
COHOMOLOGICAL CLASSIFICATION OF VECTOR BUNDLES
OVER SMOOTH AFFINE VARIETIES

J. FASEL

Abstract. These are expanded lecture notes for the mini-course on the clas-
sification of vector bundles on smooth affine varieties given in Luminy during
the week Dec 11-15, 2017.

Introduction

The goal of these three lectures is to cover the basics of the new methods of
classification of vector bundles over smooth affine varieties.

Conventions. All the schemes considered here are supposed to be of finite type
and separated over some field k. Usually, we suppose that k is infinite perfect.

1. Lecture 1

In this lecture, we first start with making precise what we mean by classification
of vector bundles on smooth affine varieties. As usual, we’ll switch between locally
free modules over X = Spec(R) and projective R-modules.

1.1. Stable versus unstable classification. Let X = Spec(R) be an affine
scheme. If V is a locally free sheaf over X, we denote by {V } its isomorphism
class. The set of isomorphism classes of locally free sheaf over X is endowed the
structure of an abelian monoid with operation defined by

{V }+ {W} = {V ⊕W}
and neutral element the trivial module. The group K0(X) is the group comple-
tion of V(X). More precisely, K0(X) is the free abelian group generated by the
isomorphism classes {V } quotiented by the subgroup generated by

{V }+ {W} − {V ⊕W}
for any {V } and {W}. We denote by [V ] the class of {V } in K0(X).

Proposition 1.1. Let V and W be locally free sheaves such that [V ] = [W ]. Then
there exists n ∈ N such that V ⊕OnX 'W ⊕OnX .

Suppose that X is connected (otherwise we can make the following study con-
nected component by connected component). Then we obtain a homomorphism

rk : K0(X)→ Z

induced by the rank. We denote by K̃0(X) the kernel of rk.
For any r ∈ N, let Vr(X) be the set of isomorphism classes of rank r locally free

sheaves, pointed by the class {OrX}. We define a map

sr : Vr(X)→ Vr+1(X)
1
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by sr({V }) = {V ⊕ OX} and we observe that sr is a map of pointed sets. Let
V(X) := limVr(X). For any r ∈ R, we denote by

πr : Vr(X)→ V(X)

the "limit" homomorphism. Note that V(X) is pointed by the class of π0{0}.
For any r ∈ N we define a map fr : Vr(X) → K̃0(X) by fr({V }) = [V ]− [OrX ].

It is clear that the following diagram commutes for any r ∈ N

Vr(X)
sr //

fr $$

Vr+1(X)

fr+1yy
K̃0(X)

and we then obtain a map (of pointed sets) f : V(X)→ K̃0(X).

Proposition 1.2. The map f : V(X)→ K̃0(X) is bijective.

Proof. We first prove that f is surjective. Let α = [V ] − [W ] ∈ K̃0(X). Then we
have rank(V ) = rank(W ). Let W ′ be such that W ⊕W ′ = OnX for some n ∈ N.
We have

α = [V ]− [QW ] = [V ] + [W ′]− [W ]− [W ′] = [V ⊕W ′]− [OnX ].

Now rank(V ⊕W ′) = n and it follows that α = fn({V ⊕W ′}). Hence f is surjective.
Let β and γ in V(X) be such that f(β) = f(γ). There exists therefore r, s ∈ N

and {V } ∈ Vr(X), {W} ∈ Vs(X) such that fr({V }) = fs({W}) with πr({V }) = β
and πs({W}) = γ.

Since fr({V }) = fs({W}), we have [V ]− [OrX ] = [W ]− [OsX ] and it follows from
Proposition 1.1 that V ⊕Os+mX 'W ⊕Or+mX for some m ∈ N. This yields

β = πr({V }) = πr+s+m({V ⊕Os+mX }) = πr+s+m({W ⊕Or+mX }) = πs({W}) = γ.

�

Thus we see that K-theory (actually, the reduced K0 group) studies the isomor-
phism classes of locally free sheaves "at the limit". In particular, the pointed set
V(X) has the structure of an abelian group which is part of a perfectly nice coho-
mology theory. It can be studied using cohomological methods, and in particular
the properties of K-theory (homotopy invariance, localization sequences, Nisnevich
excision, etc...). Thus, one has a chance of computing V(X) if we understand X.
or its geometry, well enough. The goal of these lectures is to extend these "coho-
mological" methods to study the sets Vr(X) and the maps

sr : Vr(X)→ Vr+1(X)

for any r ∈ N. We start with a few (well-known) reductions. Note first that V1(X)
is in fact the Picard group of X. For any r ≥ 1, there is an obvious map of pointed
sets

detr : Vr(X)→ V1(X)

induced by the determinant. At the limit, it yields a group homomorphism V(X) =

K̃0(X)→ Pic(X) = V1(X) which is nothing but the classical determinant map.

Corollary 1.3. For any r ≥ 2, the map sr−1 ◦ . . . ◦ s1 : V1(X) → Vr(X) is split
injective, with section detr.
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Proof. This follows readily from the fact that det(L⊕Or−1
X ) ' L for any line bundle

L over X. �

For this reason, it is customary to study the fibers of the map detr : Vr(X) →
V1(X). In particular, let L be a line bundle over X. For any r ≥ 1, let Vr(X,L)
be the set det−1

r ({L}). We obtain maps

sr(L) : Vr(X,L)→ Vr+1(X,L)

for any r ≥ 1 with V1(X,L) = {L}. We may consider these sets as pointed sets
(by L ⊕ Or−1

X ) and the maps as pointed maps. Setting V(X,L) = limr Vr(X,L)

we observe that V(X,L) is just the preimage in K̃0(X) of {L} ∈ Pic(X) under the
determinant map. It has a structure of an homogeneous space under V(X,OX) =
ker(det).

Now, we come to a few famous theorems (in the language of projective R-
modules).

Theorem 1.4 (Serre). Let R be a commutative noetherian ring and X = Max(R).
Suppose that X is connected of dimension d. Let P be a projective R-module of
rank r > d. Then P ' P ′ ⊕R.

Proof. See [5, Part 2, Chapter IV, §2] or [17, Théorème 1]. �

Theorem 1.5 (Bass). Let R be a commutative noetherian ring and let X =
Max(R). Suppose that X is connected of dimension d. Let P and P ′ be projec-
tive R-modules of rank r > d. Suppose that there exists a projective R-module Q
such that P ⊕Q ' P ′ ⊕Q. Then P ' P ′.

Proof. [5, Part 2, Chapter IV, Corollary 3.5]. �

As an obvious corollary to these two theorems, we get the following result.

Corollary 1.6. Let X be a connected affine scheme of dimension d. Then

sr : Vr(X)→ Vr+1(X)

is surjective if r ≥ d and injective if r ≥ d+ 1. In particular, V(X) = Vd+1(X).

Note that this result is a bit better in case X is a curve. Indeed, we know that
V1(X)→ V2(X) is injective and therefore V(X) = V1(X). Thus:

Corollary 1.7. Let X be an affine curve. Then, V(X) = V1(X) = Pic(X).
Moreover, the map

sr : Vr(X)→ Vr+1(X)

is injective and bijective provided r ≥ 1.

