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Variable clustering

What is variable clustering ?

Observable: X = (X1, . . . ,Xp) random vector in Rp.
Data: X1, . . . ,Xn iid copies of X.

X Goal of variable clustering:
Find sub-groups of similar coordinates of X, using the
data.⊗
Goal different than data/point clustering:
Find sub-groups of similar observations Xi , 1 ≤ i ≤ n.⊗
Data different than network clustering:
Network data is 0/1 adjacency matrix.
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Overlapping Variable Clustering

• X = (X1, . . . ,Xp) ∈ Rp: zero mean random vector.

• Gk ⊆ {1, . . . ,p}; G1 ∪ · · · ∪GK = {1, . . . ,p}

Goal: Find overlapping sub-groups in a random X

(I) Define clusters Gk such that :

• All Xj with j ∈ Gk are similar.

• Gk ’s may overlap.

(II) Estimate clusters from X1, . . . ,Xn i.i.d. X.
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Applications in neuroscience (Craddock et al. 2012, 2013) and
genetics (Jiang et al (2004), Wiwie et al. (2015).

Ongoing work with Jishnu Das (Ragon Institute of MGH,
MIT and Harvard)
RNA-seq dataset of 285 blood platelet samples from
patients with different malignant tumors (Best et al.).
Extract only 500 Ensembl genes to verify if clusters
correspond to biological knowledge [Gene Ontology
functional annotation, Ashburner et al (2000)].

Marten Wegkamp Overlapping Variable Clustering



Co-clustering genes using expression profiles
RNA-seq transcript level data; Blood platelet samples (p = 500) from n = 285 individuals.

ENSG00000273487 and ENSG00000272865 both non-coding RNA: placed together in Cluster 4. X
Each also placed in other clusters. Non-coding RNAs are pleiotropic (multiple functions). X
Model allows for structural zeros. Genes not expressed across samples placed in a separate group. X
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Our solution: sparse latent factor models

X = AZ + E
A is a row sparse allocation matrix.
Z ∈ RK : vector of zero mean latent variables with
covariance matrix C.
E ∈ Rp: noise with zero-mean and covariance matrix
Γ = diag(σ2

1, . . . , σ
2
p).

Z and E are uncorrelated.
K is unknown.

This model is not identifiable

•Would like to define: Gk :=
{

j ∈ {1, . . . ,p} : Ajk 6= 0
}

.

• Issue: AZ = AQQT Z , for any orthogonal Q.
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Identifiable sparse latent factor models

Allocation p × K matrix A satisfies

(i)
∑K

k=1 |Aik | ≤ 1, for each row i ∈ {1, . . . ,p}.

(ii) For every column k ∈ {1, . . . ,K}, there exist at least two
rows i ∈ {1, . . . ,p} such that |Aik | = 1 while Ai` = 0 for all
` 6= k (pure variables).

(iii) C = Cov(Z ) with

∆(C) =: min
j 6=k

(
min{Cjj ,Ckk} − |Cjk |

)
> 0.
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Latent factor model

Remarks
Flexible way to generate covariance matrices Σ with
positive and negative values.
Γ = cov(E) may have distinct values on the diagonal.
Condition on C is mild.
Extends non-overlapping variable model, where each row
of A is of the form (ii); see Bunea et al (2015, 2016).
Spoiler alert: A is identifiable up to signed permutations.
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Latent factor model

Remarks
(i) allows each row Aj· to be sparse (to avoid that each Xi is
associated with all latent factors).
(ii) requires that some components of X are associated
with one and only one latent factor (pure variables, pure
nodes, anchor words).
In non-overlapping clustering, all Xj ’s are pure variables.

Aim:
To cluster groups based on

the dependence of X and its latent factor Z and
the direction of their correlation.
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Identifiable sparse latent variable models

The pure variable assumption
A pure variable Xj associates with only one latent factor Zk .

