Estimating Mean Functionals in the Gaussian Vector Model

Nicolas Verzelen

INRA Montpellier

Luminy, December 2017

Gaussian Vector Model

 $Y \sim \mathcal{N}(\theta, I_n)$, where θ is unknown

Functional estimation : Fix a function $f : \mathbb{R}^n \to \mathbb{R}$. We want to estimate $f(\theta)$ based on Y.

Examples :

- $L(\theta) = \sum_{i=1}^{n} \theta_i$ (linear functional)
- $Q(\theta) = \sum_{i=1}^{n} \theta_i^2$ (quadratic functional)
- $m(\theta) = \min_{i=1}^{n} \theta_i$ (minimum functional)

Gaussian Vector Model

 $Y \sim \mathcal{N}(\theta, I_n)$, where θ is unknown

Functional estimation : Fix a function $f : \mathbb{R}^n \to \mathbb{R}$. We want to estimate $f(\theta)$ based on Y.

Examples :

- $L(\theta) = \sum_{i=1}^{n} \theta_i$ (linear functional)
- $m(\theta) = \min_{i=1}^{n} \theta_i$ (minimum functional)

Structural Assumption : θ is sparse in some sense

 \rightsquigarrow at most k of the components of θ differ from some basal value θ_0 .

This talk :

- Characterizing minimax adaptive risks of $L(\theta)$ and $m(\theta)$.
- Focusing on some proof techniques for the lower bounds

Structural Assumption : θ is sparse in some sense

 \rightsquigarrow at most k of the components of θ differ from some basal value θ_0 .

This talk :

- Characterizing minimax adaptive risks of $L(\theta)$ and $m(\theta)$.
- Focusing on some proof techniques for the lower bounds
- ... acknowledging some contributions of Oleg and Sasha

Based on two joint work with

- O. Collier, L. Comminges, and A. Tsybakov. Optimal Adaptive Estimation of Linear Functional Under Sparsity. arXiv:1611.09744 [AoS(+18)]
- A. Carpentier, S. Delattre, and E. Roquain. Minimax estimation of the shift of a random vector with application to multiple testing. arXiv:1801.????

2 Adaptive Estimation of the linear functional

3 Adaptive Estimation of the minimum functional

Linear Functional Estimation problem

Problem : Estimating $L(\theta) = \sum_{i=1}^{n} \theta_i$

Structural Assumption : At most k components of θ are non zero. $\rightsquigarrow \theta \in \Theta_0[k] = \{\theta, \|\theta\|_0 \le k\}.$

Linear Functional Estimation problem

Problem : Estimating $L(\theta) = \sum_{i=1}^{n} \theta_i$

Structural Assumption : At most k components of θ are non zero. $\rightsquigarrow \theta \in \Theta_0[k] = \{\theta, \|\theta\|_0 \le k\}.$

 $\text{Maximal Risk over } \Theta_0[k]: \quad \Psi_{k,n}(\widehat{L}) = \sup_{\theta \in \Theta_0[k]} \mathbb{E}_{\theta}[\widehat{L} - L(\theta)]^2$

 $\text{Minimax Risk over } \Theta_0[k]: \quad \Psi_{k,n}^* = \inf_{\widehat{L}} \sup_{\theta \in \Theta_0[k]} \mathbb{E}_{\theta}[\widehat{L} - L(\theta)]^2$

Linear Functional Estimation problem

Problem : Estimating $L(\theta) = \sum_{i=1}^{n} \theta_i$

Structural Assumption : At most k components of θ are non zero. $\rightsquigarrow \theta \in \Theta_0[k] = \{\theta, \|\theta\|_0 \le k\}.$

 $\text{Maximal Risk over } \Theta_0[k]: \quad \Psi_{k,n}(\widehat{L}) = \sup_{\theta \in \Theta_0[k]} \mathbb{E}_{\theta}[\widehat{L} - L(\theta)]^2$

Minimax Risk over $\Theta_0[k]$: $\Psi_{k,n}^* = \inf_{\widehat{L}} \sup_{\theta \in \Theta_0[k]} \mathbb{E}_{\theta}[\widehat{L} - L(\theta)]^2$

Goal 1 : For each $k \in [n]$, computing $\Psi_{k,n}^*$. **Goal 2** : [Adaptation] Building \tilde{L} performing as best as possible simultaneously over all $\Theta_0[k]$.