However, Corollary 1.6 is the best possible in general. Indeed, consider the real
algebraic sphere (of dimension 2) S2. Then, the tangent bundle T is locally free
of rank 2, stably isomorphic to O3

S2 but non isomorphic to O2
S2 . In fact, we may

totally describe the sequence

V1(S2)
s1 // V2(S2)

s2 // V3(S2) = K̃0(S2) // . . .

in that case. First, note that K0(S2) = Z⊕ Z/2 (easy computation) and thus that
K̃0(S2) = Z/2. It follows that Vr(S2) = Z/2 if r ≥ 3 (and obviously that sr is
bijective for such r). Next, V1(S2) = Pic(S2) = 0. It remains to describe V2(S2),
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which is in fact equal to Z (and has therefore a group structure) by e.g. [7, Theorem
5.9].

However, the situation becomes a bit better if we put more assumptions on the
base field.

Theorem 1.8 (Suslin). Let k = k be an algebraically closed field. Let X be an
affine k-scheme of dimension d. Then, the map

sr : Vr(X)→ Vr+1(X)

is injective if r ≥ d. In particular, Vd(X) = V(X).

Proof. [18, Theorem 1]. �

This result was later extended to slightly more general base fields by Suslin
himself and Bhatwadekar in respectively [19, Theorem 2.4] and [6, Theorem 4.1].
If X is a surface over an algebraically closed field k, then the above theorem yields
V2(X) = K̃0(X) and V1(X) = Pic(X). The stabilization maps si are all injective
and it remains to understand the image of s1 : Pic(X) → V2(X). For this, we
introduce the topological filtration on K0(X). From now on, we assume that the
schemes we consider are smooth (even though this is not always necessary). We
consider the set of isomorphism classes of coherent sheaves on X (with operation
the direct sum) and define G0(X) to be the free abelian group on this set quotiented
by the relation M + N = P if there is an exact sequence 0 → M → P → N → 0.
There is an obvious group homomorphism K0(X) → G0(X) which is in fact an
isomorphism since X is smooth (the inverse map can be defined choosing a locally
free resolution of a coherent module). Now, there is an obvious filtration on G0(X),
denoted by (FnG0(X))n∈N where FnG0(X) is the subgroup generated by coherent
sheaves whose support is of codimension ≥ n. This filtration extends to a filtration
(FnK0(X))n∈N of K0(X) (via the above isomorphism).

Now, the Chern classes induce maps

ci : K0(X)→ CHi(X)

and then maps
ci : F iK0(X)→ CHi(X)

for any i ∈ N. On the other hand, associating to a point of codimension i the
coherent sheaf of its closure yields a map from the free abelian group on the set
of codimension i points to F iK0(X) and then to F iK0(X)/F i+1K0(X). It is not
hard to see that this yields a surjective homomorphism

ϕi : CHi(X)→ F iK0(X)/F i+1K0(X)

Theorem 1.9 (Grothendieck). Let X be a quasi-projective smooth scheme over k.
For any i ∈ N, the Chern class ci induces a homomorphism

ci : F iK0(X)/F i+1K0(X)→ CHi(X)

and the composites ci ◦ ϕi and ϕi ◦ ϕi are both equal to the multiplication by
(−1)i−1(i− 1)!.

As a corollary of this theorem and Theorem 1.8, we obtain the following result.

Corollary 1.10. Let X be a smooth affine surface over an algebraically closed field
k. Then the Chern classes induce a bijection

(c1, c2) : V2(X)→ CH1(X)× CH2(X).
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Proof. We know from Theorem 1.8 that V2(X) = V(X) = K̃0(X). By Grothendieck’s
theorem, we obtain exact sequences

0→ F 1K0(X)→ K0(X)→ Z→ 0

and
0→ F 2K0(X)→ F 1K0(X)→ CH1(X)→ 0,

where the right-hand homomorphisms are respectively the rank map and first Chern
class. Moreover, F 2K0(X) = CH2(X) via the second Chern class since F iK0(X) =

0 if i ≥ 3. It follows from Suslin’s theorem that K̃0(X) = V2(X) and the above
exact sequence gives K̃0(X) = F 1K0(X). The claim now follows from the second
exact sequence. �

Remark 1.11. Note that the map

(c1, c2) : V2(X)→ CH1(X)× CH2(X).

is in general not a group homomorphism. The description of the theorem shows
that for any (isomorphism class of) line bundle L over X we have a bijection
V2(X,L)→ CH2(X). In particular, we have an isomorphism V2(X,OX) ' CH2(X)
and V2(X,L) is a homogeneous space under this group. The bijection V2(X,L)→
CH2(X) is obtained by choosing OX ⊕ L in V2(X,L).

Now, we want to extend this classification to smooth threefolds over an alge-
braically closed field. The first result we need is the following.

Theorem 1.12. Let k be an algebraically closed field of characteristic different
from 2. Let X be a smooth affine threefold over k. Then CH3(X) is uniquely
2-divisible.

We don’t give a proof of this result, which is well known. References?
As a final result of this section, let us state (and prove) the following theorem

([12, Theorem 2.1]).

Theorem 1.13 (Mohan Kumar-Murthy). Let X be a smooth affine threefold over
an algebraically closed field k of characteristic different from 2. Then, the Chern
classes induce a bijection

(c1, c2, c3) : V3(X)→ CH1(X)× CH2(X)× CH3(X).

Proof. As before, note that V3(X) = K̃0(X). We can use the topological filtration
F iK0(X) and note as before that F 1K0(X) = K̃0(X), while F iK0(X)/F i+1K0(X) '
CHi(X) for i = 1, 2. Next, the group CH3(X) is uniquely 2-divisible, showing that
CH3(X) ' F 3K0(X) (as F iK0(X) = 0 if i > 3). This proves that

(c1, c2, c3) : V3(X)→ CH1(X)× CH2(X)× CH3(X).

is injective, and we are left with surjectivity. Let then (a1, a2, a3) ∈ CH1(X) ×
CH2(X) × CH3(X). By definition, there exists a line bundle L over X such that
c1([L]) = a1. Moreover, it follows from Grothendieck’s theorem that there exists
α ∈ F 2K0(X) with c1(α) = 0 and c2(α) = a2. We can write α = [P ] − [O3

X ] for
some P of rank 3 over X. Note that c1(P ) = 0 and thus that ci(P ⊕ L) = ai for
i = 1, 2. Set b = c3(P ⊕ L) and consider a3 − b ∈ CH3(X). The third Chern class
being surjective, there exists β ∈ F 3K0(X) such that c3(β) = a3 − b. As above,
we write β = [Q] − [O3

X ] with c1(Q) = c2(Q) = 0Theorem and c3(Q) = a3 − b.
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It follows that the locally free sheaf Q ⊕ P ⊕ L has (a1, a2, a3) for Chern classes.
Using the above theorems, we may write Q⊕ P ⊕ L = V ⊕O4

X and V is the sheaf
we were looking for. �

Remark 1.14. The above theorem is much more precise in [12]. In particular, the
authors prove that given c1, c2 as above there exists a rank 2 locally free sheaf V
with these Chern classes. We’ll prove in the third lecture that V is in fact unique
with this property.

