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Setting

Gaussian Vector Model

Y ∼ N (θ, In) , where θ is unknown

Functional estimation : Fix a function f : Rn → R.
We want to estimate f(θ) based on Y .

Examples :
L(θ) =

∑n
i=1 θi (linear functional)

Q(θ) =
∑n
i=1 θ

2
i (quadratic functional)

m(θ) = minni=1 θi (minimum functional)
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Objectives

Structural Assumption : θ is sparse in some sense
 at most k of the components of θ differ from some basal value θ0.

This talk :

Characterizing minimax adaptive risks of L(θ) and m(θ).

Focusing on some proof techniques for the lower bounds

. . . acknowledging some contributions of Oleg and Sasha

Based on two joint work with

O. Collier, L. Comminges, and A. Tsybakov. Optimal Adaptive Estimation of
Linear Functional Under Sparsity. arXiv:1611.09744 [AoS(+18)]

A. Carpentier, S. Delattre, and E. Roquain. Minimax estimation of the shift
of a random vector with application to multiple testing. arXiv:1801.????
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1 Introduction

2 Adaptive Estimation of the linear functional

3 Adaptive Estimation of the minimum functional
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Linear Functional Estimation problem

Problem : Estimating L(θ) =
∑n
i=1 θi

Structural Assumption : At most k components of θ are non zero.
 θ ∈ Θ0[k] = {θ, ‖θ‖0 ≤ k}.

Maximal Risk over Θ0[k] : Ψk,n(L̂) = supθ∈Θ0[k] Eθ[L̂− L(θ)]2

Minimax Risk over Θ0[k] : Ψ∗k,n = inf
L̂

supθ∈Θ0[k] Eθ[L̂− L(θ)]2

Goal 1 : For each k ∈ [n], computing Ψ∗k,n.

Goal 2 : [Adaptation] Building L̃ performing as best as possible simultaneously over
all Θ0[k].

Related work : see e.g. Ibragimov and Hasminskii(’84) ; Klemela and Tsybakov(’01)
Cai and Low(’04,’05) ; Golubev and Levit(’04) ; Collier et al.(’17) ; Collier and
Dalalyan (today). . .
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(Non Adaptive) Minimax Risk

Heuristic : When k is small, threshold the small of components of Yi.

Define the estimator

L̂k =

{∑n
j=1 Yj1

{
Y 2
j > 2 log(1 + n/k2)

}
, if k <

√
n,∑n

j=1 Yj , otherwise,

Theorem (Collier et al.(’17))

For k = 1, . . . , n,
Ψk,n[L̂k] . k2 log

(
1 +

n

k2

)
� Ψ∗k,n

Remark :

For k <
√
n/2, Ψ∗k,n � k

2 log
(
n
k2

)
For k ≥

√
n/2, Ψ∗k,n � n
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Lower Bound : Vanilla Le Cam’s two points Method

Step 1. From Estimation to Hypothesis testing.

µ0 : prior on Θ0[k], such that L(θ) = 0, µ0 a.s.

µ1 : prior on Θ0[k], such that L(θ) = T , µ1 a.s.

Mixture distribution : P0 =
∫
Pθ dµ0(θ), P1 =

∫
Pθ dµ1(θ).

sup
θ∈Θ0[k]

E[L̂− L(θ)]2 ≥
1

2

[
E0[L̂2] + E1[L̂− T ]2

]
≥

T 2

8

[
P0[L̂ > T/2] + P0[L̂ ≤ T/2]

]
≥

T 2

8

[
1− ‖P0 −P1‖TV

]

Step 2. Bound of ‖P0 −P1‖TV .
Distance between two mixtures difficult to control.  Take µ0 = δ0 (P0 = P0).

‖P0−P1‖2TV ≤ χ
2(P0;P1) = E0

[(dP1

dP0

)2]− 1

explicit computations + careful choice of T and µ1 ⇒ Desired lower bound
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An adaptive procedure ?

 Lepski-type method to build an adaptive procedure.

Introduce non-adaptive estimators L̃k indexed by k = 1, . . . , n :

L̃k =

{∑n
j=1 Yj1

{
Y 2
j > α log

(
1 + nlogn

k2

)}
, if k ≤

√
n logn/2,∑n

j=1 Yj , otherwise,

Take L̃ , L̃k̂ where

k̂ , min
{
k ∈ {1, . . . , b

√
n lognc} : |L̃k−L̃k′ |2 ≤ βk

′2 log
(
1+

n logn

k′2

)
, for all k′ > k

}
.