Related work : see e.g. Ibragimov and Hasminskii('84); Klemela and Tsybakov('01) Cai and Low('04,'05); Golubev and Levit('04); Collier et al.('17); Collier and Dalalyan (today)...

(Non Adaptive) Minimax Risk

Heuristic : When k is small, threshold the small of components of Y_i .

Define the estimator

$$\widehat{L}_k = \begin{cases} \sum_{j=1}^n Y_j \mathbf{1} \big\{ Y_j^2 > 2 \log(1 + n/k^2) \big\}, & \text{ if } k < \sqrt{n}, \\ \sum_{j=1}^n Y_j, & \text{ otherwise,} \end{cases}$$

Theorem (Collier et al.('17))

For $k = 1, \ldots, n$,

$$\Psi_{k,n}[\widehat{L}_k] \lesssim k^2 \log\left(1 + \frac{n}{k^2}\right) \asymp \Psi_{k,n}^*$$

Remark :

For
$$k < \sqrt{n}/2$$
, $\Psi_{k,n}^* \asymp k^2 \log\left(\frac{n}{k^2}\right)$
For $k \ge \sqrt{n}/2$, $\Psi_{k,n}^* \asymp n$

Lower Bound : Vanilla Le Cam's two points Method

Step 1. From Estimation to Hypothesis testing.

- μ_0 : prior on $\Theta_0[k]$, such that $L(\theta) = 0$, μ_0 a.s.
- μ_1 : prior on $\Theta_0[k]$, such that $L(\theta) = T$, μ_1 a.s.

Mixture distribution : $\mathbf{P}_0 = \int \mathbb{P}_{\theta} d\mu_0(\theta)$, $\mathbf{P}_1 = \int \mathbb{P}_{\theta} d\mu_1(\theta)$.

$$\sup_{\theta \in \Theta_{0}[k]} \mathbb{E}[\widehat{L} - L(\theta)]^{2} \geq \frac{1}{2} \Big[\mathbf{E}_{0}[\widehat{L}^{2}] + \mathbf{E}_{1}[\widehat{L} - T]^{2} \Big]$$
$$\geq \frac{T^{2}}{8} \Big[\mathbf{P}_{0}[\widehat{L} > T/2] + \mathbf{P}_{0}[\widehat{L} \le T/2] \Big]$$
$$\geq \frac{T^{2}}{8} \Big[1 - \|\mathbf{P}_{0} - \mathbf{P}_{1}\|_{TV} \Big]$$

Lower Bound : Vanilla Le Cam's two points Method

Step 1. From Estimation to Hypothesis testing.

- μ_0 : prior on $\Theta_0[k]$, such that $L(\theta) = 0$, μ_0 a.s.
- μ_1 : prior on $\Theta_0[k]$, such that $L(\theta) = T$, μ_1 a.s.

Mixture distribution : $\mathbf{P}_0 = \int \mathbb{P}_{\theta} d\mu_0(\theta)$, $\mathbf{P}_1 = \int \mathbb{P}_{\theta} d\mu_1(\theta)$.

$$\sup_{\theta \in \Theta_{0}[k]} \mathbb{E}[\widehat{L} - L(\theta)]^{2} \geq \frac{1}{2} \Big[\mathbf{E}_{0}[\widehat{L}^{2}] + \mathbf{E}_{1}[\widehat{L} - T]^{2} \Big]$$
$$\geq \frac{T^{2}}{8} \Big[\mathbf{P}_{0}[\widehat{L} > T/2] + \mathbf{P}_{0}[\widehat{L} \le T/2] \Big]$$
$$\geq \frac{T^{2}}{8} \Big[1 - \|\mathbf{P}_{0} - \mathbf{P}_{1}\|_{TV} \Big]$$

Step 2. Bound of $\|\mathbf{P}_0 - \mathbf{P}_1\|_{TV}$.

Distance between two mixtures difficult to control. \rightsquigarrow Take $\mu_0 = \delta_0$ ($\mathbf{P}_0 = \mathbb{P}_0$).

$$\|\mathbb{P}_0 - \mathbf{P}_1\|_{TV}^2 \le \chi^2(\mathbb{P}_0; \mathbf{P}_1) = \mathbb{E}_0\left[\left(\frac{d\mathbf{P}_1}{d\mathbb{P}_0}\right)^2\right] - 1$$

explicit computations + careful choice of T and $\mu_1 \Rightarrow$ Desired lower bound

An adaptive procedure?

