Transversely projective foliations

Frank Loray (CNRS / Univ Rennes 1)

Codimension 1 **foliations:** smooth case

A smooth codimension 1 holomorphic foliation \mathcal{F} on X is defined by

$$(f_i: U_i \to \mathbb{C})_i$$
 submersion

satisfying compatibility condition

 $f_i = \varphi_{ij} \circ f_j, \quad \varphi_{ij}$ holomorphic diffeomorphisms The **tangent bundle** $T\mathcal{F} \subset TX$ is locally defined by $df_i = 0$.

Smooth transversely projective foliation:

$$f_i: U_i \to \mathbb{P}^1$$
 and $\varphi_{ij} \in \operatorname{Aut}(\mathbb{P}^1)$.

Smooth codimension 1 **foliations: alternate definition**

Define \mathcal{F} by its tangent bundle $T\mathcal{F}$:

$$(\omega_i = 0)_i, \quad \omega_i \in \Omega^1(U_i)$$
 non vanishing

satisfying Frobenius integrability condition

$$(*) \quad \omega_i \wedge d\omega_i = 0$$

and compatibility condition

$$\omega_i = h_{ij}\omega_j, \quad h_{ij} \in \mathcal{O}^*(U_i)$$

The normal bundle $N\mathcal{F} := TX/T\mathcal{F}$ is defined by (h_{ij}) .

Frobenius Theorem: (*) $\Rightarrow \omega_i = g_i df_i$ where $f_i : U_i \to \mathbb{C}$ submersion, $g_i \in \mathcal{O}^*(U_i)$.

Codimension 1 foliations: the singular case

Define \mathcal{F} by its tangent bundle $T\mathcal{F}$:

 $(\omega_i = 0)_i, \quad \omega_i \in \Omega^1(U_i), \ \omega_i \text{ vanishing in codimension} \geq 2$

satisfying Frobenius integrability condition

$$(*) \quad \omega_i \wedge d\omega_i = 0$$

and compatibility condition

$$\omega_i = h_{ij}\omega_j, \quad h_{ij} \in \mathcal{O}^*(U_i)$$

The normal bundle $N\mathcal{F} := TX/T\mathcal{F}$ is defined by (h_{ij}) .

Get a smooth holomorphic foliation \mathcal{F} on $X \setminus Z$ where

 $Z := \bigcup_i \{ \text{zero set of } \omega_i \} \subset X$

is the (closed codimension ≥ 2) singular set of \mathcal{F} .

Codimension 1 foliations: the singular case

Assuming X projective, we can define \mathcal{F} on a Zariski open subset by

 $\omega = 0$, a global rational 1-form

satisfying Frobenius integrability condition

(*) $\omega \wedge d\omega = 0.$

Inconvenient: we introduce fake singular points for \mathcal{F} (non triviality of $N\mathcal{F}$)

Example 1: $\omega = df$ where $f : X \dashrightarrow \mathbb{P}^1$ (pencil of hypersurfaces)

Example 2: $d\omega = 0$ have local first integrals $f := \int \omega$ with additive monodromy outside of poles $(\omega)_{\infty}$. In general, leaves are dense !

Singular transversely projective foliations

A sing. transversely projective foliation is the data of (P, \mathcal{H}, σ) where

- $\pi: P \to X$ is a \mathbb{P}^1 -bundle,
- \mathcal{H} is a sing. codimension 1 foliation on P transversal to a generic \mathbb{P}^1 -fiber,

- $\sigma = X \dashrightarrow P$ a rational section generically transversal to \mathcal{H} .

Then $\mathcal{F} := \sigma^* \mathcal{H}$ on X is transversely projective in the smooth sense in restriction to the Zariski open set $U \subset X$ over which everything is smooth, transversal:

Indeed, outside $S := \pi (tang(\mathcal{H}, \pi) \cup tang(\mathcal{H}, \sigma) \cup indet(\sigma))$, we have locally:

$$(P, \mathcal{H}, \sigma)|_{U_i} \xrightarrow{\sim} (U_i \times \mathbb{P}^1_z, dz = 0, f_i : U_i \dashrightarrow \mathbb{P}^1)$$

and $f_i = \varphi_{ij} \circ f_j$ with $\varphi_{ij} \in Aut(\mathbb{P}^1)$.

