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Setting

Gaussian Vector Model

Y ~N(,1I,) , where 0 is unknown

Functional estimation : Fix a function f : R™ — R.
We want to estimate f(0) based on Y.

Examples :
m L(0) =7, 6; (linear functional)
m Q(0) =37, 6 (quadratic functional)

s m(f) = min?_, 6; (minimum functional)
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Structural Assumption : 6 is sparse in some sense
~~ at most k of the components of 0 differ from some basal value 6.

This talk :
m Characterizing minimax adaptive risks of L(0) and m(0).

m Focusing on some proof techniques for the lower bounds
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Structural Assumption : 6 is sparse in some sense
~~ at most k of the components of 0 differ from some basal value 6.

This talk :
m Characterizing minimax adaptive risks of L(0) and m(0).
m Focusing on some proof techniques for the lower bounds

m ...acknowledging some contributions of Oleg and Sasha

Based on two joint work with

m O. Collier, L. Comminges, and A. Tsybakov. Optimal Adaptive Estimation of
Linear Functional Under Sparsity. arXiv:1611.09744 [AoS(+18)]

= A. Carpentier, S. Delattre, and E. Roquain. Minimax estimation of the shift
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Adaptive Estimation of the linear functional
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Linear Functional Estimation problem

Problem : Estimating L(9) = Y7 , 6;

Structural Assumption : At most k components of 6 are non zero.
6 € Olk] = {0, |60 < k}.
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Linear Functional Estimation problem

Problem : Estimating L(9) = Y7 , 6;

Structural Assumption : At most k components of 6 are non zero.
6 € Olk] = {0, |60 < k}.

Maximal Risk over ©o[k] : ¥y (L) = supgeco, 1) EolL — L(0)]?

Minimax Risk over Oq[k] : W} = inf; supgceq i Eo[L — L(0)]?

Goal 1 : For each k € [n], computing W} .

Goal 2 : [Adaptation] Building L performing as best as possible simultaneously over
all O¢lk].

Related work : see e.g. Ibragimov and Hasminskii('84) ; Klemela and Tsybakov('01)
Cai and Low('04,'05) ; Golubev and Levit('04); Collier et al.('17); Collier and
Dalalyan (today)...
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(Non Adaptive) Minimax Risk

6/21

Heuristic : When k is small, threshold the small of components of Y;.

Define the estimator

Ty = T YU{Y? > 2log(1 +n/k%)}, if k< /7,
Z?=1 Yj, otherwise,

Theorem ( )
Fork=1,...,n,

n

We.nlLi] S K2 10g (14 5

) = \Ilzn
Remark :

u For k < /n/2, Wi = k?log (%)

m Fork>/n/2, ¥5 =n



Lower Bound : Vanilla Le Cam’s two points Method

Step 1. From Estimation to Hypothesis testing.
m 0 : prior on Oglk], such that L() = 0, uo a.s.
m i : prior on Oglk], such that L(0) =T, p1 as.

Mixture distribution : Pg = [Py duo(0), P1 = [ Pp dui(6).

sup E[L-LOP > [Bolf?+Ei[L 1P
0€00[k] 2
> %2 [PO[Z > T/2] + Po[L < T/2]]
2
> [1-IPo - Pulrv]
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Lower Bound : Vanilla Le Cam’s two points Method

Step 1. From Estimation to Hypothesis testing.
m 0 : prior on Oglk], such that L() = 0, uo a.s.
m i : prior on Oglk], such that L(0) =T, p1 as.

Mixture distribution : Pg = [Py duo(0), P1 = [ Pp dui(6).

sup E[L-LOP > [Bolf?+Ei[L 1P
0€00(k] 2
> %2 [PO[Z > T/2] + Po[L < T/Q]]
2
> [1-IPo - Pulrv]

Step 2. Bound of ||Pg — P1|ry.
Distance between two mixtures difficult to control. ~~ Take pg = dg (Po = Po).

@2]_1

Po —P1||Zy < x2(Po; P1) = E
I Po ~Pulldy < x*(Po; P1) = Bo [ (5!

explicit computations + careful choice of T' and p1 = Desired lower bound
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An adaptive procedure?