2. Lecture 2

In this section, we introduce the A1-homotopy category (after Morel-Voevodsky)
which is the main new tool which allows to improve the results of the previous
section. A useful reference is [1].

2.1. Simplicial sets. Let k be an infinite perfect field and let Smk be the category
of separated smooth schemes over k. Recall that any X ∈ Smk defines a functor

X : Smk → Sets

by Y 7→ Hom(Y,X). Next, let SSets be the category of simplicial sets (e.g. [8]).
Explicitly, consider the category ∆ whose objects are n := {0, 1, . . . , n} for any
n ∈ N (seen as a totally ordered set) and whose maps ϕ : n → m are order
preserving maps of sets, i.e. ϕ(i) ≥ ϕ(j) if i ≥ j. A simplicial set S is a functor

S : ∆op → Sets

and a morphism of simplicial sets is just a natural transformation. We write Sn for
S(n) and observe that morphisms in the category ∆ can be described using basic
bricks, called face and degeneracy maps ([8, Definition 3.2]). The basic example of
a simplicial set is given by the representable object (called n-simplex )

∆n : ∆op → Sets

given by m 7→ Hom∆(m,n). Note that there is an obvious functor

Sets→ SSets

associating to E the constant functor ∆op → Sets mapping objects to E and mor-
phisms to the identity of E. Consequently, any smooth scheme X yields a functor

X : Smk → SSets

On the other hand, any simplicial set S also defined a functor

S : Smk → SSets

via S(X) = S and S(f) = IdS for any morphism f : X → Y . Thus, we can see both
smooth schemes and simplicial sets as presheaves of simplicial sets on Smk. Note
that a presheaf of simplicial sets is nothing but a simplicial object in the category
of presheaves. It is easy to check that the category of simplicial presheaves has all
small limits and colimits, as well as internal hom objects.

Definition 2.1. A pointed presheaf of simplicial sets (X , x) is a presheaf of sim-
plicial sets X , together with a map

x : Spec(k)→ X
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We may consider the category of pointed presheaves of simplicial sets, whose
morphisms are pointed morphisms of presheaves. This category also has all small
limits and colimits, and in particular we can consider the presheaves (X , x)∨ (Y, y)
and (X , x) ∧ (Y, y) for any pointed presheaves (X , x) and (Y, y). On the other
hand, the obvious functor from the category of pointed presheaves to the category
of presheaves has a left adjoint which is defined by X 7→ X+, where the latter
denotes the disjoint union of X with Spec(k).

2.2. The Nisnevich topology. Let X be a smooth scheme. A Nisnevich distin-
guished square is a Cartesian square

W //

��

V

p

��
U

i
// X

where i is an open immersion, p : V → X is étale and induces an isomorphism
p−1(X \ U)→ X \ U . Note that in that case, we have a Cartesian square

p−1(Z) //

��

V

p

��
Z // X

where Z = X \ U (use the fact that an étale extension of a reduced scheme is
indeed reduced). The Nisnevich topology ([15]) is the topology generated by these
distinguished squares. More precisely, a cover of X in the Nisnevich topology is a
finite family of étale morphisms Ui → X such that for any x ∈ X there exists i and
u ∈ Ui such that the field extension k(u)/k(x) is trivial. The Nisnevich topology
endows Smk with a topology, and in particular we have the notion of Nisnevich
sheaf. The points in the Nisnevich topology are the henselizations OhX,x, where X
is a smooth scheme and x ∈ X.

Example 2.2. Any Nisnevich distinguished square yields a covering V t U → X.
In the particular case where X = Spec(k), we have two possible types of squares.
We may first choose U = ∅, giving the trivial covering of Spec(k), or we can choose
U = Spec(k) giving a covering Spec(k) t Spec(A) → Spec(k) where A is an étale
k-algebra. In fact, one can already see the difference of the Zariski, Nisnevich and
étale topologies in the coverings of Spec(k). In the Zariski topology, a cover of
Spec(k) is just Spec(k) itself. In the Nisnevich topology, a cover is given by an
étale algebra A = L1× . . . i, where Li/k is a finite separable field extension for each
i and L1 = k. For the étale topology, a cover is just given by an étale algebra,
without further conditions.

One of the nice features of Nisnevich topology is given by the following theorem.

Theorem 2.3. Let X be a smooth scheme of dimension d and let A be a Nisnevich
sheaf on X. Then Hi

Nis(X,A) = 0 for i > d.

One can associate to a simplicial presheaf a simplicial sheaf following the usual
procedure, and it follows that the category of simplicial sheaves also has all small
limits and colimits. We can also consider the pointed version of this discussion, and
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in particular consider the simplicial sheaves (X , x) ∨ (Y, y) and (X , x) ∧ (Y, y) for
any pointed sheaves (X , x) and (Y, y).

Definition 2.4. A motivic space is a simplicial object in the category of Nisnevich
sheaves. Equivalently, a motivic space is a simplicial presheaf S whose components
Sn are sheaves of sets.

Remark 2.5. We could work with simplicial presheaves instead of simplicial sheaves.
In the end, the homotopy categories (constructed below in the case of sheaves) will
be equivalent.

2.3. The model structure on simplicial sheaves. Now, recall the notion of
model category, due to Quillen. The goal is to be able to work "up to homotopy"
in an axiomatic way. In particular, model categories provide a nice framework for
inverting a class of morphism and getting a grasp at the hom sets in the quotient
category.

We start with the category of (pointed) simplicial sets introduced in the previous
section. Recall that there is a "topological realization" functor from the category of
simplicial sets to the category of topological spaces associating to S the topological
space

|S| : tn∈N(Sn × |∆n|)/ ∼
where |∆n| is the usual n-simplex endowed with its usual topology, Sn is the set of
n-simplexes endowed with the discrete topology and ∼ is the equivalence relation
generated by (s, di(p)) = (di(s), p) for every s ∈ Sn+1 and p ∈ |∆n| (here, di :
|∆n| → |∆n+1| are the face inclusions) and (x, si(p)) ∼ (si(x), p) for every x ∈ Sn−1

and p ∈ |∆n| (here, si : |∆n+1| → |∆n| are the face collapses). Equivalently, one
can define the realization functor to be a limit ([10, Chapter I, Lemma 2.1] and the
subsequent discussion).

In particular, a direct calculation shows that the topological realization of the
n-simplex is just the topological n-simplex. Almost by definition, the n-simplex is
weak equivalent to a point. Further, let ∆n be the simplicial n-simplex for n ≥ 1
and let ∂∆n be the union of its faces (which is a simplicial set). Then, one can
consider the quotient simplicial set ∆n/∂∆n and check that it realizes to the sphere
Sn.

Definition 2.6. A morphism of simplicial sets f : S → T is a weak-equivalence if
the induced map on topological spaces |f | : |S| → |T | is a weak-homotopy equiva-
lence (i.e. |f | induces an isomorphism on homotopy groups (for each choice of base
point).