Pure variables are crucial in building overlapping clusters

Clusters Gk :=
{

j ∈ {1, . . . ,p} : Aja 6= 0
}

are defined by
unobserved Zk (Zk = (biological) function).
A pure variable Xj is an observable proxy for a Zk
(Observable Xj performs function Zk . It anchors Gk ).
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Identifiability

Definition
Pure variable set I is the index set of pure variables.

I = I1 ∪ · · · ∪ IK (partition)
Ik = {i ∈ [p] : |Aik | = 1,Ai` = 0, for any ` 6= k}

Challenge:
To find K
To distinguish between the set I and its complement J.
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Example

Let C =diag(1,2,3) and

A =



1 0 0
−1 0 0
1 0 0
0 −1 0
0 1 0
0 0 1
0 0 1

1/2 −1/2 0
2/3 1/6 −1/6


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ACAT =



1 −1 1 0 0 0 0 1/2 2/3
−1 1 −1 0 0 0 0 −1/2 −2/3
1 −1 1 0 0 0 0 1/2 2/3
0 0 0 2 −2 0 0 1 −1/3
0 0 0 −2 2 0 0 −1 1/3
0 0 0 0 0 3 3 0 −1/2
0 0 0 0 0 3 3 0 −1/2

1/2 −1/2 1/2 1 −1 0 0 3/4 1/6
2/3 −2/3 2/3 −1/3 1/3 −1/2 −1/2 1/6 7/12



Look at diagonal!
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ACAT + Γ =



∗ −1 1 0 0 0 0 1/2 2/3
−1 ∗ −1 0 0 0 0 −1/2 −2/3
1 −1 ∗ 0 0 0 0 1/2 2/3
0 0 0 ∗ −2 0 0 1 −1/3
0 0 0 −2 ∗ 0 0 −1 1/3
0 0 0 0 0 ∗ 3 0 −1/2
0 0 0 0 0 3 ∗ 0 −1/2

1/2 −1/2 1/2 1 −1 0 0 ∗ 1/6
2/3 −2/3 2/3 −1/3 1/3 −1/2 −1/2 1/6 ∗



Oops! ∗ are arbitrary positive numbers
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Example

Option 1: Look for sparsity pattern
(works for non-negative A and diagonal C)
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Pure versus impure

Option 2: Look for maxima

Proposition (Pure variable test)
For each row i , define

Mi := max
j∈[p]\{i}

|Σij |

Si :=
{

j ∈ [p] \ {i} : |Σij | = Mi
}
.

For given A and its induced pure variable set I, we have

i ∈ I ⇐⇒ Mi = max
k∈[p]\{j}

|Σkj | for all j ∈ Si .
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Look for maxima in (Σij)i 6=j



∗ −1 1 0 0 0 0 1/2 2/3
−1 ∗ −1 0 0 0 0 −1/2 −2/3
1 −1 ∗ 0 0 0 0 1/2 2/3
0 0 0 ∗ −2 0 0 1 −1/3
0 0 0 −2 ∗ 0 0 −1 1/3
0 0 0 0 0 ∗ 3 0 −1/2
0 0 0 0 0 3 ∗ 0 −1/2

1/2 −1/2 1/2 1 −1 0 0 ∗ 1/6
2/3 −2/3 2/3 −1/3 1/3 −1/2 −1/2 1/6 ∗



We find I = {{1,2,3}, {4,5}, {6,7}} and J = {8,9}.
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Identifiability

Theorem
For any X generated by a sparse factor model,
we can construct the pure variable set I and its partition
I =: {I1, . . . , IK} uniquely from Σ = Cov(X),
up to label permutations.
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Identifiability

Theorem
There exists a unique matrix A, up to a signed
permutation, such that X = AZ + E.
The associated overlapping clusters G1, . . . ,GK are
identifiable, up to label switching.

The pure variables assumption is necessary.
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Estimation

Outline
Estimation of I and its partition
Estimation of AI .
Estimation of AJ .
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Estimation of I

Algorithm idea

Use the constructive characterization of I at the population
level.