~~ Lepski-type method to build an adaptive procedure.

Introduce non-adaptive estimators Zk indexed by k =1,...,n:
= Z;-Lzlel{Yj2 > alog (1+%>}, if k< +/nlogn/2,
XY, otherwise,
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An adaptive procedure?

~~ Lepski-type method to build an adaptive procedure.

Introduce non-adaptive estimators Ly, indexed by k=1,...,n:

= Z;-Lzlel{Yj2 > alog (1+%>}, if k< +/nlogn/2,
Z?:I Y;, otherwise,
Take L £ ZI; where

nlogn
k'2

k2 min{k €{1,...,[Vrnlogn)}: |Ly—Ly|* < BK ?log (14 ), for all k& > k}.

Theorem ( )
Fork=1,...,n and any 6 € ©¢lk],

sup Eal(E — LO)Y] S B £ 210 (14 5 )
0€0y K] k

Higher than Wy =< k2 log (1 + k%) for k > +/n/log(n)
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Adaptation : characterization and lower bound

(Following Tsybakov('98)), a function k +— ®y, ,, is an adaptive rate of convergence if

(i) There exists an estimator T such that, for all k,

max sup Es(fi - L(G))Q/(I)k’n <1
k=1,...n gecoqlk]

i) And for all functions k — ®/ _ satisfying (i),
k,n

! / /
. q)k,n ék,n . o
min — 0 = max - min —
k k,n k (bk:,n k k,n
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Adaptation : characterization and lower bound

(Following Tsybakov('98)), a function k +— ®y, ,, is an adaptive rate of convergence if

(i) There exists an estimator T such that, for all k,

max sup ]Ee(f/ - L(@))2/<1>k,n <1
k=1,....,n gcoqk]

i) And for all functions k — &’/ satisfying (i),
k,n

/ / !
. q)k,n qch,n . q>k n
min — 0 = max - min — 00 .
k k,n k (Dk,n k k,n
Theorem ( )

Any estimator L that satisfies

sup Eg [(E — L(G))Q] < c®y, for somek > nt/4
0€0[k]

has a degenerate maximal risk over ©¢|[1], that is

sup Eg [(E — L(G))Q} >nl/t
6€0¢[1]
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Proof Sketch : Asymmetric Two-point Method

For k > nl/4,

= 2 = 2
PR €YU 1) N T 1)
L nt/ 6€6 K] q:'k:,n
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= 2 = 2
PR €YU 1) N T 1)
L nt/ 6€6 K] q:'k:,n

Proof : Build 1 on ©g[k] s.t. L(0) < / , 1 a.s.

| EoL? E(L-1L)?
k) > f
R(k) > 1IL1 { i/ + .
> 1nf[IP0(.AC) 2 4 Pi(A)]
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Proof Sketch : Asymmetric Two-point Method

For k > nl/4,

= 2 = 2
R(k) 2 inf Eo(L - i(ﬂ)) 4 sup Eq(L — L(0)) >1
i nl/ 0€00[k] Dpon

Proof : Build 1 on ©g[k] s.t. L(0) < / , 1 a.s.

| EoL? E(L-1L)?
k) > f
R(k) > 1IL1 { i/ + .
> 1nf[IPo(.A°) 2 4 Pi(A)]

Lemma

Let P and Q be two probability measures. For any q > 0,
inf {P(A)g +Q(A%)} 2 5 (1 - f(x (Q,P)+1)).
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Adaptive Estimation of the minimum functional
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Setting and Motivation

Problem : Estimating m(6) £ min;— 1,...n0:.

Structural Assumption : At most k components of 6 are larger than m(6).
~ O k] = {0, S0, 1{6; >m(0)} < k}.
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Setting and Motivation

Problem : Estimating m(6) £ min;— 1,...n0:.

Structural Assumption : At most k components of 6 are larger than m(6).
~ O k] = {0, S0, 1{6; >m(0)} < k}.

