A factorization theorem for rank-two irregular flat connections

Frank Loray (CNRS / Univ Rennes 1)

Joint work with Jorge Vitório Pereira and Frédéric Touzet Journal de l'École Polytechnique **3** (2016) p. 263-308.

Transversely projective foliations

Let X be a projective manifold. A codimension 1 foliation \mathcal{F} : { $\alpha = 0$ } on X is transversely projective if there exists a **flat meromorphic connection**

$$\nabla: Z \mapsto dZ + AZ$$
 with $Z = \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} \in \mathbb{C}^2$ and $A = \begin{pmatrix} \frac{\beta}{2} & \gamma \\ -\alpha & -\frac{\beta}{2} \end{pmatrix}$

or a Riccati 1-form

$$\omega = dz + \alpha z^2 + \beta z + \gamma, \quad z = z_1/z_2$$

with integrability condition

$$\nabla \cdot \nabla = 0 \iff dA + A \wedge A = 0 \iff \omega \wedge d\omega = 0 \iff \begin{cases} d\alpha = \alpha \wedge \beta \\ d\beta = 2\alpha \wedge \gamma \\ d\gamma = \beta \wedge \gamma \end{cases}$$

Let D be the **polar divisor** of the structure (i.e. of coefficients α, β, γ).

Examples

Closed 1-forms: $\mathcal{F}: \{\omega = 0\}$, with ω a closed rational 1-form on X, $d\omega = 0$.

Pull-back of Riccati foliations: given C = curve, α, β, γ rational 1-forms on C, and $\phi: X \to C \times \mathbb{P}^1$, define $\mathcal{F} = \phi^* \mathcal{F}_{\omega}$ with $\omega = dz + \alpha z^2 + \beta z + \gamma$.

Hilbert modular foliations: Let $\mathbb{Q} \to K \subset \mathbb{C}$ a totally real number field of degree d, let $\mathcal{O}_K \subset K$ be the ring of integers. The group $\Gamma = \text{PSL}_2(\mathcal{O}_K) \subset \text{PSL}_2(\mathbb{R})$ acts naturally on the Poincaré upper half-plane $\mathbb{H} \subset \mathbb{P}^1$, and therefore on the polydisc \mathbb{H}^d as follows. Enumerate $\text{Gal}(K/\mathbb{Q}) = \{\sigma_1, \ldots, \sigma_d\}$. Then define

$$(z_1,\ldots,z_d) \stackrel{M \in \Gamma}{\longrightarrow} (M^{\sigma_1}z_1,\ldots,M^{\sigma_d}z_d).$$

This action is discrete and the quotient \mathbb{H}^d/Γ admits a compactification

$$X = \overline{\mathbb{H}^d / \Gamma} = \mathbb{H}^d / \Gamma \cup D.$$

Quotient foliations \mathcal{F}_i : $\{dz_i = 0\}/\Gamma$ are transversely projective and not better (Zariski dense monodromy group).

Examples

Explicit models have been given for $K = \mathbb{Q}(\sqrt{5})$ (Mendes-Pereira) and $K = \mathbb{Q}(\sqrt{3})$ (Cousin) where X is rational.

Theorem (Touzet): Hilbert modular foliations are not pull-back of Riccati foliations.

Other examples ? \longrightarrow classify Riccati foliations / flat meromorphic connections \longrightarrow classify representations $\pi_1(X \setminus D) \rightarrow \mathsf{PGL}_2(\mathbb{C}) / \mathsf{SL}_2(\mathbb{C})$.

Corlette-Simpson Theorem

Theorem: Let (E, ∇) be a flat \mathfrak{sl}_2 -connection on a projective manifold X. If ∇ is logarithmic with normal crossing polar divisor D and rational eigenvalues, then one of the following holds

• the monodromy representation degenerates (finite, dihedral or reducible),

• or
$$\exists \phi : X \dashrightarrow C$$
 a curve such that $(E, \nabla) \xrightarrow{\sim} \phi^* \underbrace{(E_0, \nabla_0)}_{\text{on } C}$,

• or $\exists \phi : X \dashrightarrow \mathfrak{H}$ Shimura polydisk and $(E, \nabla) \sim \phi^*(E_i, \nabla_i)$ for one of the tautological connections (E_i, ∇_i) on \mathfrak{H} .

Classification Theorem

Theorem (Cousin-Pereira + L.-Pereira-Touzet): Let \mathcal{F} be a transversely projective foliation on X projective. Then:

- $\exists \phi : X' \to X$ generically finite such that $\phi^* \mathcal{F}$ is transversely euclidean,
- or $\exists \phi : X \dashrightarrow C \times \mathbb{P}^1$ and \mathcal{H}_0 a Riccati foliation such that $\mathcal{F} = \phi^* \mathcal{H}_0$,
- or $\exists \phi : X \dashrightarrow \mathfrak{H}$ Shimura polydisk such that $\mathcal{F} = \phi^* \mathcal{F}_i$ with \mathcal{F}_i one of the tautological foliations.

Irregular version of Corlette-Simpson Theorem

Theorem (L.-Pereira-Touzet): Let (E, ∇) be a flat \mathfrak{sl}_2 -connection on X projective. If ∇ is irregular, or logarithmic with some irrational eigenvalues, then

• $\exists \phi : X' \to X$ generically finite such that

$$\phi^*(E,\nabla) \xrightarrow{\sim} \left(X \times \mathbb{C}^2, d + \begin{pmatrix} \omega & 0 \\ 0 & -\omega \end{pmatrix} \text{ or } \begin{pmatrix} 0 & \omega \\ 0 & 0 \end{pmatrix} \right),$$

• or $\exists \phi : X \to C$ a curve such that $(E, \nabla) \xrightarrow{\sim} \phi^*(E_0, \nabla_0)$.