On the geometry of Nikulin K3 surfaces

Marco Ramponi

Phd student (Poitiers) until 20.12.2017 (hopefully!)

Polarized Nikulin Surfaces of genus g

 $\mathcal{F}_g^N := \{ \text{polarized Nikulin surfaces of genus } g \} / \text{iso}$ parametrizing pairs (X, \mathfrak{c}) , where

- X is a K3 surface, c big and nef line bundle, $c^2 = 2g 2$.
- X contains 8 disjoint copies of \mathbb{P}^1 , say R_1, \ldots, R_8 , satisfying

$$\mathfrak{c}\cdot R_i=0.$$

These 8 curves form an even set:

$$\mathfrak{e} := \frac{1}{2}(R_1 + \cdots + R_8) \in \operatorname{Pic}(X).$$

Fact

 \mathcal{F}_{g}^{N} is irreducible and 11-dimensional. The general point corresponds to a K3 surface with Picard number 9.

Motivation

Nikulin surfaces have been studied in relation to:

- Automorphisms: Nikulin (1980s), Garbagnati–Sarti (2008)
- Moduli spaces: Morrison (1984), van Geemen-Sarti (2007)
- Prym curves: Farkas–Kemeny (2016) and the birational geometry of their moduli spaces: Farkas–Verra (2012), Verra (2016).

Sources of interesting geometry: for general $(X, \mathfrak{c}) \in \mathcal{F}_g^N$,

$$|\mathfrak{c}| \colon X \to S_0 \subset \mathbb{P}^g$$
 surface with 8 nodes $(g \ge 3)$
 $|\mathfrak{c} \otimes \mathfrak{e}^{-1}| \colon X \hookrightarrow S_1 \subset \mathbb{P}^{g-2}$ surface with 8 lines $(g \ge 5)$

Q: positivity and Brill-Noether behaviour of $\left|\mathfrak{h}_{m}:=\mathfrak{c}\otimes\mathfrak{e}^{-m}\right|$ $(m\geq1)$?

(日) (周) (三) (三)

Theorem

For a general $(X, \mathfrak{c}) \in \mathcal{F}_g^N$, write $g = 2k^2 + \gamma$, where $k \ge 1$ and $0 \le \gamma < 4k + 2$ and let $\mathfrak{h}_m := \mathfrak{c} \otimes \mathfrak{e}^{-m}$.

 (i) Assume k ≥ 2. For any 1 ≤ m ≤ k − 1 the general member of the linear system |𝔥m| is a smooth irreducible curve of genus

$$g_m = 2(k^2 - m^2) + \gamma \ge 6.$$

In fact, \mathfrak{h}_m is very ample and defines an embedding of X in \mathbb{P}^{g_m} .

(ii) In the extremal case m = k, the linear system $|\mathfrak{h}_k|$ contains a smooth irreducible curve of genus γ and \mathfrak{h}_k is ample for $\gamma \ge 2$, very ample for $\gamma \ge 3$ and it defines an elliptic fibration $X \to \mathbb{P}^1$ for $\gamma = 1$.

(iii) For any $0 \le m \le k$ (assuming $\gamma \ge 2$ when m = k) all smooth curves in $|\mathfrak{h}_m|$ are Brill-Noether general, i.e. have maximal Clifford index $\lfloor \frac{g_m-1}{2} \rfloor$.

(日) (周) (三) (三)

Proposition

For a general $(X, \mathfrak{c}) \in \mathcal{F}_g^N$, write $g = 2k^2 + \gamma$. For any $1 \le m \le k - 1$, let $D \in |\mathfrak{h}_{m+1}|$ be a smooth curve. Then D is embedded non-specially by \mathfrak{h}_m as a non-degenerate curve of degree $2g_m - 2 - 4m$ in \mathbb{P}^{g_m} and

$$\psi_m \colon H^0(X,\mathfrak{h}_m) \xrightarrow{\simeq} H^0(D,\mathfrak{h}_m|_D).$$

Example (m = k - 1)

Then D is a curve of genus γ in $\mathbb{P}^{N+\gamma}$. For example For $\gamma = 0$, D is the rational normal curve of degree 4k - 2 in \mathbb{P}^{4k-2} . For $\gamma = 1$, D is an elliptic normal curve in \mathbb{P}^{4k-1} , etc.

Corollary $(m = k - 1, \gamma = 0)$

For a polarized Nikulin surface (X, \mathfrak{c}) of genus $g = 2k^2$ $(k \ge 2)$ let $D \in |\mathfrak{h}_k|$. The following locus defines an effective divisor in \mathcal{F}_g^N

$$\mathfrak{D}_k = \left\{ (X,\mathfrak{c}) \in \mathcal{F}_g^N : \ \ker \left(H^0(X,\mathfrak{h}_{k-1}) \to H^0(D,\mathfrak{h}_{k-1}|_D) \right) \neq 0 \right\}.$$