, . . . , k+1

with
x0 = +∞, xk+1 = −∞, sk+1 = 1
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Sketch of proof

I Step 2: differential identities for Hn(wn,~x ,~s) with respect to

λj = 2 + xjn
−2/3

∂

∂λj
lnHn(wn,~x ,~s)

= (sj − sj−1)e−
n
2
λ2j
κn−1
κn

(
p′n(λj)pn−1(λj)− pn(λj)p

′
n−1(λj)

)
in terms of orthogonal polynomials pk with respect to wn,~x ,~s and
leading coefficients κk
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Sketch of proof

I Step 3: Riemann-Hilbert analysis to obtain large n asymptotics for
orthogonal polynomials

requires local approximation in the vicinity of the edge 2, where all
discontinuities λj lie
local approximation requires a model Riemann-Hilbert problem
(generalization of Xu-Zhao ’11)
Lax pair associated to RH problem −→ compatibility conditions lead to
system of coupled Painlevé II equations
asymptotics for pn(λj) involve uj(0; ~x , ~s)
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Sketch of proof

I Step 4: Substitute asymptotics for orthogonal polynomials in the
differential identity and integrate the differential identity

starting point of integration λ1 = λ2 = . . . = λk = +∞ (explicit
formula for Hankel determinant: Selberg integral)
first decrease λk , then λk−1, and so on
this explains appearance of integrals∫ +∞

0

ξu2k(ξ; ~x , ~s)dξ + . . .+

∫ +∞

0

ξu21(ξ; ~x , ~s)dξ
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Outlook

I Various asymptotic regimes

large gap asymptotics for F (~x ;~s) where some of the xj ’s tend to −∞
I Other point processes

Bessel −→ systems of coupled Painlevé III equations?
sine −→ systems of coupled Painlevé V equations?
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