The goal is to describe the localization of the category of simplicial sets with
respect to the class of weak-equivalences. This can be done as follows. Say that
a morphism of simplicial sets f : S → T is a cofibration if it is a monomorphism
(i.e. degreewise injective) and say that it is an acyclic cofibration if it is further a
weak-equivalence. Consider the following diagram

A //

i

��

E

p

��
X //

f

>>

B

in the category of simplicial sets. We say that p has the right lifting property with
respect to acyclic cofibrations if there exists a morphism f making the diagram
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commutative each time i is an acyclic cofibrations. Define the class of fibrations to
be precisely the morphisms satisfying this property. Thus, we have isolated three
classes of morphisms: weak-equivalences W , cofibrations C and fibrations F , and
this is precisely the data needed to perform our localization process.

Definition 2.7. We say that two maps of simplicial sets fi : S → T for i = 0, 1 are
naively homotopic if there exists a morphism F : S ×∆1 → T such that F (i) = fi
where F (i) denotes the composite of F with the i-th face.

Note finally that the category of simplicial sets possesses both an initial object
∅ and a final object ?. We say that S is cofibrant if ∅ → S is a cofibration (thus
any object is cofibrant) and fibrant if S → ? is a fibration.

Theorem 2.8 (Quillen). Let S be a cofibrant object and let T be a fibrant object
in the category of simplicial sets. Then

HomSSets[W−1](S, T ) = Hom∼(S, T )

where ∼ is the naive homotopy equivalence relation defined above.

Remark 2.9. As noted in the theorem, the naive homotopy relation is actually an
equivalence relation, provided S is cofibrant and T is fibrant (e.g. [10, Corollary
6.2]).

Now, the good thing with cofibrant and fibrant objects is that they abound in
nature. We have already seen that every object is cofibrant. Moreover, given an
object S, there exists a trivial cofibration S → Sfib with the latter fibrant. Thus,
to compute HomSSets[W−1](S, T ) for any objects S and T , we can choose a fibrant
replacement of T and we get

HomSSets[W−1](S, T ) = Hom∼(S, Tfib)

Of course, the problem with this procedure is that it is hard to explicitly find a
fibrant replacement. Note however that there exists another characterization of
fibrations, in terms of horns. There are usually called Kan fibrations ([10, Chapter
I,§3]).

2.4. The model category structure on simplicial sheaves. We now endow
the category of simplicial sheaves with a model structure using the previous section.
Let then S and T be simplicial sheaves of sets and f : S → T be a morphism of
simplicial (pre)sheaves. We say that f is a cofibration if it is a monomorphism
and a weak-equivalence if f(x) : S(x) → T (x) is a weak-equivalence of simplicial
sets for any point x in the Nisnevich site (namely, f should be a weak-equivalence
at each hensel local essentially smooth scheme). We can define the fibrations to
be the class of morphisms having the right lifting property with respect to acyclic
cofibrations and obtain as above three classes of morphisms: W , C and F .

Definition 2.10. The simplicial homotopy categoryHs(k) is the localization of the
category of simplicial sheaves (of sets) with respect to the class of weak-equivalences
defined above. We can also consider its pointed version Hs,•(k) defined in an
analogous way.

We may define wedge and smash products as usual, and also an internal hom,
induced by the internal hom of simplicial sets.

As before, the way to compute hom sets in this category is to find an explicit
fibrant replacement and compute the set of morphisms up to naive homotopies. The
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problem is again to characterize fibrant objects in a workable way. We’ll come back
to this point later on, but we now state a few facts that we will use below. First,
note that if S → T is a fibration, then the induced map S(U) → T (U) is a Kan
fibration for each smooth scheme U (this follows from [14, Chapter I, Lemma 1.8
(3)] with X = ∅). Next, let S be a fibrant simplicial sheaf. Consider the inclusion
d0 : ? = ∆0 → ∆1 (given by choosing the vertex 0). It induces a morphism

d∗0 : Hom(∆1, S)→ Hom(?, S) = S

which is a fibration ([14, Lemma 1.8 (2)] and [10, Chapter II,Proposition 3.2]).
Choosing a base point s ∈ S, we can consider the pull-back square (obviously
existing in the category of simplicial sheaves)

PS
j //

��

Hom(∆1, S)

��
? // S

Definition 2.11. We define the path space associated to S to be the simplicial
sheaf PS fitting in the above diagram.

Now, we have a natural map d1 : ∆0 → ∆1 (corresponding to the choice of 1),
yielding a map d∗1 : Hom(∆1, S)→ Hom(?, S) = S as above and a composite

π : PS
j→ Hom(∆1, S)

d∗1→ S

which is a fibration (use [14, Lemma 1.8 (2)] with ∆0 t ∆0 → ∆1 and [10, proof
of Lemma 7.5]). Moreover, π : PS → S is a weak-equivalence by [10, Chapter I,
Lemma 7.5].

We’ve made use of pull-backs in the category of simplicial sheaves. However,
there is a weaker (yet more useful) notion of pull-back in the homotopy category
of simplicial sheaves. We follow the exposition of [16, §1] (and say that the model
categories we work with are proper in the sense of [16, Definition 1.1.6])

Definition 2.12. A commutative square

U //

��

X

f

��
Y

g
// Z

of simplicial sheaves is homotopy cartesian if for some factorization of Y → Z as
Y → V → Z, where the first map is an acyclic cofibration and the second is a
fibration the induced morphism

U → V ×Z X

is a weak equivalence.

Remark 2.13. We can also require that for some factorization of X → Z the above
property holds, or for some factorization of both Y → Z and X → Z ([10, Chapter
II, Lemma 9.17]). This is actually equivalent. The same holds if we replace "for
some factorization of Y → Z as Y → V → Z" by "for any factorization of Y → Z
as Y → V → Z" ([10, Chapter II, Lemma 9.15]).
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The same notion holds for homotopy cocartesian. As a particular case, consider
the diagram

?

��
Y

f
// Z

(in the category of pointed sheaves). We’ve seen that π : PZ → Z is a fibration and
that the map PZ → ? is a weak equivalence. It follows that ?→ PZ (corresponding
to the choice of the base point of Z) is also a weak equivalence (and a cofibration).
Thus, we may replace ? → Z in the diagram above with π : PZ → Z and get a
homotopy Cartesian square

F //

��

PZ

π

��
Y

f
// Z.

We say that F is the homotopy fiber of the map f : Y → Z (we may as well assume
that f is pointed). We will consider the sequence

F → Y
f→ Z

which is a model of a fiber sequence. The essential property of this type of sequence
is a long exact sequence of homotopy sheaves, that we now introduce.

Definition 2.14. Let (T, t) be a pointed simplicial sheaf of sets. We denote by
πsi (T, t) the Nisnevich sheaf associated to the presheaf

X 7→ HomHs,•(k)(S
i ∧X+, T ).