Two motivations :
m Multiple Testing and FDR control with equicorrelation Y ~ N (u, aln + bJy,)
Testing Ho; : p1; =0 vs Hy;:pu; >0

~» Factor model Y = v + u; + ¢; with ¢; (S N(0,a).
~ Estimating v = m(6) = removing the unknown factor .

m Mean Estimation in the presence of a one-sided contamination
For at least n — k observations, Y; ~ N(m(6),1)
At most k contaminated observations, with Y; ~ N (6;,1) and 6; > m(9).
# Huber-contamination model (contamination is one-sided and normal)

Minimax Risk over ©.,[k] :  infz supgee,, (1] Eo | — m(0)]

12/21



Preliminary Observations

Empirical Median : Mg = Med(Y).

sup Eglm-m@)|SE+ X, ifk<n/2—s)
9EOm [K] n o Vn

~> This risk is optimal for k < \/n.
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Preliminary Observations

Empirical Median : Mg = Med(Y).

Proposition

|

sup Egl—m@)| S+,  ifk<n(/2—x)
9EOm [K] n o Vn

~> This risk is optimal for k < \/n.

Empirical Minimum : Mo = min;—1,... »(Y3).

Proposition

sup  Eg [ —m(0)| < v/log(n)
0€Om (k]

Question : To what extent are these rates optimal 7
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Towards a Minimax Lower Bound : Moment Matching

Two-point reduction to P and P1 = [Py du1(0) leads to suboptimal rate.
Need to consider composite-composite reduction of Pg = [Py dpo(0) vs P1

Difficulty : x2(Po; P1) = [ (%)QdPo — 1 is not tractable
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Workaround : Relating ||Po — P1||7y to measures of proximities between po and p1 :
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Need to consider composite-composite reduction of Pg = [Py dpo(0) vs P1

Difficulty : x2(Po; P1) = [ (%)QdPo — 1 is not tractable

Workaround : Relating ||Po — P1||7y to measures of proximities between po and p1 :

Two (three) fruitful approaches :
m (densities of Pg and P are matching on a wide set) (e.g Chen et al.('15))
m Fourier Transforms of po and p1 are matching on a wide interval. (e.g. Moitra
and Valiant('10); Cai and Jin('10), Carpentier and V.('17),..., )
m First moments of po and w1 are matching. (Lepski, Nemirovski and
Spokoiny('99) for L, norm).
See also : Cai and Low('11) (L1 norm); Jiao et al.('15); Wu and
Yang('16) ; (Entropy Estimation) Bandeira et al.('17) (Multi-reference
Alignement), Han et al.('17); Carpentier and V.('17) (Sparsity Estimation) ...
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Moment Matching

15/21

For j = 0,1, take u; = ﬂ';-X)n

Lemma

|

[Po — P1]j3y < {0}) > (/:t (dmo(x) d7r1(z))) JU!

>1

m @ first moments of my and 7 are equal
m supp(w;) C [—M, M]
then,

2 M2l
IPo —Pil7y < > =
{0}) P



Moment Matching
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For j = 0,1, take u; = ﬂ';-X)n

Lemma

|

[Po — P17y <

{0}) Z (/zl (dmo(x) — dmy (z))) /I

>1

m @ first moments of my and 7 are equal
m supp(w;) C [—M, M]
then,

2 M2l
[Po—Pil|Fy < ——= > ——

~ ||Po — P1|l7v is small for instance if Q@ > max(2eM?2,log(n))



Moment Matching : back to m(0)

Fix e = k/(2n), ap < a1 =0,
mj = (1 — €)da; + ev; and supp(v;) C [0, M].

~ if O ~ 7r]®", then w.h.p. 6 € O, [k] and m(8) = a;.
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Moment Matching : back to m(#)
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Fix e = k/(2n), ap < a1 =0,
mj = (1 — €)da; + ev; and supp(v;) C [0, M].

~ if O ~ 7r]®", then w.h.p. 6 € O, [k] and m(8) = a;.

Two points Method to [Py dw?”(@) = Minimax Risk of m(0) larger than |ag
if enough moments of 7y and 71 are matching.

