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Stochastic Block Model
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Model: Two Communities

Partition

z : {1, 2, ..., n} → {0, 1}n.

Observation: Adjacency matrix A

Aij ∼ Bernoulli(Pij), for i > j,

where Pij = p when zi = zj, and

Pij = q when zi ̸= zj.

Goal: Recover z from A.
!

!!! !!!
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Bayesian Inference

Prior: zi ∼ Ber(1/2), ∀i ∈ [n] and

p, q ∼ Beta(1, 1) independently.

Challenge: The posterior is

computationally intractable:

p(z, p, q|A) = p(z, p, q, A)∑
z∈{0,1}n

∫
p,q

p(z, p, q, A)
.
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Mean Field Variational Inference

Main Idea: Approximate by a product measure q(z, p, q) =
∏

i qi(zi)q(p)q(q)

where zi ∼ Ber(πi),∀i ∈ [n], p ∼ Beta(αp, βp), q ∼ Beta(αq, βq) and the

Kullback-Leibler divergence is minimized:

q̂ = argmin
q∈Q

KL
[
q(z, p, q)

∥∥∥p(z, p, q|A)].
Iterative Algorithm: Approach q̂

by an iterative algorithm:

{π(s), α(s)
p , β(s)

p , α(s)
q , β(s)

q }s≥0.
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Mean Field Variational Inference

General Setting

• approximate p(θ|x) by some product measure q(θ) =
∏

qi(θi)

• minimize the Kullback-Leibler divergence

q̂MF = argmin
q∈Q

KL
[
q(θ)

∥∥∥p(θ|x)]
• Iterative Algorithm:

q̂i = argmin
qi

KL

[
qi(θi)×

∏
j ̸=i

qj(θj)

∥∥∥∥∥p(θ|x)
]
,∀i ∈ [n]

⇐⇒ q̂i(θi) ∝ exp{Eq−i
[logp(θi|θ−i,x)]}, ∀i ∈ [n].

9



Iterative Algorithm

• Updates on α
(s+1)
p , β

(s+1)
p , α

(s+1)
q , β

(s+1)
q :

α(s+1)
p = 1 +

k∑
a=1

∑
i<j

Ai,jπ
(s)
i,aπ

(s)
j,a , β(s+1)

p = 1 +
k∑

a=1

∑
i<j

(1− Ai,j)π
(s)
i,aπ

(s)
j,a ,

α(s+1)
q = 1 +

∑
a ̸=b

∑
i<j

Ai,jπ
(s)
i,aπ

(s)
j,b , β(s+1)

q = 1 +
∑
a ̸=b

∑
i<j

(1− Ai,j)π
(s)
i,aπ

(s)
j,b .

• Updates on {π(s+1)
i }:

π
(s+1)
i =

exp
(
2t(s)

∑
j ̸=i π

(s)
j (Ai,j − λ(s))

)
exp

(
2t(s)

∑
j ̸=i π

(s)
j (Ai,j − λ(s))

)
+ exp

(
2t(s)

∑
j ̸=i(1− π

(s)
j )(Ai,j − λ(s))

) ,
where t(s), λ(s) are functions of α

(s)
p , β

(s)
p , α

(s)
q , β

(s)
q .
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Three Siblings

Similarity: Coordinate updates with p(θi|θ−i,x).

Expectation Maximization Mean Field Variational

Inference

Gibbs Sampling

For local variables (e.g., {zi}ni=1)

exp{Eq−i [logp(θi|θ−i,x)]}

For all i ∈ [n],

exp{Eq−i [logp(θi|θ−i,x)]}
∀i ∈ [n], sample

from p(θi|θ−i,x)

For global variables (e.g., p, q)

argmaxθi Eq−i [logp(θi|θ−i,x)]
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Statistical and Computational Guarantees
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Loss Function

• Let z∗, p∗, q∗ be the underlying ground truth from which A is generated.

• We consider the distance between z∗ and π(s).

Loss Function

ℓ(π, z∗) =
1

n
min {∥π − z∗∥1 , ∥π − (1n − z∗)∥1}

=
1

n
min

{
n∑

i=1

|πi − z∗i | ,
n∑

i=1

|πi − (1− z∗i )|

}
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Theoretical Guarantees for Mean Field

Theorem (Zhang & Z. 2017). Let I = (
√
p∗ −

√
q∗)2 [signal-to-noise ratio].

Assume the initializer π(0) satisfies ℓ(π(0), z∗) ≤ c for some small constant c

with high probability. Further we assume the following equation holds

nI → ∞.

Then in each iteration of the iterative algorithm for mean field, with high

probability

ℓ(π(s+1), z∗) ≤ exp (−(1− o(1))nI/2) +
1√
nI

ℓ(π(s), z∗).
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Corollary 1 (Zhang & Z. 2017). For s ≥ log n, we have with high probability

ℓ(π̂(s), z∗) ≤ exp(−(1− o(1))nI/2)) + o(n−D), k = 2

for every D > 1.

Remark: Rate-optimal. Matches with the minimax rate in Zhang and Z.

(2016, AoS).
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Theoretical Guarantees for Gibbs Sampling

Theorem (Zhang & Z. 2017). Let I = (
√
p∗ −

√
q∗)2 [signal-to-noise ratio].

Assume the initializer z(0) satisfies ℓ(z(0), z∗) ≤ c for some small constant c

with high probability. Further we assume the following equation holds

nI → ∞.

Then in each iteration of the batched Gibbs sampling, with high probability

E
[
ℓ(z(s), z∗)|A, z(0)

]
≤ exp (−(1− o(1))nI/2) +

[
1√
nI

]s
ℓ(z(0), z∗) + sbn,

where bn = o(exp
(
−n3/2I

)
).
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Questions and Extensions
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Questions

• Initializer: What is the sharp condition for initializer?(c.f., analysis on

Lloyd’s Algorithm in Lu & Z. 2016 to have c = 1/2− o(1))

• Parameter Estimation: Can we prove that {p(s)}s≥1 and {q(s)}s≥1

converge to the optimal rates?
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Extensions

• Models: Computational and statistical guarantees of variational inference

for a general class of latent variable models.

• Algorithms: A unified framework to understand iterative algorithm.
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