Theorem (Collier et al.(18))

For k = 1, . . . , n and any θ ∈ Θ0[k],

sup
θ∈Θ0[k]

Eθ[(L̃− L(θ))2] . Φk,n , k
2 log

(
1 +

nlog(n)

k2

)
Higher than Ψ∗k,n � k

2 log
(

1 + n
k2

)
for k ≥

√
n/ log(n)
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Adaptation : characterization and lower bound
(Following Tsybakov(’98)), a function k 7→ Φk,n is an adaptive rate of convergence if

(i) There exists an estimator L̂ such that, for all k,

max
k=1,...,n

sup
θ∈Θ0[k]

Eθ(L̂− L(θ))2/Φk,n . 1

(ii) And for all functions k 7→ Φ′k,n satisfying (i),

min
k

Φ′k,n

Φk,n
→ 0 ⇒ max

k

Φ′k,n

Φk,n
·min
k

Φ′k,n

Φk,n
→∞ .

Theorem (Collier et al.(’18))

Any estimator L̂ that satisfies

sup
θ∈Θ0[k]

Eθ
[(
L̂− L(θ)

)2] ≤ cΦk,n for some k ≥ n1/4

has a degenerate maximal risk over Θ0[1], that is

sup
θ∈Θ0[1]

Eθ
[(
L̂− L(θ)

)2] & n1/4 .
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Proof Sketch : Asymmetric Two-point Method

Lemma

For k ≥ n1/4,

R(k) , inf
L̃

{
E0(L̃− L(0))2

n1/4
+ sup
θ∈Θ0[k]

Eθ(L̃− L(θ))2

Φk,n

}
& 1

Proof : Build µ1 on Θ0[k] s.t. L(θ) � Φ
1/2
k,n, µ1 a.s.

R(k) ≥ inf
L̃

{
E0 L̃2

n1/4
+

E1(L̃− L)2

Φk,n

}

& inf
A

[
P0(Ac)

Φk,n

n1/4
+ P1(A)

]

Lemma

Let P and Q be two probability measures. For any q > 0,

inf
A
{P (A)q +Q(Ac)} ≥

1

2

(
1−

1

q
(χ2(Q,P ) + 1)

)
.
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Setting and Motivation

Problem : Estimating m(θ) , mini=1,...,n θi.

Structural Assumption : At most k components of θ are larger than m(θ).
 Θm[k] =

{
θ,
∑n
i=1 1

{
θi > m(θ)

}
≤ k

}
.

Two motivations :
Multiple Testing and FDR control with equicorrelation Y ∼ N (µ, aIn + bJn)

Testing H0,i : µi = 0 vs H1,i : µi > 0

 Factor model Y = γ + µi + εi with εi
iid∼ N (0, a).

 Estimating γ = m(θ) = removing the unknown factor .

Mean Estimation in the presence of a one-sided contamination
For at least n− k observations, Yi ∼ N (m(θ), 1)
At most k contaminated observations, with Yi ∼ N (θi, 1) and θi > m(θ).
6= Huber-contamination model (contamination is one-sided and normal)

Minimax Risk over Θm[k] : infm̂ supθ∈Θm[k] Eθ
∣∣m̂−m(θ)

∣∣
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Preliminary Observations

Empirical Median : m̂0 = Med(Y ).

Proposition

sup
θ∈Θm[k]

Eθ
∣∣m̂−m(θ)

∣∣ . k

n
+

1
√
n
, if k ≤ n(1/2− κ)

 This risk is optimal for k ≤
√
n.

Empirical Minimum : m̂∞ = mini=1,...,n(Yi).

Proposition

sup
θ∈Θm[k]

Eθ
∣∣m̂−m(θ)

∣∣ .√log(n)

Question : To what extent are these rates optimal ?
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Towards a Minimax Lower Bound : Moment Matching

Two-point reduction to P0 and P1 =
∫
Pθ dµ1(θ) leads to suboptimal rate.

Need to consider composite-composite reduction of P0 =
∫
Pθ dµ0(θ) vs P1

Difficulty : χ2(P0;P1) =
∫ ( dP1

dP0

)2
dP0 − 1 is not tractable

Workaround : Relating ‖P0 −P1‖TV to measures of proximities between µ0 and µ1 :

Two (three) fruitful approaches :

(densities of P0 and P1 are matching on a wide set) (e.g Chen et al.(’15))

Fourier Transforms of µ0 and µ1 are matching on a wide interval. (e.g. Moitra
and Valiant(’10) ; Cai and Jin(’10), Carpentier and V.(’17),. . . , )

First moments of µ0 and µ1 are matching. (Lepski, Nemirovski and
Spokoiny(’99) for Lr norm).