If we have a sequence
F → Y

f→ Z

as above, we get a long exact sequence of homotopy sheaves

. . .→ πsi (F, y)→ πsi (Y, y)→ πsi (Z, f(y))→ πsi−1(F, y)→ . . .

where πsi (_,_) is an abelian group provided i ≥ 2, a group if i = 1 and a pointed
set if i = 0. This follows from the fact that the diagram

F //

��

PZ

π

��
Y

f
// Z.

is homotopy Cartesian, the general properties of model categories and the fact that
sheafification is exact. Here, recall that a sequence of pointed sets (Xi, xi) and
groups Gi

G1
h1→ G0

h0→ X2
f2→ X1

f1→ X0

is exact if
• any x ∈ X1 mapping to the base point x0 of X0 comes from X2.
• There is an action of G0 on X2 such that we have h0(g) = g · x2 and for

any y, z with f2(y) = f2(z) there exists g ∈ G0 with g · y = z.
• any g ∈ G0 acting trivially on the base point of X2 comes from G1.
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2.5. Eilenberg-MacLane spaces. We will need later the notion of Eilenberg
MacLane space. We give a quick recollection, following [14, Chapter I, §1]. To
a sheaf of simplicial abelian groups A, one may associate a normalized complex of
sheaves of abelian groups, denoted N(A) ([10, Chapter III,§2]). This construction
is obviously functorial in A and then one obtains a functor from the category of
simplicial sheaves of abelian groups to the category of complexes of sheaves (of
abelian groups) lying in positive degrees. This functor admits a right adjoint Γ
([10, Chapter III, Corollary 2.3]), which is actually an equivalence of categories,
known as the Dold-Kan correspondence. More generally, one may consider the
category of bounded below complexes of sheaves of abelian groups and define Γ in
an analogue way (this time, it is not an equivalence). The functor Γ has the very
useful consequence to allow to define useful spaces.

Definition 2.15. Let A be a sheaf of abelian groups and let n ∈ N. The space
Γ(A[n]) is called the Eilenberg-MacLane space associated to the pair (A,n). Here,
A[n] denotes the complex whose terms are all zero, except in degree n, where it is
equal to A. We denote Γ(A[n]) by K(A,n).

Now the Dold-Kan correspondence can be derived. More precisely, one endows
the category of (bounded below) chain complexes of sheaves of abelian groups
with the structure of a model category. The weak-equivalences are just the quasi-
isomorphisms (while the other classes are described for instance in [10, Chapter
III, §2]). Then, we obtain an adjunction at the level of the homotopy categories
and it follows readily that the Eilenberg-MacLane space satisfy the following useful
property. For any smooth scheme X, we have

HomHs(k)(X,K(A,n)) = HomHs,•(k)(X+,K(A,n)) = Hn
Nis(X,A).

One can extend the definition of Eilenberg-MacLane spaces to bounded below com-
plexes, but we won’t need this fact here. Arguably, the importance of these spaces
lies in the Postnikov tower associated to a space, which allows to compute the set
of maps up to homotopy using a (generalized) spectral sequence.

2.6. Postnikov tower. Let (X,x) be a pointed space. We assume first that X is
simply connected, in the sense that πsi (X,x) = ∗ for i = 0, 1. The Postnikov tower
is a sequence of pointed spaces X(i) (for i ≥ 0), together with pointed morphisms
for any i ≥ 0

pi : X → X(i)

and
fi : X(i+1) → X(i)

satisfying the following properties:
(1) fipi+1 = pi for any i ≥ 0.
(2) πsj (X(i)) = 0 if j > i.
(3) The morphism pi induces an isomorphism πsj (X,x)→ πsj (X

(i)) for j ≤ i.
(4) The morphism fi is a fibration with homotopy fiber K(πsi+1(X,x), i+ 1).
(5) Further, the fibration fi is principal in the sense that there is a morphism

ki+1 : X(i) → K(πsi+1(X,x), i+ 2)

whose homotopy fiber is X(i+1).
(6) The morphism from X to the homotopy colimit of the X(i) is a weak-

equivalence.
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It is certainly not clear a priori that such a tower exists. We’ll give a few argu-
ments an references for this construction, but we start with a few easy observations.
Since X is simply connected, then we can take X(i) = ∗ for i = 0, 1. Second, we
may of course assume that X is fibrant (the tower having anyway properties related
to the homotopy sheaves of X). Then, the sections X(U) for any smooth scheme
U form a fibrant simplicial set. One may apply the procedure of [10, Chapter VI,
§2] to get a fibrant simplicial set X(U)(i) and, since the construction is functorial
a simplicial presheaf U 7→ X(U)(i). Taking the associated sheaf and a fibrant re-
placement of the latter, we find a simplicial sheaf X(i). It remains to check that it
satisfies the expected properties. Property (1) is clear from the construction, while
the properties on homotopy sheaves follow from the fact that X(i) is locally weak-
equivalent to the presheaf defined above, and that the presheaf X(U)(i) satisfies the
conditions by construction. For (5), observe that there is a morphism of simplicial
sets

ki+1(U) : X(U)(i) → K(πi+1(X(U), x), i+ 2)

for any smooth U whose homotopy fiber is actually X(U)(i+1) ([10, Corollary 5.3]).
Now, there is a morphism of abelian groups πi+1(X(U), x) → πsi+1(X,x)(U) (cor-
responding to sheafification) and we obtain a composite

X(U)(i) → K(πi+1(X(U), x), i+ 2)→ K(πsi+1(X,x)(U), i+ 2)

which factors through X(i)(U) by the universal property of the sheafification. We
then have a morphism of sheaves

ki+1 : X(i) → K(πsi+1(X,x), i+ 2)

which we can suppose to be a fibration between fibrant objects. Its homotopy fiber
is locally weak-equivalent to the sheafification of X(U)(i+1) and the claim follows.
Surprisingly, the last point is actually the delicate one. Its proof can be found in
[14, Chapter I, Theorem 1.37].

One can extend the definition of the Postnikov tower to a space which is not
simply connected, but only connected. We start by observing that the construction
of [10, Chapter VI, §2] provides spaces X(i) satisfying conditions (1)-(4) above. The
same applies for (6) and the only notable difference is (5). Now, X(1) has a single
homotopy sheaf in degree 1, namely πsi (X(1)) = 0 if i 6= 1 and πs1(X(1)) = πs1(X,x).
We denote X(1) by Bπ1 and observe that it is the classifying space of a sheaf of
groups (see the next sections for more on classifying spaces). In particular, there
is an action of πs1(X,x) on Bπ1 and also on πsi (X,x) for i ≥ 1. This allows to
construct an action on K(πsi (X,x), i+ 2) and one may consider the space

Kπ1(πsi (X,x), i+ 2) := Eπ1 ×πs
1(X,x) K(πsi (X,x), i+ 2).

The theorem in this situation is the following.

Theorem 2.16. Let (X,x) be a pointed space which is connected. For any i ≥ 0,
there are pointed spaces X(i), morphisms pi : X → X(i) and fi : X(i+1) → X(i)

such that the following conditions are satisfied:
(1) fipi+1 = pi for any i ≥ 0.
(2) πsj (X(i)) = 0 if j > i.
(3) The morphism pi induces an isomorphism πsj (X,x)→ πsj (X

(i)) for j ≤ i.
(4) The morphism fi is a fibration with homotopy fiber K(πsi+1(X,x), i+ 1).
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(5) The morphism from X to the homotopy colimit of the X(i) is a weak-
equivalence.