→ Lepski-type method to build an adaptive procedure.

Introduce non-adaptive estimators \widetilde{L}_k indexed by $k=1,\ldots,n$:

$$\widetilde{L}_k = \begin{cases} \sum_{j=1}^n Y_j \mathbf{1} \{ Y_j^2 > \alpha \log\left(1 + \frac{n \log n}{k^2}\right) \}, & \text{ if } k \le \sqrt{n \log n/2}, \\ \sum_{j=1}^n Y_j, & \text{ otherwise,} \end{cases}$$

An adaptive procedure?

→ Lepski-type method to build an adaptive procedure.

Introduce non-adaptive estimators \widetilde{L}_k indexed by $k=1,\ldots,n$:

$$\widetilde{L}_k = \begin{cases} \sum_{j=1}^n Y_j \mathbf{1} \big\{ Y_j^2 > \alpha \log \left(1 + \frac{n \log n}{k^2} \right) \big\}, & \text{ if } k \leq \sqrt{n \log n/2}, \\ \sum_{j=1}^n Y_j, & \text{ otherwise,} \end{cases}$$

Take $\widetilde{L} riangleq \widetilde{L}_{\hat{k}}$ where

$$\hat{k} \triangleq \min\Big\{k \in \{1, \dots, \lfloor \sqrt{n \log n} \rfloor\}: \ |\tilde{L}_k - \tilde{L}_{k'}|^2 \le \beta k^{'2} \log\big(1 + \frac{n \log n}{k^{'2}}\big), \text{ for all } k' > k\Big\}.$$

Theorem (Collier et al.(18))

For $k = 1, \ldots, n$ and any $\theta \in \Theta_0[k]$,

$$\sup_{\theta \in \Theta_0[k]} \mathbb{E}_{\theta}[(\widetilde{L} - L(\theta))^2] \lesssim \Phi_{k,n} \triangleq k^2 \log\left(1 + \frac{n \log(n)}{k^2}\right)$$

Higher than $\Psi_{k,n}^* \asymp k^2 \log \left(1 + \frac{n}{k^2}\right)$ for $k \ge \sqrt{n/\log(n)}$

Adaptation : characterization and lower bound

(Following Tsybakov('98)), a function $k \mapsto \Phi_{k,n}$ is an adaptive rate of convergence if (i) There exists an estimator \widehat{L} such that, for all k,

$$\max_{k=1,\ldots,n} \sup_{\theta \in \Theta_0[k]} \mathbb{E}_{\theta} (\hat{L} - L(\theta))^2 / \Phi_{k,n} \lesssim 1$$

(ii) And for all functions $k\mapsto \Phi_{k,n}'$ satisfying (i),

$$\min_k \frac{\Phi'_{k,n}}{\Phi_{k,n}} \to 0 \qquad \Rightarrow \qquad \max_k \frac{\Phi'_{k,n}}{\Phi_{k,n}} \cdot \min_k \frac{\Phi'_{k,n}}{\Phi_{k,n}} \to \infty \; .$$

Adaptation : characterization and lower bound

(Following Tsybakov('98)), a function $k \mapsto \Phi_{k,n}$ is an adaptive rate of convergence if (i) There exists an estimator \widehat{L} such that, for all k,

$$\max_{k=1,\ldots,n} \sup_{\theta \in \Theta_0[k]} \mathbb{E}_{\theta} (\hat{L} - L(\theta))^2 / \Phi_{k,n} \lesssim 1$$

(ii) And for all functions $k\mapsto \Phi_{k,n}'$ satisfying (i),

$$\min_k \frac{\Phi'_{k,n}}{\Phi_{k,n}} \to 0 \qquad \Rightarrow \qquad \max_k \frac{\Phi'_{k,n}}{\Phi_{k,n}} \cdot \min_k \frac{\Phi'_{k,n}}{\Phi_{k,n}} \to \infty \; .$$

Theorem (Collier et al.('18))

