Sharp oracle inequalities for non- convex loss

Sara van de Geer

December 22, 2017

Joint work with Andreas Elsener and Jana Jancová
Meeting in Mathematical Statistics
$\leq M, n \geq 1, M \geq 2$. Let Assumption $R E(s, 3)$:sso estimator $\widehat{\beta}_{L}$ defined by (7.2) with

$$
r=A \sigma \sqrt{\frac{\log M}{n}}
$$

-

robability at least $1-M^{1-A^{2} / 8}$, we have

$$
\leq M, n \geq 1, M \geq 2 . \text { Let Assumption } R E(s, 3)
$$ isso estimator $\widehat{\beta}_{L}$ defined by (7.2) with

$$
r=A \sigma \sqrt{\frac{\log M}{n}}
$$

-

robability at least $1-M^{1-A^{2} / 8}$, we have

RUSSIAN ROMANCES Русские романсы OLEG

2) for any $p \in[1, \infty], \varepsilon \leq \varepsilon(\tau, q)$ and any countable $\mathrm{H} \subset \mathfrak{S}_{d}$

We will need also the followin $\mathbb{E}\left\{\sup _{\vec{h} \in \mathrm{H}}\left[\left\|\xi_{\vec{h}}\right\|_{p}-\widetilde{\Psi}_{e, p}(\vec{h})\right]\right.$

Lemma 1.

The first statement of the femu
5.3. Proof of Theorem 1

Let $\vec{h} \in \mathbb{H}$ be fixed. We have in view of
$\left\|\hat{f}_{\text {h }}-f\right\|_{p} \leq \| \hat{f}_{\text {hin }}$ (d), $\mathfrak{L}>0$ and $A>c^{\text {d }}$
A) $\subseteq \mathbb{H}_{d}\left(d \varkappa, \mathfrak{L}^{d}, \mathcal{A}\right) ;$
$\left(d \varkappa,(2 \mathfrak{L})^{d}, \mathcal{A}\right)$

8
8
8
8
8

RUSSIAN ROMANCES Русские романсы OLEG

2) for any $p \in[1, \infty], \varepsilon \leq \varepsilon(\tau, q)$ and any countable $\mathrm{H} \subset \mathfrak{S}_{d}$

We will need also the followil $\mathbb{E}\left\{\sup _{\vec{h} \in \mathrm{H}}\left[\left\|\xi_{\vec{h}}\right\|_{p}-\widetilde{\Psi}_{e, p}(\vec{h})\right]\right.$

Lemma 1.

The first statement of the lemu
5.3. Proof of Theorem 1

Let $\vec{h} \in \mathbb{H}$ be fixed. We have in view of
$\left\|\hat{f}_{\text {h }}-f\right\|_{p} \leq \| \hat{f}_{\text {hin }}$

$$
\sqrt{ } d), \mathfrak{L}>0 \text { and }, A>c^{d}
$$

A) $\subseteq \mathbb{H}_{d}\left(d \varkappa, \mathscr{L}^{d}, \mathcal{A}\right)$
$\left(d \varkappa,(2 \mathfrak{L})^{d}, \mathcal{A}\right)$ the-secon?

RUSSIAN ROMANCES Русские романсы OLEG

2) for any $p \in[1, \infty], \varepsilon \leq \varepsilon(\tau, q)$ and any countable $\mathrm{H} \subset \mathfrak{S}_{d}$

We will need also the followil $\mathbb{E}\left\{\sup _{\vec{h} \in \mathrm{H}}\left[\left\|\xi_{\vec{h}}\right\|_{p}-\widetilde{\Psi}_{e, p}(\vec{h})\right]\right.$

Lemma 1.