Replace Σ by the sample covariance Σ̂.

Allow for tolerance δ =: ‖Σ̂− Σ‖∞ when comparing
maxima.

Algorithm returns partition Î (and K̂ and Î).
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Estimation of the partition of pure variables

Conditions

X is subGaussian with subGaussian constant σ2.
(This implies δ = O(σ2

√
(log p)/n).)

∆(C) := ν > 2 max
(

2δ,
√

2δ‖C‖∞
)

Definition (nearly pure variable set)

J1 = {i ∈ J : there exists k such that |Aik | ≥ 1− 4δ/ν}
Jk

1 = {i ∈ J1 : |Aik | ≥ 1− 4δ/ν} .

Hence {J1
1 , . . . , J

K
1 } forms a partition of J1.
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Estimation of the partition of pure variables

Theorem
Under the above conditions, with high probability,
(a) K̂ = K .
(b) I ⊆ Î ⊆ I ∪ J1.

Moreover, there exists a label permutation π, such that

(c) Iπ(k) ⊆ Îk ⊆ Iπ(k) ∪ Jπ(k)
1 for each k ∈ [K ].
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Estimation of the partition of pure variables

Minimal recovery mistakes: no conditions on A

Pure (1,0,0,0,0,0) In, correct.

Quasi Pure (0.99,0.01,0,0,0,0) In, slight mistake.

Impure (0.25,0.25,0.001,0.099,0.2,0.2) Out, correct.

Exact recovery: conditions on A

Pure (1,0,0,0,0,0) In, correct.

Quasi Pure (0.99,0.01,0,0,0,0) Not allowed.

Impure (0.25,0.25,0.001,0.099,0.2,0.2) Not allowed.

Impure (0.25,0.25,0.1,0.1,0.3,0.2) Out, correct.
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Estimation of the allocation submatrix AI

A =

[
AI
AJ

]
.

Signed subpartitions

AI consists of rows with K − 1 0’s and one entry ±1.
For any i ∈ Îk , we set Âik = ±1 and Âi` = 0 for all ` 6= k .

Sign of Âik?
(1) Pick an arbitrary element i ∈ Îk and set Âik = 1.
(2) For any other j ∈ Îk , j 6= i , set Âjk = 21{Σ̂ij > 0} − 1.

Obtain two subgroups Î1
k and Î2

k , each consisting of
elements with same sign.
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Example

Let C =diag(1,2,3) and

A =



1 0 0
−1 0 0
0 −1 0
0 1 0
0 0 1
0 0 1

1/2 −1/2 0
2/3 1/6 −1/6


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Σ =



∗ −1 0 0 0 0 1/2 2/3
−1 ∗ 0 0 0 0 −1/2 −2/3
0 0 ∗ −2 0 0 1 −1/3
0 0 −2 ∗ 0 0 −1 1/3
0 0 0 0 ∗ 3 0 −1/2
0 0 0 0 3 ∗ 0 −1/2

1/2 −1/2 1 −1 0 0 ∗ 1/6
2/3 −2/3 −1/3 1/3 −1/2 −1/2 1/6 ∗


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Example

Σ1:2,· =

(
∗ −1 0 0 0 0 1/2 2/3
−1 ∗ 0 0 0 0 −1/2 −2/3

)

I = {1,2,3,4,5,6}, I1 = {1,2}, I2 = {3,4}, I3 = {5,6}.
Take 1 ∈ I1, set A1,1 = +1.
Take 2 ∈ I1, set A2,1 = −1 since Σ12 = −1 < 0.
Set I1

1 = {1}, I2
1 = {2}.
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Example

Σ3:4,· =

(
0 0 ∗ −2 0 0 1 −1/3
0 0 −2 ∗ 0 0 −1 1/3

)

Take 3 ∈ I2, set A3,2 = 1.
Take 4 ∈ I2, set A4,2 = −1 since Σ3,4 = −2 < 0.
Set I1

2 = {3}, I2
2 = {4}.
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Example

I = {1,2,3,4,5,6}, I1 = {1,2}, I2 = {3,4}, I3 = {5,6}.
. . .