Any estimator \widehat{L} that satisfies

$$\sup_{\theta \in \Theta_0[k]} \mathbf{E}_{\theta} \left[\left(\hat{L} - L(\theta) \right)^2 \right] \le c \Phi_{k,n} \quad \text{for some } k \ge n^{1/4}$$

has a degenerate maximal risk over $\Theta_0[1]$, that is

$$\sup_{\theta \in \Theta_0[1]} \mathbf{E}_{\theta} \left[\left(\widehat{L} - L(\theta) \right)^2 \right] \gtrsim n^{1/4} .$$

Proof Sketch : Asymmetric Two-point Method

Lemma

For $k \geq n^{1/4}$,

$$R(k) \triangleq \inf_{\tilde{L}} \left\{ \frac{\mathbb{E}_0(\tilde{L} - L(0))^2}{n^{1/4}} + \sup_{\theta \in \Theta_0[k]} \frac{\mathbb{E}_\theta(\tilde{L} - L(\theta))^2}{\Phi_{k,n}} \right\} \gtrsim 1$$

Proof Sketch : Asymmetric Two-point Method

Lemma

For $k \geq n^{1/4}$,

$$R(k) \triangleq \inf_{\tilde{L}} \left\{ \frac{\mathbb{E}_0(\tilde{L} - L(0))^2}{n^{1/4}} + \sup_{\theta \in \Theta_0[k]} \frac{\mathbb{E}_\theta(\tilde{L} - L(\theta))^2}{\Phi_{k,n}} \right\} \gtrsim 1$$

Proof : Build μ_1 on $\Theta_0[k]$ s.t. $L(\theta) \asymp \Phi_{k,n}^{1/2}$, μ_1 a.s.

$$\begin{aligned} R(k) &\geq \inf_{\tilde{L}} \left\{ \frac{\mathbb{E}_{0} \tilde{L}^{2}}{n^{1/4}} + \frac{\mathbf{E}_{1} (\tilde{L} - L)^{2}}{\Phi_{k,n}} \right\} \\ &\gtrsim \inf_{\mathcal{A}} \left[\mathbb{P}_{0}(\mathcal{A}^{c}) \frac{\Phi_{k,n}}{n^{1/4}} + \mathbf{P}_{1}(\mathcal{A}) \right] \end{aligned}$$

Proof Sketch : Asymmetric Two-point Method

Lemma

For $k \ge n^{1/4}$,

$$R(k) \triangleq \inf_{\tilde{L}} \left\{ \frac{\mathbb{E}_0(\tilde{L} - L(0))^2}{n^{1/4}} + \sup_{\theta \in \Theta_0[k]} \frac{\mathbb{E}_\theta(\tilde{L} - L(\theta))^2}{\Phi_{k,n}} \right\} \gtrsim 1$$

Proof : Build μ_1 on $\Theta_0[k]$ s.t. $L(\theta) \asymp \Phi_{k,n}^{1/2}$, μ_1 a.s.

$$\begin{aligned} R(k) &\geq \inf_{\tilde{L}} \left\{ \frac{\mathbb{E}_0 \, \tilde{L}^2}{n^{1/4}} + \frac{\mathbf{E}_1 (\tilde{L} - L)^2}{\Phi_{k,n}} \right\} \\ &\gtrsim \inf_{\mathcal{A}} \left[\mathbb{P}_0(\mathcal{A}^c) \frac{\Phi_{k,n}}{n^{1/4}} + \mathbf{P}_1(\mathcal{A}) \right] \end{aligned}$$

Lemma

Let P and Q be two probability measures. For any q > 0,

$$\inf_{\mathcal{A}} \left\{ P(\mathcal{A})q + Q(\mathcal{A}^c) \right\} \ge \frac{1}{2} \left(1 - \frac{1}{q} (\chi^2(Q, P) + 1) \right).$$

10/21

2 Adaptive Estimation of the linear functional

3 Adaptive Estimation of the minimum functional

Setting and Motivation

Problem : Estimating $m(\theta) \triangleq \min_{i=1,...,n} \theta_i$.

Structural Assumption : At most k components of θ are larger than $m(\theta)$. $\rightsquigarrow \Theta_m[k] = \{\theta, \sum_{i=1}^n \mathbf{1}\{\theta_i > m(\theta)\} \le k\}.$

Setting and Motivation

Problem : Estimating $m(\theta) \triangleq \min_{i=1,...,n} \theta_i$.