The first statement of the femu
5.3. Proof of Theorem 1

Let $\vec{h} \in \mathbb{H}$ be fixed. We have in view of
Let $\vec{h} \in \mathbb{H}$ be fixed. We have in view of

$$
\left\|\widehat{f}_{\mathbf{h}}-f\right\|_{p} \leq \| \widehat{f}_{\text {hiv }}
$$ (d), $\mathfrak{L}>0$ and $A>c^{\text {d }}$

A) $\subseteq \mathbb{H}_{d}\left(d x, \mathfrak{L}^{d}, \mathcal{A}\right)$
$\left(d \varkappa,(2 \mathcal{L})^{d}, \mathcal{A}\right)$

8
7
7
7

My favourite quote:
"You know adaptive estimators converge very fast if the function is very smooth (or has a prescribed complexity) but you can tell nothing about the estimated function itself"

Marc Hoffmann and Oleg Lepski (2002)

Aim in the rest of the talk

Show sharp oracle inequalities for

- global minimizers of convex but possibly non-differentiable loss
- stationary points of differentiable but possibly non-convex loss

Data:

- X_{1}, \ldots, X_{n}

Parameter space:

- $\mathcal{B} \subset \mathbb{R}^{p}$ convex.

Empirical (random) risk function:

- $\hat{R}_{n}(b), b \in \mathcal{B}$.

Theoretical (nonrandom) risk function:

- $R(b), b \in \mathcal{B}$.

Aim
Estimate

$$
\beta^{0}:=\arg \min _{b \in \mathcal{B}} R(b) .
$$

We consider

$$
\beta^{0} \text { is high-dimensional: } p \gg n
$$

and

- $b \mapsto \hat{R}_{n}(b)$ is possibly not differentiable
$\circ b \mapsto \hat{R}_{n}(b)$ is possibly not convex and has multiple local minima
- $b \mapsto R(b)$ is convex

Example Least absolute deviations regression

Observed:

- $Y \in \mathbb{R}^{n}$
- $X \in \mathbb{R}^{n \times p}$

Empirical risk function

- $\hat{R}_{n}(b):=\frac{1}{n} \sum_{i=1}^{n}\left|Y_{i}-(X b)_{i}\right|$
not really differentiable, sign-function not "smooth"

Example Linear regression with errors in variables

$$
Y=X \beta^{0}+\epsilon,
$$

Observed:

- Y
- $Z=X+U$ with $U \perp X, \operatorname{cov}(U):=\Sigma_{u}$ known.

Let $\hat{\Sigma}_{z}:=Z^{\top} Z / n$.
We use

$$
R_{n}(b):=Y^{T} Z b / n+b^{T}\left(\hat{\Sigma}_{z}-\Sigma_{u}\right) b
$$

$\hat{\Sigma}_{z}-\Sigma_{u}$ is not necessarily positive semi-definite \leadsto possibly non-convex empirical risk

Example Principal components

Observed:

- $X \in \mathbb{R}^{n \times p}$

Let $\hat{\Sigma}:=X^{\top} X / n$ and $\Sigma_{0}:=\mathbb{E} \hat{\Sigma}$
We aim at estimating the first eigenvector of Σ_{0}.
The risk function is for example

$$
\hat{R}_{n}(b):=\left\|\hat{\Sigma}-b b^{T}\right\|_{2}^{2}
$$

not convex

Example Estimation of an inverse Fisher information

Suppose $\ddot{R}\left(\beta^{0}\right)$ exists and we want to estimate its inverse

$$
\ddot{R}^{-1}\left(\beta^{0}\right) .
$$

To estimate the first column of $\ddot{R}\left(\beta^{0}\right)$ use a node-wise Lasso

$$
\min _{\gamma \in \mathbb{R}^{p}: \gamma_{1}=1} \gamma^{\top} \ddot{\hat{R}}_{n}(\hat{\beta}) \gamma+2 \lambda\left\|\gamma_{-1}\right\|_{1} .
$$

Since $\ddot{\hat{R}}_{n}(\hat{\beta})$ is not necessarily positive definite this is again a non-convex problem.

Our aim:

Extend the theory to sharp oracle inequalities when

- the empirical risk is not differentiable
or
- the empirical risk is not convex

Related work:
Po-Ling Loh and Martin Wainwright $(2014,2015)$
Song Mei, Yu Bai, and Andrea Montanari (2016)

New: sharp oracle inequalities
Main idea from:
Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion, Koltchinskii, V. and Lounici, K. and Tsybakov, A.B.