Transversely projective foliations: lack of unicity

Another triple $(P', \mathcal{H}', \sigma')$ defines the same transversely projective foliation (same \mathcal{F} with same first special integrals $f_i : U_i \to \mathbb{P}^1$) iff

 $\exists \phi : P' \dashrightarrow P$ birational bundle transformation

such that $\mathcal{H}' = \phi^* \mathcal{H}$ and $\sigma = \phi \circ \sigma'$.

For instance, if X is projective, there exists birationally equivalent triple $(P, \mathcal{H}, \sigma) \xrightarrow{\sim} (X \times \mathbb{P}^1_z, \mathcal{H}, z = \infty).$

Transversely projective foliations: alternate definition

Proposition If $P = X \times \mathbb{P}^1_z$ then \mathcal{H} is defined by a unique equation

$$\underbrace{dz + \alpha z^2 + \beta z + \gamma}_{\omega} = 0 \quad (\text{Riccati foliation})$$

where α, β, γ rational 1-forms on X. Integrability condition writes

$$\omega \wedge d\omega = 0 \iff (**) \begin{cases} d\alpha = \alpha \wedge \beta \\ d\beta = 2\alpha \wedge \gamma \\ d\gamma = \beta \wedge \gamma \end{cases}$$

If $\sigma : \{z = \infty\}$, then $\mathcal{F} : \{\alpha = 0\}$. A birational bundle automorphism $z \mapsto az + b$, $a, b \in \mathbb{C}(X)$, $a \not\equiv 0$, gives new equation

$$dz + \tilde{\alpha}z^2 + \tilde{\beta}z + \tilde{\gamma} = 0 \quad (* * *) \begin{cases} \tilde{\alpha} = a\alpha \\ \tilde{\beta} = \beta + 2b\alpha + \frac{da}{a} \\ \tilde{\gamma} = \frac{1}{a} \left(db + \alpha b^2 + \beta b + \gamma \right) \end{cases}$$

New definition: (Scardua thesis '95) A foliation $\mathcal{F} : \{\alpha = 0\}$ on X is transversely projective if there are β, γ satisfying (**). **Remark:** (**) \Rightarrow (*) $\alpha \wedge d\alpha = 0$.

Group reduction

$$(**) \begin{cases} d\alpha = \alpha \land \beta \\ d\beta = 2\alpha \land \gamma \\ d\gamma = \beta \land \gamma \end{cases} \quad (***) \begin{cases} \tilde{\alpha} = a\alpha \\ \tilde{\beta} = \beta + 2b\alpha + \frac{da}{a} \\ \tilde{\gamma} = \frac{1}{a} \left(db + \alpha b^2 + \beta b + \gamma \right) \end{cases}$$

A triple $(\alpha, 0, 0)$ satisfies (*) iff $d\alpha = 0$ \Rightarrow transversely euclidean: $f := \int \alpha$ has additive monodromy

A triple $(\alpha, \beta, 0)$ satisfies (*) iff $d\alpha = \alpha \land \beta$ and $d\beta = 0$ \Rightarrow transversely euclidean: $f := \int \frac{\alpha}{\exp(\int \beta)}$ has affine monodromy

Proposition If \mathcal{F} admits two non equivalent projective structures, then $\exists p : X' \xrightarrow{2:1} X$ dominant, generically finite (degree 2) map such that $p^*\mathcal{F}$ is transversely euclidean.

Proof Can assume $\tilde{\alpha} = \alpha$ and $\tilde{\beta} = \beta$ up to (***). Then (*) implies that $\tilde{\gamma} = \gamma + h\alpha$, $h \in \mathbb{C}(X)$, and $(\alpha, \frac{1}{2}\frac{dh}{h}, 0)$ satisfies (*).

Degree d codimension 1 foliations on \mathbb{P}^n

Defined \mathcal{F}_{ω} on \mathbb{P}^n by $\omega = 0$ on \mathbb{C}^{n+1} :

$$\omega = \sum_{i=0}^{n} H_i(X_0, \dots, X_n) dX_i$$

where H_i = homogeneous polynomials of degree d+1 without common factor, satisfying

(*)
$$\omega \wedge d\omega = 0$$

and the conic structure

$$\omega\left(\sum_{i=0}^{n} X_{i} \frac{\partial}{\partial X_{i}}\right) = 0 \quad \Leftrightarrow \quad \sum_{i=0}^{n} X_{i} H_{i} = 0.$$

We have $\mathcal{F}_{\omega} = \mathcal{F}_{\omega'}$ iff $\omega' = c \cdot \omega$, with $c \in \mathbb{C}^*$.