Further, the fibration fi is a twisted principal fibration in the sense that there is a
morphism

ki+1 : X(i) → Kπ1(πsi (X,x), i+ 2)

and a homotopy Cartesian square

X(i+1) //

fi

��

Bπ1

��
X(i)

ki+1

// Kπ1(πsi (X,x), i+ 2)

The proof can be obtained as in the previous situation, using this time the more
general situation on simplicial sets as described in [10, Chapter VI, §5].

2.7. Using Postnikov towers. The Postnikov tower of a pointed (connected)
space (X,x) is precisely designed to be able to construct a (pointed) morphism
f : (Y, y) → (X,x) stage by stage. Suppose first that (X,x) is simply connected.
To construct a morphism from (Y, y) to (X,x), we can start by constructing a
pointed morphism Y → X(i) for some I. Under our assumption, X(i) = ∗ for
i = 0, 1 and the problem is particularly simple for such i. Suppose then that we
have a morphism

g(i) : Y → X(i).

On the other hand, we have a fiber sequence

X(i+1) → X(i) ki+1→ K(πi+1(X,x), i+ 2)

and the general theory of fiber sequences ([11, Proposition 6.5.3]) shows that g(i)

lifts to a morphism g(i+1) : Y → X(i+1) if and only if the composite ki+1g
(i) is null

homotopic. Now, HomHs,•(Y,K(πi+1(X,x), i+ 2)) is equal to Hi+2
Nis (Y, πi+1(X,x)),

a group that is supposedly computable. Thus, there is a cohomological way of
deciding if g(i) can be lifted to a morphism g(i+1). Moreover, we can as well pa-
rametrize the different choices of g(i+1). Indeed, the general properties of fiber se-
quences say that two different choices of g(i+1) differ from an element of the group
HomHs,•(Y,K(πi+1(X,x), i + 1)). In particular, if both of the above cohomology
groups are trivial, then there is a unique choice of g(i+1) given a map g(i).

Let’s now come back to the more general situation where (X,x) is connected, but
not necessarily simply connected. Suppose that we are given a map g(i) : Y → X(i).
Then the homotopy Cartesian square

X(i+1) //

fi

��

Bπ1

��
X(i)

ki+1

// Kπ1(πsi (X,x), i+ 2)

shows that there exists a lift g(i+1) : Y → X(i+1) if and only if ki+1g
(i) lifts to a

map Y → Bπ1. Note that there is a projection morphism

Kπ1(πsi (X,x), i+ 2)→ Bπ1
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and that the indicated morphism Bπ1 → Kπ1(πsi (X,x), i + 2) is a section of this
projection. Thus, we exactly know what the potential lift should be. In some
sense, the lifting problem is the same as the previous one, but in the category of
spaces above Bπ1. We may compare this to the discussion after Corollary 1.3 for
motivation.

2.8. The motivic homotopy category. We finally introduce the motivic homo-
topy category, which will be our playground in the next section. This category
(introduced by Morel and Voevodsky) is a very nice place for the general study of
homotopy invariant cohomology theories over smooth schemes. The general idea
is start from the simplicial homotopy category studied above and force the affine
line to be contractible. This can be done using the general process of Bousfield
localization and we follow here the exposition of [14, §3.2].

Definition 2.17. A sheaf of simplicial sets X is A1-local if for any simplicial sheaf
Y , the map

HomHs(k)(Y,X)→ HomHs(k)(Y × A1, X)

induced by the projection Y × A1 → Y is a bijection. Further, a morphism a
simplicial sheaves Y → Z is an A1-weak equivalence if for any A1-local object X,
the map

HomHs(k)(Z,X)→ HomHs(k)(Y,X)

is a bijection.

Example 2.18. For any smooth scheme X, the projection X × A1 → X is an A1-
weak equivalence. More generally, suppose that we have morphisms of smooth
schemes f : X → Y and g : Y → X such that both g ◦ f and f ◦ g are naively
homotopic to identity, i.e. there exists (for g◦f , and similarly for f ◦g) a morphism
F : X × A1 → X such that F (0) = Id and F (1) = g ◦ f . Then, both f and g are
A1-weak equivalences.

One can endow the category of simplicial sheaves with a proper model struc-
ture in which the weak equivalences are the A1-weak equivalences, the cofibrations
are monomorphisms and the fibrations have the right lifting property with respect
to trivial cofibrations (i.e. cofibrations that are also A1-weak equivalences ([14,
Theorem 3.2])). These fibrations are called A1-fibrations and we note that they
are in particular fibrations in the simplicial model category as weak equivalences
are particular cases of A1-weak equivalences. We denote by HA1(k) the homotopy
category of this model category, and call it the motivic homotopy category. The
category HA1(k) has the following useful property. Let Hs,A1(k) ⊂ Hs(k) be the
full subcategory of A1-local objects. This functor has a left adjoint LA1 identifying
Hs,A1(k) with HA1(k). As in any model category, we have the notion of fibre se-
quence, homotopy pull-backs, etc... Of particular importance for us is the following
definition.

Definition 2.19. Let S be pointed a simplicial sheaf. For any i ≥ 0, we define

πA1

i (S) := πsi (LA1(S)).

Equivalently, πA1

i (S) is the Nisnevich sheaf associated to the presheaf

U 7→ HomHA1,•(k)(S
i ∧ U+, S).
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Remark 2.20. A version of the Whitehad theorem holds in HA1(k) ([14, §3, Propo-
sition 2.14]). More precisely, let f : S → T be a morphism of (pointed) simplicial
sheaves. Suppose that πA1

0 (S) = πA1

0 (T ) = ∗. Then f is an A1-weak equivalence
if and only if it induces an isomorphism πA1

i (S) → πA1

i (T ) for any i ≥ 0 (actually
i > 0).

Having these definitions at hand, we can now repeat the constructions of the
previous sections (for Hs(k)) in the category HA1(k). In particular, we have the
notion of homotopy Cartesian square and of fibre sequences. More precisely, a
sequence

F → E → B

is an A1-fiber sequence if it is homotopy cartesian, i.e. if F is A1-weak equivalent
to the actual fiber of a morphism E′ → B where E → E′ → B is a factorization
of the original morphism into a trivial cofibration followed by an A1-fibration. As
before, a fibre sequence induces a long exact sequence of the associated homotopy
sheaves.

2.9. Convenient A1-fibrant replacements. As usual, the problem with the mo-
tivic homotopy category is to get a grasp to A1-fibrations, and in particular to
A1-fibrant objects. By [14, §2, Proposition 2.28], a fibrant simplicial sheaf S is A1-
local if and only if it is A1-fibrant. This suggests then the following procedure for
finding an A1-fibrant replacement of a simplicial sheaf X. First, take a fibrant re-
placement in the category of simplicial sheaves, then force this suitable replacement
to be A1-local.