The estimator

To deal with β high-dimensional we consider a norm Ω on \mathbb{R}^{p}. The regularized empirical risk is

$$
\hat{R}_{n}(b)+\lambda \Omega(b)
$$

where $\lambda>0$ is a tuning parameter.

Definition (argmin) Let

$$
\hat{\beta}:=\hat{\beta}_{\text {argmin }}:=\min _{b \in \mathcal{B}}\left\{\hat{R}_{n}(b)+\lambda \Omega(b)\right\}
$$

Sub-differential:
The sub-differential of Ω is

$$
\partial \Omega(b):=\left\{z \in \mathbb{R}^{p}: \Omega^{*}(z) \leq 1, z^{T} b=\Omega(b)\right\}
$$

Example: $\Omega=\|\cdot\|_{1}$
$\partial\|b\|_{1}=$ $\left\{z \in \mathbb{R}^{p}:\|z\|_{\infty} \leq 1\right.$, $\left.z_{j}=\operatorname{sign}\left(\beta_{j}\right), \beta_{j} \neq 0\right\}$

Suppose $\partial \hat{R}_{n}(b) / \partial b:=\dot{\hat{R}}_{n}^{T}(b)$ exists.
Definition (stationary) Let $\hat{\beta}:=\hat{\beta}_{\text {stationary }}$ be a solution of the $K K T$ conditions

$$
\dot{\hat{R}}_{n}^{T}(\hat{\beta})+\lambda \hat{z}=0, \hat{z} \in \partial \Omega(\hat{\beta})
$$

Definition (semi stationary) Let $\hat{\beta}:=\hat{\beta}_{\text {semi stationary }}$ satisfy

$$
\dot{\hat{R}}_{n}^{T}(\hat{\beta})(\hat{\beta}-\beta)+\lambda \Omega(\hat{\beta})-\lambda \Omega(\beta) \leq 0
$$

Here, and throughout, $\beta \in \mathcal{B}$ is fixed (not necessarily $\beta=\beta^{0}$).

Note

$$
\begin{gathered}
\hat{\beta}=\hat{\beta}_{\text {argmin }} \Rightarrow \hat{\beta}=\hat{\beta}_{\text {semi stationary }} \\
\hat{\beta}=\hat{\beta}_{\text {stationary }} \Rightarrow \hat{\beta}=\hat{\beta}_{\text {semi stationary }}
\end{gathered}
$$

Let τ be some semi-norm on \mathbb{R}^{p} and $G:[0, \infty) \rightarrow[0, \infty)$ be an increasing strictly convex function with $G(0)=0$.

Definition We say that strict convexity holds if $\forall 0 \leq t \leq 1$ sufficiently small

$$
R((1-t) b+t \beta) \leq(1-t) R(b)+t R(\beta)-t(1-t) G(\tau(\beta-b))
$$

for all $b \in \mathcal{B}$.
Definition We say that the Bregman condition holds if

$$
R(\beta)-R(b) \geq \dot{R}^{\top}(b)(\beta-b)+G(\tau(\beta-b))
$$

for all $b \in \mathcal{B}$.
Note G-convexity $\Rightarrow G$-margin condition
Note G is a convex lower bound for the "Bregman divergence"

Bregman divergence

Results when $\Omega=\|\cdot\|_{1}$
We first consider the ℓ_{1}-penalty.
Let for $S \subset\{1, \ldots, p\}$ and $b \in \mathbb{R}^{p}$,

$$
b_{S}=\left\{b_{j} 1\{j \in S\}\right\}, b_{-S}=\left\{b_{j} 1\{j \notin S\}\right\}
$$

and

$$
S_{b}:=\left\{j: b_{j} \neq 0\right\} .
$$

Example: $p=7,|S|=3, S=\{2,3,7\}$

$$
b_{S}=\left(\begin{array}{c}
0 \\
* \\
* \\
0 \\
0 \\
0 \\
*
\end{array}\right)
$$

$b_{-S}=\left(\begin{array}{l}* \\ 0 \\ 0 \\ * \\ * \\ * \\ 0\end{array}\right)$

Definition The effective sparsity at S with stretching constant L is

$$
\Gamma^{2}(L, S)=\max \left\{\frac{\|b\|_{1}^{2}}{\tau^{2}(b)}:\left\|b_{-S}\right\|_{1} \leq L\left\|b_{S}\right\|_{1}\right\} .
$$