Desiderata

Find the largest |ag| such that two Probability measures v; supported on [0, M] satisfy

M
/ 2" (dvi — dwy) =
0

Solution given by Hahn-Banach Theorem+ Riesz-Markov Theorem

ag, r=1,...,Q
1—€

Extremal Problem

Find the smallest ag < 0 such that

2€
sup [P(ao0) — P(0) <
PEPQ:IPlloo, 0,41 <1 1—e

(Almost a Chebychev problem)



Conclusion : Lower bound

Theorem ( )

Fork=1,...,n,

ﬁ ifk <n,
inf sup Eoplm-m@)|z{ Elog®2(1+L) ifym<k<n/2,
el Lo (o =Lo) ifn/2<k<n-—1
log3/2(n) — ’

m k<+/m ~ Empirical Median is optimal
mn—k<.+n ~ Empirical Min is optimal
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Matching Upper bound : Moment approach

Two ideas : (similar to lower bounds)
m from Tests to Functional estimation
m Approximating m(0).
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Matching Upper bound : Moment approach

Two ideas : (similar to lower bounds)
m from Tests to Functional estimation
m Approximating m(0).

Testing Problem : m(0) =0 versus m(0) <0
Population Analysis : Building a smooth function {(z) separating {z < 0} from
{z > 0}.
T, : Chebychev Polynomial of degree g. 9
Take ((z) = Ty(2e** — 1). o
-2.0 -15 —1‘.0 -0.5 0.0 0.5

If 9; >0, then 2¢=*% — 1 € [~1,1] and ¢(—6;) € [~1,1] for all 4.
If §; <0, then 2¢=*% — 1 > 1 and ¢(—6;) > 1.
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Matching Upper bound : Moment approach

Two ideas : (similar to lower bounds)
m from Tests to Functional estimation
m Approximating m(0).

Testing Problem : m(0) =0 versus m(0) <0
Population Analysis : Building a smooth function ((z) separating {z < 0} from
{z > 0}.
T, : Chebychev Polynomial of degree g. 9
Take ((z) = Ty(2e** — 1). o
-2.0 -15 —1‘.0 -0.5 0.0 05

If 9; >0, then 2¢=*% — 1 € [~1,1] and ¢(—6;) € [~1,1] for all 4.
If §; <0, then 2¢=*% — 1 > 1 and ¢(—6;) > 1.

Unbiased Estimation of n(0) + Multiple Tests ~~ Estimator 4.

Theorem ( )

For k € [\/n,n — /n]|, take g, < log (%), Ak = q;I/Q' Then, Mg, is minimax.
Selection of mg (Lepski+ Threshold) = Minimax Adaptation
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Extension : One-sided Contaminated Model

One-sided Contaminated Model

st.
Y;'s are independent and either Y; ~ N (m,1) or L(Y;) = N(m,1)

~ k stands the number of “contaminated data".

~~ one-sided counterpart of Huber's Contamination Model
(arises in multiple testing problems)
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Extension : One-sided Contaminated Model

One-sided Contaminated Model

st.
Y;'s are independent and either Y; ~ N (m,1) or L(Y;) = N(m,1)

~ k stands the number of “contaminated data".
~~ one-sided counterpart of Huber's Contamination Model
(arises in multiple testing problems)

M, > : collection of such distributions.

Question : one-sided Contaminated Model vs Gaussian one-sided Model ?
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Minimax Risk over the Contaminated Model

Theorem ( )

Foranyk=1,...,.n—1,

ﬁ ifk<vn,
sup_ inf B[ —m(P)] <] flog '/’ (1+2&) ifva<k<n/z,
%R k.2 log(n/(n—k)) ifn/2<k<mn—1

log172 () ifn/ <n .

Remark : At most a logarithmic difference with the Gaussian contaminated model

Remark : Matching upper bound achieved by suitable quantile estimators.
Lepski's method ~~ perfect Adaptation

Back to multiple Testing problems : Estimation of 6 allows to correct the p-values
and control the FDR as if 6; was known in advance (log(n)~1/2 rate is required).
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Take-Home Message

m Variations of two points methods for Adaptation.

= Moment Matching (and Fourier Matching) to handle composite-composite
problems.
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Take-Home Message

m Variations of two points methods for Adaptation.

= Moment Matching (and Fourier Matching) to handle composite-composite
problems.

Thank you for your attention |
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