As a first approximation to the second step, we may consider the following
construction, called the A1-singular construction. For any n ∈ N, let ∆(k)n :=
Spec(k[t0, . . . , tn]/

∑
ti = 1). We can form a cosimplicial object ∆(k)• by looking

at the face maps induced by ∆(k)n → ∆(k)n+1 sending ti to 0 (and reindexing the
others) and the degeneracies induced by ∆(k)n+1 → ∆(k)n sending ti to ti + ti+1

(and reindexing the others).
For any simplicial sheaf S, let SingA1

• (S) be the simplicial sheaf defined by

SingA1

• (S)(U)n = Sn(U ×∆(k)n)

and obvious face and degeneracy maps. Note that this construction is obviously
functorial in S and therefore defines an endofunctor of the category of simplicial
sheaves.

There is a natural transformation Id → SingA1

• (_) (induced by the choice of
a base point of ∆(k)•) which is obviously a cofibration when evaluated to any
simplicial sheaf S (it is a monomorphism term by term). It is moreover an A1-
weak equivalence ([14, §3, Corollary 3.8]) (additionally this construction preserves
A1-fibrations). The problem is that it is not clear (and not true in general) that
SingA1

• (S) is A1-local! In fact, one has to iterate the construction above infinitely
many times to get a suitable A1-fibrant replacement ([14, §2, Lemma 3.12])
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Definition 2.21. A simplicial sheaf S is said to satisfy Nisnevich excision (or the
B.G. property) if the diagram

S(X) //

��

S(V )

��
S(U) // S(W )

is homotopy cartesian for any elementary Nisnevich square

W //

��

V

p

��
U

i
// X.

Remark 2.22. Note that the diagram

S(X) //

��

S(V )

��
S(U) // S(W )

is Cartesian (since S is a sheaf). However, it is not homotopy Cartesian in general.
However, suppose that S is fibrant. Then, it follows from [14, Lemma 1.8(2)] that
if U ⊂ X is an open subscheme, then S(X)→ S(U) is a fibration of simplicial sets.
Consequently, fibrant simplicial sheaves satisfy Nisnevich excision.

The main use of Nisnevich excision as above is the fact that if a simplicial sheaf S
satisfies Nisnevich excision, and S → Sfib is a fibrant replacement of S then we have
that S(X) → Sfib(X) is a weak-equivalence for any smooth X ([14, Proposition
1.16]). Next, we turn to homotopy invariance properties.

Definition 2.23. A simplicial (pre)sheaf S is homotopy invariant if for any smooth
scheme X, the map

S(X)→ S(X × A1)

is a weak equivalence (of simplicial sets).

For instance, SingA1

• (S) is A1-invariant for any simplicial sheaf S ([14, §3, Corol-
lary 3.5]). The following theorem (which is basically due to Schlichting and for-
malized by Asok-Hoyois-Wendt) provides a convenient way to approximate an A1-
fibrant replacement.

Theorem 2.24. Let S be a simplicial sheaf satisfying Nisnevich (or Zariski) ex-
cision. Suppose that π0(S) is homotopy invariant. Then SingA1

• (S) also satisfies
Nisnevich (Zariski) excision.

Proof. See [4, Theorem 4.2.3] �

Remark 2.25. Here, one has to understand π0(S) in the naive sense, i.e. π0(S)(U) =
π0(S(U)).

Corollary 2.26. Let S be a simplicial presheaf satisfying the conditions of the
above theorem. Then,

HomHA1 (k)(X,S) = HomHA1 (k)(X,SingA1

• (S)) = HomHs(k)(X,SingA1

• (S)) = π0(SingA1

• (S)(X)).
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Proof. Consider the (simplicially) fibrant replacement

SingA1

• (S)→ SingA1

• (S)fib

IfX is any smooth scheme, the above theorem shows that we have a weak-equivalence
of simplicial sets

SingA1

• (S)(X)→ SingA1

• (S)fib(X)

On the other hand, we know that the map SingA1

• (S)(X)→ SingA1

• (S)(X × A1) is
a weak-equivalence, and it follows that the map

SingA1

• (S)fib(X)→ SingA1

• (S)fib(X × A1)

is a weak-equivalence for any smooth X. It follows then from [14, §2, Proposition
3.19] that SingA1

• (S)fib is A1-local. Finally, we have already seen that the morphism

S → SingA1

• (S)

is an A1-weak equivalence. �

3. Lecture 3

In this section, we put everything together to actually construct a method to
"compute" Vn(X) for any n ∈ N and any X smooth. We start with the construction
of the relevant classifying space.

3.1. Classifying spaces. For a smooth schemeX, we consider the category Vectn(X)
whose objects are vector bundles of rank n over X, and whose morphisms are iso-
morphisms of vector bundles. This form an essentially small category, and we may
consider its classifying space BVectn(X), which is the simplicial set

∆→ SSets

with i 7→ Hom(i,Vectn(X)) and obvious morphisms. If f : Y → X, we have
f∗ : Vectn(X)→ Vectn(Y ). This assignment is not strictly functorial, but one can
slightly modify the definition to obtain a functor ([4, §5]), i.e we get a presheaf
BVectn of simplicial sets on Smk defined by

X 7→ BVectn(X)

Using Quillen’s theorem B (e.g. [20]) and gluing, we see that BVectn satisfies
Nisnevich excision. On the other hand, this sheaf is not homotopy invariant for a
general smooth scheme X (think to X = P1 for instance). So, we can’t conclude
that BVectn is globally weak-equivalent to its A1-fibrant replacement. However,
the same kind of arguments work (using [4, Theorem 5.1.3]) to prove that

HomHA1 (k)(X,BVectn) = π0(BVectn(X)) = Vn(X)

for any smooth affine scheme X. So, the functor X 7→ Vn(X) is representable in
HA1(k) by BVectn.

Remark 3.1. Observe that we have constructed a presheaf that represent the functor
we are interested with. However, we defined the spaces to be simplicial sheaves of
sets, and not presheaves. Let X be the simplicial sheaf associated to the presheaf
BVectn and let Xfib be a simplicially fibrant resolution of X . Then the maps
BVectn → X → Xfib are all weak-equivalences. Now, BVectn satisfies Nisnevich
excision, and it turns out that the above composite is a weak-equivalence on sec-
tions. Thus, we also get a simplicial sheaf representing Vn.
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We can find equivalent formulations as follows. Let GLn(X) be the usual group.
It can be seen as a category with one object and morphisms the elements of the
group. Thus, we have an obvious map of simplicial sets BGLn(X) → BVectn(X)
that can be turned into a functor, and thus to a morphism of simplicial presheaves

BGLn → BVectn.

This is obviously a local weak-equivalence (as the underlying categories are equiv-
alent when evaluated at local rings), and it follows that the simplicial sheaf BGLn
also represents the functor Vn. One can also use the infinite Grassmannian as a
representative ([4, Theorem 5.2.3]).

Note as a variant that we can also consider the category SVectn(X) of oriented
vector bundles of rank n, i.e. vector bundles V of rank n over X equipped with
an isomorphism ϕ : detV → OX . The morphisms are just given by isomorphisms
of vector bundles respecting the respective trivializations of the determinant. The
same discussion as above leads to a representability result for the functor X 7→
SVn(X), the set of isomorphism classes of oriented vector bundles of rank n. Indeed,
we have

HomHA1 (k)(X,BSLn) = SVn(X).