We have $\operatorname{Fol}^d(\mathbb{P}^n) \subset \mathbb{P}^N = \mathbb{P}\{\operatorname{conic homogeneous 1-forms } \omega\}$ (we omit (*))

In dimension n = 2, conic structure \Rightarrow (*) and Fol^d(\mathbb{P}^2) forms a Zariski open subset of \mathbb{P}^N (have to delete $\omega = H \cdot \tilde{\omega}$).

Foliations on \mathbb{P}^n : classification

When dimension n > 2, Frobenius condition (*) becomes non trivial and

$$\overline{\mathsf{Fol}^d(\mathbb{P}^n)} \subset \mathbb{P}^N$$

forms a strict subset. Irreducible components are known for degree $d \leq 2$ (Darboux, Jouanolou, Cerveau-LinsNeto).

All known examples are of the form:

- pencils of hypersurfaces, - closed rational 1-forms, - pull-back of a foliation in \mathbb{P}^2 .

Proposition For any $d \ge 2$, there exist $\mathcal{F} \in \text{Fol}^d(\mathbb{P}^2)$ that are not transversely projective.

(\Rightarrow the same holds true for generic $\mathcal{F} \in Fol^d(\mathbb{P}^2)$ w.r.t. Lebesgue measure)

Conjectures

Conjecture 1: Transversely projective foliations form a closed subset of $Fol^{d}(\mathbb{P}^{2})$.

Conjecture 2: Given a codimension 1 foliation on a compact complex manifold M. Then:

- \mathcal{F} is the pull-back of a foliation \mathcal{F}_0 on a projective surface X:

 $\exists \phi : M \dashrightarrow X$ such that $\mathcal{F} = \phi^* \mathcal{F}_0$;

- or \mathcal{F} is transversely projective.

A result arXiv:1107.1538v1

Theorem (L.-Pereira-Touzet) Let $\mathcal{F} \in Fol^d(\mathbb{P}^n)$ with d < 2n - 2. Then

- ${\mathcal F}$ is the pull-back of a foliation ${\mathcal F}_0$ on a projective manifold X of dimension

$$\dim(X) \le \frac{d}{2} + 1 < n;$$

- or $\ensuremath{\mathcal{F}}$ is transversely euclidean.

Lie Theorem

Theorem (Lie) Let $\mathcal{L} \subset \{v = f(z)\partial_z ; f \in \mathbb{C}\{x\}\}$ be a finite dimensional Lie sub-algebra w.r.t. the Lie bracket $[f(z)\partial_z, g(z)\partial_z] = (f'g - fg')\partial_z$. If \mathcal{L} is transitive $(\exists v_0 \in \mathcal{L} \text{ such that } v_0(0) \neq 0)$, then $\dim(\mathcal{L}) \leq 3$ and $\exists \phi : (\mathbb{C}_z, 0) \rightarrow (\mathbb{C}_w, 0)$ such that

$$\mathcal{L} = \phi^* \mathcal{L}_0$$
 with $\mathcal{L}_0 \subset \mathfrak{sl}_2(\mathbb{C}) = \mathbb{C} \langle \partial_w, w \partial_w, w^2 \partial_w \rangle.$

Algebraic version Let $\mathcal{L} \subset \{v = f(z)\partial_z ; f \in \mathbb{C}(x)\}$ be a finite dimensional Lie sub-algebra w.r.t. the Lie bracket $[f(z)\partial_z, g(z)\partial_z] = (f'g - fg')\partial_z$. Then dim $(\mathcal{L}) \leq 3$ and $\exists \phi : \mathbb{P}^1_z \to \mathbb{P}^1_w$ such that

$$\mathcal{L} = \phi^* \mathcal{L}_0$$
 with $\mathcal{L}_0 \subset \mathfrak{sl}_2(\mathbb{C}) = \mathbb{C} \langle \partial_w, w \partial_w, w^2 \partial_w \rangle$.