Set I1
3 = {5,6}, I2

3 = ∅.
Set

AI =



1 0 0
−1 0 0
0 1 0
0 −1 0
0 0 1
0 0 1


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Estimation of the allocation submatrix AJ

We estimate the matrix AJ row by row.
Rearrange Σ and A as

Σ =

[
ΣII ΣIJ
ΣIJ ΣJJ

]
and A =

[
AI
AJ

]
.

so

Σ =

[
ΣII ΣIJ
ΣJI ΣJJ

]
=

[
AICAT

I AICAT
J

AJCAT
I AJCAT

J

]
+

[
ΓII 0
0 ΓJJ

]
.
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Example

Let C =diag(1,2,3).

A =



1 0 0
−1 0 0
0 −1 0
0 1 0
0 0 1
0 0 1

1/2 −1/2 0
2/3 1/6 −1/6


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Example

Σ =



∗ −1 0 0 0 0 1/2 2/3
−1 ∗ 0 0 0 0 −1/2 −2/3
0 0 ∗ −2 0 0 1 −1/3
0 0 −2 ∗ 0 0 −1 1/3
0 0 0 0 ∗ 3 0 −1/2
0 0 0 0 3 ∗ 0 −1/2

1/2 −1/2 1 −1 0 0 ∗ 1/6
2/3 −2/3 −1/3 1/3 −1/2 −1/2 1/6 ∗


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Example

ΣI,I =



∗ −1 0 0 0 0
−1 ∗ 0 0 0 0
0 0 ∗ −2 0 0
0 0 −2 ∗ 0 0
0 0 0 0 ∗ 3
0 0 0 0 3 ∗


Read off C11 = 1,C22 = 2,C33 = 3!
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Example

We found

AI =



1 0 0
−1 0 0
0 1 0
0 −1 0
0 0 1
0 0 1


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Example

ΣI,J =



1/2 2/3
−1/2 −2/3

1 −1/3
−1 1/3
0 −1/2
0 −1/2

 =



1 0 0
−1 0 0
0 1 0
0 −1 0
0 0 1
0 0 1

 ∗ C ∗ AT
J
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Example



1/2 2/3
1/2 2/3
1 −1/3
1 −1/3
0 −1/2
0 −1/2

 =



1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

 ∗ C ∗ AT
J

Sign multiplication
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Example

1/2 2/3
1 −1/3
0 −1/2

 =

1 0 0
0 1 0
0 0 1

 ∗ C ∗ AT
J

Averaging
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Example

1/2 2/3
1 −1/3
0 −1/2

 =

1 0 0
0 2 0
0 0 3

β11 β21
β12 β22
β13 β33


=

1 0 0
0 2 0
0 0 3

1/2 2/3
1/2 −1/6
0 −1/6



Solving
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Example

We find the matrix 

1 0 0
−1 0 0
0 1 0
0 −1 0
0 0 1
0 0 1

1/2 1/2 0
2/3 −1/6 −1/6


which is A up to a sign permutation of the 2nd column.

Marten Wegkamp Overlapping Variable Clustering



Estimation of the allocation sub-matrix AJ

ΣIJ = AICAT
J

θj =: CAj· for each j ∈ J

θj
k =: 1

|Ik |
∑

i∈Ik Aik Σij

Ckk = 1
|Ik |(|Ik |−1)

∑
i,j∈Ik ,i 6=j |Σij |

Ckm = 1
|Ik ||Im|

∑
i∈Ik ,j∈Im |Σij |
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Estimation of the allocation submatrix AJ

Estimation of a "non-pure" row Aj· =: β

Under the model, β ∈ RK satisfies:
β = C−1θ ;
β sparse;
‖β‖1 ≤ 1.