If we want to classify vector bundles of rank n that are oriented, we may use the
Postnikov tower as described in Section 2.6. More precisely, we use the following
theorem.

Theorem 3.2. Let (X,x) be a pointed space which is A1-simply connected. For any
i ≥ 0, there are pointed spaces X(i), morphisms pi : X → X(i) and fi : X(i+1) →
X(i) such that the following conditions are satisfied:

(1) fipi+1 = pi for any i ≥ 0.
(2) πA1

j (X(i)) = 0 if j > i.
(3) The morphism pi induces an isomorphism πA1

j (X,x)→ πA1

j (X(i)) for j ≤ i.
(4) The morphism fi is a fibration with homotopy fiber K(πA1

i+1(X,x), i+ 1).
(5) The morphism from X to the homotopy colimit of the X(i) is a weak-

equivalence.
Further, the fibration fi is a principal fibration in the sense that there is a morphism

ki+1 : X(i) → K(πA1

i+1(X,x), i+ 2)

and an A1-fiber sequence

X(i+1) fi→ X(i) ki+1→ K(πA1

i+1(X,x), i+ 2)

The construction of the Postnikov tower is the same as the one we described in
Section 2.6. Indeed, we start with an A1-fibrant replacement of (X,x) and work
our way using the same constructions. However, one has to use that the spaces
K(πA1

i+1(X,x), n) are A1-local for any i ≥ 0. This amounts to saying that the
cohomology groups of X with coefficients in πA1

i+1(X,x) are all homotopy invariant.
This is a hard theorem due to Morel ([13, §6]). In any case, we see (repeating the
process described in Section 2.7) that we need to compute the homotopy sheaves
of BSL2 if we want to classify rank 2 bundles. If X is a threefold, note however
that we don’t have to compute too much of the relevant homotopy sheaves, due to
Theorem 2.3. Indeed, as Hi

Nis(X,A) = 0 for any Nisnevich sheaf A and i > 3, we
are left with πA1

i (BSL2) for i = 0, 1, 2, 3. Note additionally that we have to prove
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that πA1

i (BSL2) is trivial for i = 0, 1 in order even to use the Postnikov tower as
above.

3.2. The relevant homotopy sheaves. To compute homotopy sheaves, one usu-
ally uses fiber sequences. In general, it is not easy to find such sequences. However,
there is now a well understood procedure to get a few of them ([3, Theorem 2.2.5]).
In particular, we get a fiber sequence

SL2 → ∗ → BSL2

Showing that πA1

i (BSL2) = πA1

i−1(SL2) for any i ≥ 1. By the above result, we know
that

HomHA1 (k)(X,BSLn) = SVn(X).

for any smooth scheme X, and in particular this set is trivial for local X. Thus
πA1

0 (BSL2) = ∗. Next, we can use [3, Theorem 2.2.4] to compute HomHA1 (k)(X,SL2)

as the quotient of SL2(X) by the subgroup H2(X) of matrices which are homotopic
to identity. The subgroup E2(X) generated by elementary matrices is contained
in H2(X) and for R local we have SL2(R)/E2(R) = 1. It follows that the sheaf
associated to

X 7→ HomHA1 (k)(X,SL2)

is trivial i.e. that πA1

0 (SL2) = πA1

1 (BSL2) = ∗. All in all, we are then in position
to use the theorem on the existence of the Postnikov tower of BSL2.

We now pass to πA1

2 (BSL2) = πA1

1 (SL2). The projection to the first row map
SL2 → A2\0 is easily seen to be Zariski locally of the form U×A1 → U and it follows
that this projection is actually an A1-weak equivalence. Therefore πA1

1 (SL2) =

πA1

1 (A2 \ 0) and we are reduced to computing some of the homotopy sheaves of the
sphere A2 \ 0. Let us introduce a sheaf (whose definition is due to Morel) that we
will use in the computation.

Let R be a ring, and let R× be the set of invertible elements in R. Let KMW
∗ (R)

be the quotient of the free associative (unital) Z-graded (Z-)algebra generated by
symbols [a] in degree 1 and a symbol η in degree −1 by the ideal generated by the
following relations:

(1) [a][1− a] = 0 for any a ∈ R× \ {1}.
(2) [ab] = [a] + [b] + η[a][b] for any a, b ∈ R×.
(3) η[a] = [a]η for any a ∈ R×.
(4) η(η[−1] + 2) = 0.
We get a presheaf on Smk defined by

X 7→ KMW
∗ (OX(X)).

The associated Nisnevich sheaf is denoted by KMW
∗ and is called the Milnor-Witt

K-theory sheaf. Note that it is a sheaf of graded rings. The following theorem
describes the homotopy sheaves of spheres of low degrees ([13, Theorems 5.38 and
5.40]).

Theorem 3.3. For any n ≥ 2, we have

πA1

i (An \ 0) =

{
0 if i ≤ n− 2.
KMW
n if i = n− 1.
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Remark 3.4. In fact, the definition of the sheaf KMW
n given by Morel is different

from the one we gave above. The fact that the two definitions coincide follows from
[9, Theorem 6.3].

Remark 3.5. We can also compute the homotopy sheaves of An \ 0 if n = 1. We
get πA1

i (An \ 0) = 0 if i > 0 and πA1

0 (A1 \ 0) = Gm.

Given the above theorem, we are left with the computation of πA1

2 (A2 \ 0). The
computation is the main object of [2], and requires the introduction of yet another
sheaf. For any smooth scheme X, one may define (in analogy with K-theory) the
groups KSp

i (X) which (roughly speaking) classify symplectic vector bundles over
X. This construction is functorial in X and we obtain a presheaf X 7→ KSp

3 (X)

whose associated Nisnevich sheaf is denotes by KSp
3 . The following theorem is a

simplified (yet sufficient for our purpose) form of [2, Theorem 3.1].

Theorem 3.6. Let k be an infinite perfect field of characteristic different from 2.
Then, we have an exact sequence of sheaves

KMW
4 /6(η[−1] + 2)→ πA1

2 (A2 \ 0)→ KSp
3 → 0.

We are now in position to prove the main theorem of this course.

Theorem 3.7. Let X be a smooth affine threefold over an algebraically closed field
of characteristic different from 2. Then the second Chern class induces a bijection

c2 : SV2(X)→ CH2(X)

Proof. The general process of Postnikov tower shows that we have to prove two
statements. The first one is

H2(X,KMW
2 ) = CH2(X)

and the map BSL2 → K(KMW
2 , 2) is the second Chern class. The second one is

H3(πA1

2 (X,A2 \ 0)) = 0. This is obtained in [2, Theorem 6.6]. �

Remark 3.8. In fact, the above theorem has a stronger form (developed in [2,
Theorem 6.6]), showing that for such a threefold X, the first and second Chern
class induce a bijection

(c1, c2) : V2(X)→ CH1(X)× CH2(X)

The proof requires the refined notion of the Postnikov tower developed in Section
2.6, as well as a computation of the action of πA1

1 (BGL2) = Gm on the sheaves
πA1

i (BGL2) for i = 2, 3.
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