Structural Assumption : At most k components of θ are larger than $m(\theta)$. $\rightsquigarrow \Theta_m[k] = \{\theta, \sum_{i=1}^n \mathbf{1}\{\theta_i > m(\theta)\} \le k\}.$

Two motivations :

- Multiple Testing and FDR control with equicorrelation $Y \sim \mathcal{N}(\mu, aI_n + bJ_n)$ Testing $H_{0,i}: \mu_i = 0$ vs $H_{1,i}: \mu_i > 0$
 - $\begin{array}{l} \rightsquigarrow \text{Factor model } Y = \gamma + \mu_i + \epsilon_i \text{ with } \epsilon_i \overset{iid}{\sim} \mathcal{N}(0,a). \\ \qquad \rightsquigarrow \text{Estimating } \gamma = m(\theta) = \text{removing the unknown factor }. \end{array}$

Problem : Estimating $m(\theta) \triangleq \min_{i=1,...,n} \theta_i$.

Structural Assumption : At most k components of θ are larger than $m(\theta)$. $\rightsquigarrow \Theta_m[k] = \{\theta, \sum_{i=1}^n \mathbf{1}\{\theta_i > m(\theta)\} \le k\}.$

Two motivations :

- Multiple Testing and FDR control with equicorrelation Y ~ N(µ, aI_n + bJ_n) Testing H_{0,i} : µ_i = 0 vs H_{1,i} : µ_i > 0
 - $\begin{array}{l} \rightsquigarrow \text{Factor model } Y = \gamma + \mu_i + \epsilon_i \text{ with } \epsilon_i \overset{iid}{\sim} \mathcal{N}(0,a). \\ \qquad \rightsquigarrow \text{Estimating } \gamma = m(\theta) = \text{removing the unknown factor }. \end{array}$
- Mean Estimation in the presence of a one-sided contamination

For at least n - k observations, $Y_i \sim \mathcal{N}(m(\theta), 1)$ At most k contaminated observations, with $Y_i \sim \mathcal{N}(\theta_i, 1)$ and $\theta_i > m(\theta)$. \neq Huber-contamination model (contamination is one-sided and normal)

Minimax Risk over $\Theta_m[k]$: $\inf_{\widehat{m}} \sup_{\theta \in \Theta_m[k]} \mathbb{E}_{\theta} \left| \widehat{m} - m(\theta) \right|$

Preliminary Observations

Empirical Median : $\widehat{m}_0 = \operatorname{Med}(Y)$.

Proposition

$$\sup_{\theta \in \Theta_m[k]} \mathbb{E}_{\theta} \left| \widehat{m} - m(\theta) \right| \lesssim \frac{k}{n} + \frac{1}{\sqrt{n}}, \qquad \text{if } k \leq n(1/2 - \kappa)$$

 \rightsquigarrow This risk is optimal for $k \leq \sqrt{n}.$

Preliminary Observations

Empirical Median : $\widehat{m}_0 = \operatorname{Med}(Y)$.

Proposition

$$\sup_{\theta \in \Theta_m[k]} \mathbb{E}_{\theta} \left| \widehat{m} - m(\theta) \right| \lesssim \frac{k}{n} + \frac{1}{\sqrt{n}}, \qquad \text{if } k \le n(1/2 - \kappa)$$

 \rightsquigarrow This risk is optimal for $k \leq \sqrt{n}$.

Empirical Minimum : $\widehat{m}_{\infty} = \min_{i=1,...,n}(Y_i)$.

Proposition

$$\sup_{\theta \in \Theta_m[k]} \mathbb{E}_{\theta} \left| \widehat{m} - m(\theta) \right| \lesssim \sqrt{\log(n)}$$

Question : To what extent are these rates optimal?

Two-point reduction to \mathbb{P}_0 and $\mathbf{P}_1 = \int \mathbb{P}_{\theta} d\mu_1(\theta)$ leads to suboptimal rate.

Need to consider composite-composite reduction of $\mathbf{P}_0 = \int \mathbb{P}_{\theta} d\mu_0(\theta)$ vs \mathbf{P}_1

Difficulty : $\chi^2(\mathbf{P}_0; \mathbf{P}_1) = \int \left(\frac{d\mathbf{P}_1}{d\mathbf{P}_0}\right)^2 d\mathbf{P}_0 - 1$ is not tractable

Two-point reduction to \mathbb{P}_0 and $\mathbf{P}_1 = \int \mathbb{P}_{\theta} d\mu_1(\theta)$ leads to suboptimal rate.