Available: estimators θ̂ and Ĉ.
Crucial ingredient: estimated pure variable set.
Construct Ω̂ to estimate C−1. Build pre-estimate β̄ = Ω̂θ̂.
Final estimate is β̂, sparse projection of β̄.
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Motivation of the proposed estimator of Ω.
The decomposition

β̄ j − β j = Ω̂(θ̂j − θj) + (Ω̂− Ω)θj

= Ω̂(θ̂j − θj) + (Ω̂C − I)β j ,

implies

‖β̄ j − β j‖∞ ≤ ‖Ω̂‖∞,1‖θ̂j − θj‖∞ + ‖Ω̂C − I‖∞‖β j‖1
≤ ‖Ω̂‖∞,1‖θ̂j − θj‖∞ + ‖Ω̂C − I‖∞.

Hence Ω̂ should render small values for ‖Ω̂‖∞,1 and ‖Ω̂C − I‖∞.
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Estimation of Ω = C−1

(Ω̂, t̂) = min
t∈R+, Ω∈RK̂×K̂

t ,

subject to

Ω = ΩT , ‖ΩĈ − I‖∞ ≤ λt , ‖Ω‖∞,1 ≤ t ,

New estimator:
Uses ‖ · ‖∞,1 instead of more standard ‖ · ‖1.

We avoid common assumptions such as
condition number of C is bounded
number of clusters K is known / bounded.
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Estimation of β j

β̂ j = arg min
β∈RK̂

‖β‖1

subject to
‖β − β̄ j‖∞ ≤ µ,

Solution of LP is sparse and properly scaled.
Stacking β̂ j over all rows j ∈ Ĵ produces ÂĴ .

Merging ÂÎ with ÂĴ produces our final estimator Â of A.
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Choice of tuning parameters

δ′ = (8‖C‖∞/ν − 3) δ

λ = 2δ′

µ = 5‖C−1‖∞,1δ′
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Estimation of the allocation submatrix AJ

Theorem
Let λ and µ be as defined above. Let HK denote the
hyperoctahedral group of the signed permutation matrices.
Then, for all 1 ≤ q ≤ ∞ and 1 ≤ i ≤ p,

min
P∈HK

∥∥Âi· − (AP)i·
∥∥

q ≤ 10(‖Ai·‖0)1/q‖C−1‖∞,1δ′

with probability larger than 1− c1(n ∨ p)−c2 , for positive
constants c1, c2, provided (2µ+ 4δ/ν) < 1.
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q = +∞ leads to inference on support recovery of β j = Aj·.
Quality of estimating a sparse vector depends on the
interplay between its sparsity and the behavior of the
appropriate Gram matrix (here C = E[ZZ T ]).
The concept of `q-sensitivity, introduced by Gautier and
Tsybakov (2011) and Belloni, Rosenbaum and Tsybakov
(2017), is the most general characterization of this
interplay to date. It facilitates a link between the `q-norm of
sparse vectors β and the `∞-norm of the product between
the Gram matrix and β, uniformly over vectors β of sparsity
s, ranging over a collection of cones.
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In our context, that of a square, invertible matrix C, the
reciprocal of the `∞-sensitivity of C becomes essentially
‖C−1‖∞,1, which indeed links ‖β‖∞ to ‖Cβ‖∞.
The quantities (si)

1/q‖C−1‖∞,1 provide concrete
substitutes of the reciprocals of the `q-sensitivities of C,
and all of our rates coincide with the minimax rates
obtained by Belloni, Rosenbaum and Tsybakov (2017).
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Estimation of the overlapping groups

Signed group structure

Estimate the group structure Ĝ =
{

Ĝ1, . . . , ĜK̂

}
from the

columns of Â:

Ĝk =
{

i ∈ [p] : |Âik | 6= 0
}

=
{

Ĝ1
k , Ĝ

2
k
}

=
{{

i ∈ Ĝk : Âik > 0
}
,
{

i ∈ Ĝk : Âik < 0
}}
.
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We quantify the misclassification proportion within each group
Ĝa by

GFPP(Ĝa) :=
|(Ga)c ∩ Ĝa|
|(Ga)c|

, GFNP(Ĝa) :=
|Ga ∩ (Ĝa)c|
|Ga|

.