See also : Cai and Low(’11) (L1 norm) ; Jiao et al.(’15) ; Wu and
Yang(’16) ; (Entropy Estimation) Bandeira et al.(’17) (Multi-reference
Alignement), Han et al.(’17) ; Carpentier and V.(’17) (Sparsity Estimation) . . .
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Moment Matching

For j = 0, 1, take µj = π⊗nj

Lemma

‖P0 −P1‖2TV ≤
n

π1({0})
∑
l≥1

(∫
xl(dπ0(x)− dπ1(x))

)2
/l!

If

Q first moments of π0 and π1 are equal

supp(πj) ⊂ [−M,M ]

then,

‖P0 −P1‖2TV ≤
2n

π1({0})
∑
l>Q

M2l

l!

 ‖P0 −P1‖TV is small for instance if Q ≥ max(2eM2, log(n))
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Moment Matching : back to m(θ)

Fix ε = k/(2n), a0 < a1 = 0,
πj = (1− ε)δaj + ενj and supp(νj) ⊂ [0,M ].

 if θ ∼ π⊗nj , then w.h.p. θ ∈ Θm[k] and m(θ) = aj .

Two points Method to
∫
Pθ dπ⊗nj (θ) ⇒ Minimax Risk of m(θ) larger than |a0|,

if enough moments of π0 and π1 are matching.

Desiderata

Find the largest |a0| such that two Probability measures νj supported on [0,M ] satisfy

∫ M

0
xr(dν1 − dν0) =

ε

1− ε
ar0, r = 1, . . . , Q

Solution given by Hahn-Banach Theorem+ Riesz-Markov Theorem

Extremal Problem

Find the smallest a0 < 0 such that

sup
P∈PQ:‖P‖∞,[0,M]≤1

|P (a0)− P (0)| ≤
2ε

1− ε

(Almost a Chebychev problem)
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Conclusion : Lower bound

Theorem (Carpentier et al.(’18))

For k = 1, . . . , n,

inf
m̂

sup
θ∈Θm[k]

Eθ
∣∣m̂−m(θ)

∣∣ &


1√
n

if k ≤
√
n ,

k
n

log−3/2
(

1 + k√
n

)
if
√
n < k ≤ n/2 ,

log2(n/(n−k))

log3/2(n)
if n/2 < k ≤ n− 1 ,

k ≤
√
n  Empirical Median is optimal

n− k ≤
√
n  Empirical Min is optimal
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Matching Upper bound : Moment approach
Two ideas : (similar to lower bounds)

from Tests to Functional estimation
Approximating m(θ).

Testing Problem : m(θ) = 0 versus m(θ) < 0

Population Analysis : Building a smooth function ζ(x) separating {x < 0} from
{x ≥ 0}.

Tq : Chebychev Polynomial of degree q.
Take ζ(x) = Tq(2eλx − 1).

−2.0 −1.5 −1.0 −0.5 0.0 0.5

0
5

10
20

If θi ≥ 0, then 2e−λθi − 1 ∈ [−1, 1] and ζ(−θi) ∈ [−1, 1] for all i.
If θi < 0, then 2e−λθi − 1 > 1 and ζ(−θi) > 1.

Unbiased Estimation of η(θ) + Multiple Tests  Estimator m̂q .

Theorem (Carpentier et al.(’18))

For k ∈ [
√
n, n−

√
n], take qk � log

(
k√
n

)
, λk = q

−1/2
k . Then, m̂qk is minimax.

Selection of m̂q (Lepski+Threshold) ⇒ Minimax Adaptation
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Extension : One-sided Contaminated Model

One-sided Contaminated Model

Yi’s are independent and either Yi ∼ N (m, 1) or L(Yi)
st.
& N (m, 1)

 k stands the number of “contaminated data”.
 one-sided counterpart of Huber’s Contamination Model
(arises in multiple testing problems)

Mk,& : collection of such distributions.

Question : one-sided Contaminated Model vs Gaussian one-sided Model ?
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Minimax Risk over the Contaminated Model

Theorem (Carpentier et al.(’18))

For any k = 1, . . . , n− 1,

sup
m̂

inf
P∈Mk,&

E [|m̂−m(P)|] �


1√
n

if k ≤
√
n ,

k
n

log−1/2
(

1 + k√
n

)
if
√
n < k ≤ n/2 ,

log(n/(n−k))

log1/2(n)
if n/2 < k ≤ n− 1 ,

Remark : At most a logarithmic difference with the Gaussian contaminated model

Remark : Matching upper bound achieved by suitable quantile estimators.
Lepski’s method  perfect Adaptation

Back to multiple Testing problems : Estimation of θ allows to correct the p-values
and control the FDR as if θi was known in advance (log(n)−1/2 rate is required).
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Take-Home Message

Variations of two points methods for Adaptation.

Moment Matching (and Fourier Matching) to handle composite-composite
problems.

Thank you for your attention !
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