Need to consider composite-composite reduction of $\mathbf{P}_0 = \int \mathbb{P}_{\theta} d\mu_0(\theta)$ vs \mathbf{P}_1 Difficulty : $\chi^2(\mathbf{P}_0; \mathbf{P}_1) = \int \left(\frac{d\mathbf{P}_1}{d\mathbf{P}_0}\right)^2 d\mathbf{P}_0 - 1$ is not tractable

Workaround : Relating $\|\mathbf{P}_0 - \mathbf{P}_1\|_{TV}$ to measures of proximities between μ_0 and μ_1 :

Two-point reduction to \mathbb{P}_0 and $\mathbf{P}_1 = \int \mathbb{P}_{\theta} d\mu_1(\theta)$ leads to suboptimal rate.

Need to consider composite-composite reduction of $\mathbf{P}_0=\int\mathbb{P}_{\theta}\,d\mu_0(\theta)$ vs \mathbf{P}_1

Difficulty : $\chi^2(\mathbf{P}_0;\mathbf{P}_1) = \int \left(\frac{d\mathbf{P}_1}{d\mathbf{P}_0}\right)^2 d\mathbf{P}_0 - 1$ is not tractable

Workaround : Relating $\|\mathbf{P}_0 - \mathbf{P}_1\|_{TV}$ to measures of proximities between μ_0 and μ_1 :

Two (three) fruitful approaches :

- (densities of \mathbf{P}_0 and \mathbf{P}_1 are matching on a wide set) (e.g Chen et al.('15))
- Fourier Transforms of μ₀ and μ₁ are matching on a wide interval. (e.g. Moitra and Valiant('10); Cai and Jin('10), Carpentier and V.('17),...,)
- First moments of μ_0 and μ_1 are matching. (Lepski, Nemirovski and Spokoiny('99) for L_r norm).

See also : Cai and Low('11) (L_1 norm); Jiao et al.('15); Wu and Yang('16); (Entropy Estimation) Bandeira et al.('17) (Multi-reference Alignement), Han et al.('17); Carpentier and V.('17) (Sparsity Estimation) ...

Two-point reduction to \mathbb{P}_0 and $\mathbf{P}_1 = \int \mathbb{P}_{\theta} d\mu_1(\theta)$ leads to suboptimal rate.

Need to consider composite-composite reduction of $\mathbf{P}_0 = \int \mathbb{P}_{\theta} d\mu_0(\theta)$ vs \mathbf{P}_1 Difficulty : $\chi^2(\mathbf{P}_0; \mathbf{P}_1) = \int \left(\frac{d\mathbf{P}_1}{d\mathbf{P}_0}\right)^2 d\mathbf{P}_0 - 1$ is not tractable

Workaround : Relating $\|\mathbf{P}_0 - \mathbf{P}_1\|_{TV}$ to measures of proximities between μ_0 and μ_1 :

Two (three) fruitful approaches :

First moments of μ₀ and μ₁ are matching. (Lepski, Nemirovski and Spokoiny('99) for L_r norm).
 See also : Cai and Low('11) (L₁ norm); Jiao et al.('15); Wu and Yang('16); (Entropy Estimation) Bandeira et al.('17) (Multi-reference Alignement), Han et al.('17); Carpentier and V.('17) (Sparsity Estimation) ...

Moment Matching

For
$$j=0,1$$
, take $\mu_j=\pi_j^{\otimes n}$

Lemma

$$\|\mathbf{P}_0 - \mathbf{P}_1\|_{TV}^2 \le \frac{n}{\pi_1(\{0\})} \sum_{l \ge 1} \left(\int x^l (d\pi_0(x) - d\pi_1(x)) \right)^2 / l!$$

lf

• Q first moments of π_0 and π_1 are equal

•
$$\operatorname{supp}(\pi_j) \subset [-M, M]$$

then,

$$\|\mathbf{P}_0 - \mathbf{P}_1\|_{TV}^2 \le \frac{2n}{\pi_1(\{0\})} \sum_{l>Q} \frac{M^{2l}}{l!}$$

