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Stochastic Block Model




Model: Two Communities

Partition
z:{1,2,...,n} — {0,1}".

Observation: Adjacency matrix A
A;; ~ Bernoulli(P;;), for ¢ > j,

where P;; = p when z; = z;, and

P;; = q when z; # z;.

Goal: Recover z from A.




Bayesian Inference

Prior: z; ~ Ber(1/2),Vi € [n| and
p,q ~ Beta(1,1) independently.

1/2

Challenge: The posterior is !
computationally intractable: @

P(2,p,q,A)
z€{0,1}n fp,q p(za p,q, A)

p(2,p,qlA) = >

y
n(n-1)/2
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Mean Field Variational Inference

Main Idea: Approximate by a product measure q(z,p,q) =[], a:(z:)a(p)a(q)
where z; ~ Ber(m;),Vi € [n],p ~ Beta(ay,, 5,), ¢ ~ Beta(ay, 8,) and the
Kullback-Leibler divergence is minimized:

q = arg min KLL [q(z,p, q) ||P(Zapa C]M)} -
acQ

Iterative Algorithm: Approach ¢

by an iterative algorithm: T Op Bp | [ g By

{7?'(3)7 04](98)7 /8](98)7 ac(]S)a 558)}520‘ é @{ 6




Mean Field Variational Inference

General Setting
e approximate p(f|x) by some product measure q(6) =[] q;(6;)

e minimize the Kullback-Leibler divergence

&MF = arg min KL [q(e)Hp(e\x)}

qeQ

o Iterative Algorithm:

ai(6;) x | ] ;(65)

<~ q;(0;) < exp{Eq_.[logp(6;|0_;,x)]}, Vi € [n].

q; = arg min KL

a

p(0|x) ] Vi € [n]




Iterative Algorithm

e Updates on qy g 5B

(s—l—l —1+ZZAH7THL Tja
a=1 1<y

(s+1 _1+ZZA”7TW )
a#b 1<j

e Updates on {x**"}:

() $
(1) _ exp (275 D

(s+1) 5ps+1 a(s+1) (s+1):

s+1 _1_|_ZZ

a=1 1<y

A =1+ Y 0

a#b 1<j

£i ”g('s)(Az',j - MS)))

(5)

za ]a7

(5

za ]b

1

where t*), A\(*) are functions of ap : 5

) Bl

exp (25,7 (A - W)) +exp (2600 (1 - 1) (g~ 20))

?
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Three Siblings

Similarity: Coordinate updates with p(6;|0_;,x).

Expectation Maximization Mean Field Variational Gibbs Sampling

Inference

For local variables (e.g., {2} 1)
exp{Eq_,[log p(0:]0—s. )]}

For all ¢ € [n], Vi € [n], sample

exp{Eq_,[log p(0;|0—;,x)]}| from p(0;|0—;, x)

For global variables (e.g., p, q)
arg maxy g log p(0;]0—;,x)]

—1
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Statistical and Computational Guarantees
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Loss Function

e Let z* p*, ¢* be the underlying ground truth from which A is generated.

e We consider the distance between z* and 7(%)

Loss Function

tm,2") = —minqflm — 27, |7 = (1o = 211}

:imm{zm—z|2m (1—27) |}
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Theoretical Guarantees for Mean Field

Theorem (Zhang & Z. 2017). Let I = (\/p* — \/q%)* [signal-to-noise ratio/.
Assume the initializer 70 satisfies £(m(), 2*) < ¢ for some small constant c

with high probability. Further we assume the following equation holds
nl — oo.

Then in each iteration of the iterative algorithm for mean field, with high
probability

0T ) < exp (—(1 — o(1))nl/2) + 0m®), 2.

1
vnl
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Corollary 1 (Zhang & Z. 2017). For s > logn, we have with high probability
(7, %) < exp(—(1 — o(1)nl/2)) + o(n™ ),k = 2

for every D > 1.

Remark: Rate-optimal. Matches with the minimax rate in Zhang and Z.
(2016, AoS).
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Theoretical Guarantees for Gibbs Sampling

Theorem (Zhang & Z. 2017). Let I = (\/p* — \/q*)? [signal-to-noise ratio].
Assume the initializer 20 satisfies ((2\%, 2*) < ¢ for some small constant c

with high probability. Further we assume the following equation holds
nl — oo.

Then in each iteration of the batched Gibbs sampling, with high probability

E [0z, 2%)]A, 29] < exp (—(1 — o(1))nl/2) + [\/%] SE(Z(O), 2") + sby,

where b, = o(exp (—n®2I)).
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Questions and Extensions
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Questions

e Initializer: What is the sharp condition for initializer?(c.f., analysis on
Lloyd’s Algorithm in Lu & Z. 2016 to have ¢ = 1/2 — o(1))

e Parameter Estimation: Can we prove that {p®},>; and {¢\¥}>,

converge to the optimal rates?
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Extensions

e Models: Computational and statistical guarantees of variational inference

for a general class of latent variable models.

e Algorithms: A unified framework to understand iterative algorithm.
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