Remark: Think of $\Gamma^{2}(L, S)$ as being of the flavour $\asymp|S|$

We have

$\hat{\Gamma}^{2}(L, S)=|S| / \hat{\phi}^{2}(L, S)$
where $\hat{\phi}^{2}(L, S)$
="compatibility constant"
\approx "restricted eigenvalue"

Theorem argmin (No differentiablity assumed)
Let $\hat{\beta}=\hat{\beta}_{\text {argmin }}$.
Assume strict convexity with $G(u)=u^{2} / 2$. Let for appropriate fixed $0<t<1$

$$
\lambda_{0}:=\lambda_{\operatorname{argmin}} \geq \frac{\left|\left[\hat{R}_{n}-R\right]((1-t) \hat{\beta}+t \beta)-\left[\hat{R}_{n}-R\right](\hat{\beta})\right|}{t\|\hat{\beta}-\beta\|_{1}+1 / n} .
$$

We refer to λ_{0} as the noise level.
For $\lambda>\lambda_{0}$ we have

$$
R(\hat{\beta}) \leq R(\beta)+\left(\lambda+\lambda_{0}\right)^{2} \Gamma^{2}\left(L, S_{\beta}\right) / 2
$$

with $L:=\left(\lambda+\lambda_{0}\right) /\left(\lambda-\lambda_{0}\right)$.

Flavour of Theorem argmin (No differentiablity assumed) Let $\hat{\beta}=\hat{\beta}_{\text {argmin }}$.
Assume strict convexity with $G(u)=u^{2} / 2$. Let for appropriate fixed $0<t<1$

$$
\lambda_{0}:=\lambda_{\operatorname{argmin}} \geq \frac{\left|\left[\hat{R}_{n}-R\right]((1-t) \hat{\beta}+t \beta)-\left[\hat{R}_{n}-R\right](\hat{\beta})\right|}{t\|\hat{\beta}-\beta\|_{1}+1 / n} .
$$

We refer to λ_{0} as the noise level.
Then $\lambda_{0} \asymp \sqrt{\log p / n}$ and for $\lambda \asymp \lambda_{0}$ we have

$$
R(\hat{\beta})-R(\beta) \asymp \lambda^{2}\left|S_{\beta}\right|
$$

with high probability.

Theorem semi stationary (Differentiablity assumed)
Consider $\hat{\beta}=\hat{\beta}_{\text {semi stationary }}$.
Assume the Bregman condition with $G(u)=u^{2} / 2$.
Let

$$
\lambda_{0}:=\lambda_{\text {semi stationary }} \geq \frac{\left|\left(\dot{\hat{R}}_{n}-\dot{R}\right)^{T}(\hat{\beta}-\beta)\right|}{\|\hat{\beta}-\beta\|_{1}+1 / n}
$$

We refer to λ_{0} as the noise level.
For $\lambda>\lambda_{0}$ we have

$$
R(\hat{\beta}) \leq R(\beta)+\left(\lambda+\lambda_{0}\right)^{2} \Gamma^{2}\left(L, S_{\beta}\right) / 2
$$

with $L:=\left(\lambda+\lambda_{0}\right) /\left(\lambda-\lambda_{0}\right)$.

Remark Both theorems have the same flavour.
Remark For general G we get in both theorems

$$
R(\hat{\beta}) \leq R(\beta)+H\left(\left(\lambda+\lambda_{0}\right) \Gamma\left(L, S_{\beta}\right)\right)
$$

where H is the convex conjugate of G.
Example $G(u)=u^{2} / 2 \Rightarrow H(v)=v^{2} / 2$.

Remark

Determining the noise level λ_{0} is the random part of the problem.
The noise level λ_{0} should be such that the inequality in the theorems holds with large probability.

We call this the empirical process condition.

Example: generalized linear models ...