For
$$j = 0, 1$$
, take $\mu_j = \pi_j^{\otimes n}$

Lemma

$$\|\mathbf{P}_0 - \mathbf{P}_1\|_{TV}^2 \le \frac{n}{\pi_1(\{0\})} \sum_{l \ge 1} \left(\int x^l (d\pi_0(x) - d\pi_1(x)) \right)^2 / l!$$

lf

• Q first moments of π_0 and π_1 are equal

•
$$\operatorname{supp}(\pi_j) \subset [-M, M]$$

then,

$$\|\mathbf{P}_0 - \mathbf{P}_1\|_{TV}^2 \le \frac{2n}{\pi_1(\{0\})} \sum_{l>Q} \frac{M^{2l}}{l!}$$

 $\rightsquigarrow \|\mathbf{P}_0 - \mathbf{P}_1\|_{TV}$ is small for instance if $Q \ge \max(2eM^2, \log(n))$

Moment Matching : back to $m(\theta)$

$$\begin{split} & \mathsf{Fix}\; \epsilon = k/(2n), \, a_0 < a_1 = 0, \\ & \pi_j = (1-\epsilon)\delta_{a_j} + \epsilon\nu_j \text{ and } \mathrm{supp}(\nu_j) \subset [0,M]. \end{split}$$

 \rightsquigarrow if $\theta \sim \pi_j^{\otimes n}$, then w.h.p. $\theta \in \Theta_m[k]$ and $m(\theta) = a_j$.

Moment Matching : back to $m(\theta)$

Fix
$$\epsilon = k/(2n)$$
, $a_0 < a_1 = 0$,
 $\pi_j = (1 - \epsilon)\delta_{a_j} + \epsilon \nu_j$ and $\operatorname{supp}(\nu_j) \subset [0, M]$.

 \rightsquigarrow if $\theta \sim \pi_i^{\otimes n}$, then w.h.p. $\theta \in \Theta_m[k]$ and $m(\theta) = a_j$.

Two points Method to $\int \mathbb{P}_{\theta} d\pi_j^{\otimes n}(\theta) \Rightarrow$ Minimax Risk of $m(\theta)$ larger than $|a_0|$, if enough moments of π_0 and π_1 are matching.

Moment Matching : back to $m(\theta)$

Fix
$$\epsilon = k/(2n)$$
, $a_0 < a_1 = 0$,
 $\pi_j = (1 - \epsilon)\delta_{a_j} + \epsilon \nu_j$ and $\operatorname{supp}(\nu_j) \subset [0, M]$.

 \rightsquigarrow if $\theta \sim \pi_j^{\otimes n}$, then w.h.p. $\theta \in \Theta_m[k]$ and $m(\theta) = a_j$.

Two points Method to $\int \mathbb{P}_{\theta} d\pi_j^{\otimes n}(\theta) \Rightarrow$ Minimax Risk of $m(\theta)$ larger than $|a_0|$, if enough moments of π_0 and π_1 are matching.

Desiderata

Find the largest $|a_0|$ such that two Probability measures ν_i supported on [0, M] satisfy

$$\int_0^M x^r (d\nu_1 - d\nu_0) = \frac{\epsilon}{1 - \epsilon} a_0^r, \qquad r = 1, \dots, Q$$

Solution given by Hahn-Banach Theorem+ Riesz-Markov Theorem

Extremal Problem

Find the smallest $a_0 < 0$ such that

$$\sup_{P \in \mathcal{P}_Q: \|P\|_{\infty, [0, M]} \le 1} |P(a_0) - P(0)| \le \frac{2\epsilon}{1 - \epsilon}$$

(Almost a Chebychev problem)

16/21

Theorem (Carpentier et al.('18))

For k = 1, ..., n,

$$\inf_{\widehat{m}} \sup_{\theta \in \Theta_m[k]} \mathbb{E}_{\theta} \left| \widehat{m} - m(\theta) \right| \gtrsim \begin{cases} \frac{1}{\sqrt{n}} & \text{if } k \leq \sqrt{n} \ ,\\ \frac{k}{n} \log^{-3/2} \left(1 + \frac{k}{\sqrt{n}} \right) & \text{if } \sqrt{n} < k \leq n/2 \ ,\\ \frac{\log^2(n/(n-k))}{\log^{3/2}(n)} & \text{if } n/2 < k \leq n-1 \ , \end{cases}$$

Matching Upper bound : Moment approach

Two ideas : (similar to lower bounds)

- from Tests to Functional estimation
- Approximating $m(\theta)$.