Set

J1 := {i ∈ J : ∃a with |Aia| ≥ 1− 4δ/ν}
J2 := {i ∈ J : for any a with Aia 6= 0, |Aia| > (2µ) ∨ (4δ/ν)}
J3 := J \ (J1 ∪ J2).
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Estimation of the overlapping groups

Theorem
Under same conditions, with high probability, we have:
(a) supp

(
AJ2

)
⊆ supp(Â) ⊆ supp (A),

sgn(ÂŜ) = sgn
(
AŜ

)
.

(b) Let sa
j = 1{|Aja| 6= 0} and ta

j = 1{|Aja| ≤ (2µ) ∨ (4δ/ν)}.

GFPP(Ĝa) = 0; GFNP(Ĝa) ≤
∑

j∈J1∪J3\Ja
1

ta
j∑

j∈J sa
j + |Ia|

.
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Related work

Large literature on Non-Negative Matrix Factorization (NMF)

X = AZ + E; X,A,Z non-negative matrices.

Goal of NMF different than ours: find Ã and Z̃ with
‖X− ÃZ̃‖ ≤ ε.

In NMF, the pure variable assumption is needed for:

Identifiability of A, provided E = 0 (Donoho and Stodden,
2007).
Identifiability in topic models (count data), Arora et al
(2013): columns of X and A sum to 1; E = 0.
Polynomial time NMF algorithms: Arora et al (2012, 2013);
Bittorf et al (2013). Other restrictions on matrices needed.

Marten Wegkamp Overlapping Variable Clustering



Network data

Model-based clustering methods for network data.
For instance, mixed membership stochastic block-models:
Airoldi et al (2008), Zhang et al (2008), Lei and Zhu (2014),
Abbe and Sandon (2015), Lei and Rinaldo (2015), Guédon
and Vershynin (2016), Le et al (2016).
Data is of different nature: We observe an p × p binary
matrix, with independent Bernoulli entries and we model
the mean of this matrix (Γ = 0).
Bayesian approaches: (Airoldi, Blei, Fienberg and Xing,
2008)
Spectral clustering: Zhang et al (2015), He et al (2015)
require many pure nodes.
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Topic model

Model-based clustering methods for topic model.
We observe a multinomial distribution, and we postulate
E[X] = AZ with non-zero means, and
E(XXT ) = A(ZZT )AT + E[EET ].
Large mostly CS literature: Arora et al. (2012, 2013), Blei
(2012), Ke (2016), ...
Computationally feasible solution: NMF under a
separability assumption (anchor words).
Anchor words are vertices of a simplex.
Given K , find K vertices among rows of E(XXT ).
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Related work

• Large literature on latent factor models for a different problem:

dimension reduction in covariance estimation.

• Σ = ACAT + Γ: "low rank + sparse" decomposition.

• Includes sparse PCA.

• Different problem, different identifiability questions:

Identifiability of AAT rather than that of A.
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Summary
We have introduced a flexible latent factor model to handle
overlapping variable clusters.
A with both + and - allows for a more refined cluster
interpretation.
We verified identifiability of the assignment matrix A in
presence of noise E.
We proposed a new, fast algorithm to find the number of
clusters and the pure variables.
Sparse regression method is used to find the coefficients
of the non-pure variables.
Method works well with statistical guarantees for data
generated for X sub-Gaussian; immediate extensions to
elliptical copula factor models.
Future work: extensions to topic models, fMRI data and
networks.

Marten Wegkamp Overlapping Variable Clustering



Bon anniversaire!
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