Matching Upper bound : Moment approach

Two ideas : (similar to lower bounds)

- from Tests to Functional estimation
- Approximating $m(\theta)$.

Testing Problem : $m(\theta) = 0$ versus $m(\theta) < 0$

Population Analysis : Building a smooth function $\zeta(x)$ separating $\{x < 0\}$ from $\{x \ge 0\}$.

If $\theta_i \geq 0$, then $2e^{-\lambda \theta_i} - 1 \in [-1, 1]$ and $\zeta(-\theta_i) \in [-1, 1]$ for all i. If $\theta_i < 0$, then $2e^{-\lambda \theta_i} - 1 > 1$ and $\zeta(-\theta_i) > 1$.

Matching Upper bound : Moment approach

Two ideas : (similar to lower bounds)

- from Tests to Functional estimation
- Approximating $m(\theta)$.

Testing Problem : $m(\theta) = 0$ versus $m(\theta) < 0$

Population Analysis : Building a smooth function $\zeta(x)$ separating $\{x < 0\}$ from $\{x \ge 0\}$.

If $\theta_i \geq 0$, then $2e^{-\lambda \theta_i} - 1 \in [-1, 1]$ and $\zeta(-\theta_i) \in [-1, 1]$ for all i. If $\theta_i < 0$, then $2e^{-\lambda \theta_i} - 1 > 1$ and $\zeta(-\theta_i) > 1$.

Unbiased Estimation of $\eta(\theta)$ + Multiple Tests \rightsquigarrow Estimator \hat{m}_q .

Theorem (Carpentier et al.('18))

For $k \in [\sqrt{n}, n - \sqrt{n}]$, take $q_k \asymp \log(\frac{k}{\sqrt{n}})$, $\lambda_k = q_k^{-1/2}$. Then, \hat{m}_{q_k} is minimax. Selection of \hat{m}_q (Lepski+Threshold) \Rightarrow Minimax Adaptation

One-sided Contaminated Model

 Y_i 's are independent and either $Y_i \sim \mathcal{N}(m, 1)$ or $\mathcal{L}(Y_i) \overset{st.}{\gtrsim} \mathcal{N}(m, 1)$

 $\rightsquigarrow k$ stands the number of "contaminated data". \rightsquigarrow one-sided counterpart of Huber's Contamination Model (arises in multiple testing problems)

One-sided Contaminated Model

 $Y_i\text{'s are independent and either }Y_i\sim\mathcal{N}(m,1) \quad \text{ or } \mathcal{L}(Y_i) \overset{st.}{\gtrsim} \mathcal{N}(m,1)$

 \rightsquigarrow k stands the number of "contaminated data". \rightsquigarrow one-sided counterpart of Huber's Contamination Model (arises in multiple testing problems)

 $\mathcal{M}_{k,\gtrsim}$: collection of such distributions.

Question : one-sided Contaminated Model vs Gaussian one-sided Model ?

Theorem (Carpentier et al.('18))

For any k = 1, ..., n - 1,

$$\sup_{\widehat{m}} \inf_{\mathbf{P} \in \mathcal{M}_{k, \gtrsim}} \mathbf{E}\left[|\widehat{m} - m(\mathbf{P})|\right] \asymp \begin{cases} \frac{1}{\sqrt{n}} & \text{if } k \leq \sqrt{n} \ ,\\ \frac{k}{n} \log^{-1/2} \left(1 + \frac{k}{\sqrt{n}}\right) & \text{if } \sqrt{n} < k \leq n/2 \ ,\\ \frac{\log(n/(n-k))}{\log^{1/2}(n)} & \text{if } n/2 < k \leq n-1 \ , \end{cases}$$

Remark : At most a logarithmic difference with the Gaussian contaminated model

Remark : Matching upper bound achieved by suitable quantile estimators. Lepski's method → perfect Adaptation

Back to multiple Testing problems : Estimation of θ allows to correct the *p*-values and control the FDR as if θ_i was known in advance ($\log(n)^{-1/2}$ rate is required).

- Variations of two points methods for Adaptation.
- Moment Matching (and Fourier Matching) to handle composite-composite problems.

- Variations of two points methods for Adaptation.
- Moment Matching (and Fourier Matching) to handle composite-composite problems.

Thank you for your attention !