Generalized linear model

Suppose

$$
\hat{R}_{n}(b)=\frac{1}{n} \sum_{i=1}^{n} \rho\left(Y_{i},(X b)_{i}\right)
$$

with a normalized X.
Assumption (ρ Lipschitz) $\boldsymbol{z} \mapsto \rho(\cdot, \boldsymbol{z})$ is Lipschitz.
Let $\dot{\rho}(\cdot, z):=d \rho(\cdot, z) / d z$.
Assumption ($\dot{\rho}$ Lipschitz) $z \mapsto \dot{\rho}(\cdot, z)$ is Lipschitz.
concentration, contraction, peeling ~
Assumption $\left(\rho\right.$-Lipschitz) $\Rightarrow \lambda_{\text {argmin }} \asymp \sqrt{\frac{\log p}{n}}$
Assumption $\left(\dot{\rho}\right.$-Lipschitz) $\Rightarrow \lambda_{\text {semi stationary }} \asymp \sqrt{\frac{\log p}{n}}$
Thus, the empirical process condition \leadsto the \asymp usual value for λ_{0}

Conclusion

- Assumption (ρ-Lipschitz)
\Rightarrow sharp oracle inequalities for the global minimizer
\leadsto useful for the convex non-differentiable case
- Assumption ($\dot{\rho}$-Lipschitz)
\Rightarrow sharp oracle inequalities for (semi) stationary points
\leadsto useful for non convex case
Note
In both cases we assume $\beta \mapsto R(\beta)$ to be convex
The non convexity is about $\beta \mapsto \hat{R}_{n}(\beta)$

An example of a generalized linear model

 Non-differentiable case
Example Least absolute deviations

Observed

- $Y \in \mathbb{R}^{n}$
- $X \in \mathbb{R}^{n \times p}$

Model

$$
Y=X \beta^{0}+\epsilon
$$

with
$\epsilon_{1}, \ldots, \epsilon_{n}$ i.i.d. with density f_{0}
We take

$$
\rho(y,(x b))=|y-x b| .
$$

Assumption (ρ Lipschitz) holds.
But

$$
\dot{\rho}(y, z)=-\operatorname{sign}(y-z)
$$

Assumption ($\dot{\rho}$ Lipschitz) does not hold.

We have:

$$
\left.\begin{array}{l}
\mathcal{B} \subset\left\{b:\|X b\|_{\infty} \leq \text { const. }\right\} \\
\text { fixed design }(\text { say })+\text { cond. }^{\text {s }} f_{0}
\end{array} \quad \Rightarrow \text { (strictconvexity }\right)
$$

with $G(u)=$ const. u^{2} and $\tau^{2}(b)=\|X b\|_{2}^{2} / n$.
It follows that with high probability

$$
R(\hat{\beta}) \leq R(\beta)+\mathcal{O}\left(\frac{\log p}{n}\right) \frac{\left|S_{\beta}\right|}{\phi^{2}\left(S_{\beta}, L\right)}
$$

where

$$
\phi^{2}(L, S):=|S| / \Gamma^{2}(L, S)=\min \left\{\|X b\|_{2}^{2} / n:\left\|b_{-S}\right\|_{1} \leq L\left\|b_{S}\right\|_{1}\right\}
$$

is the compatibility constant (\approx restricted eigenvalue).

Beyond generalized linear models: some examples

Example Sparse principal components

Observed:

- $X \in \mathbb{R}^{n \times p}$

Let $\hat{\Sigma}:=X^{\top} X / n$ and $\Sigma_{0}:=\mathbb{E} \hat{\Sigma}$
We aim at estimating the first scaled eigenvector β^{0} of Σ_{0} :

$$
\beta^{0}=\arg \min _{b}\left\|\Sigma_{0}-b b^{T}\right\|_{2}^{2} .
$$

Assumption (subGaus)
X has i.i.d. sub-Gaussian rows.
Assumption (gap)
There is a gap ~ 1 between the first and second eigenvalue of Σ_{0}.
Assumption (sparse)
$s_{0}:=\left|S_{\beta^{0}}\right|=o(\sqrt{n / \log p})$ (or a "weak sparsity" version)

First step: localizing

$$
\hat{Z}:=\arg \min _{\operatorname{trace}(Z)=1,0 \leq Z \leq 1}\left\{-\operatorname{trace}(\hat{\Sigma} Z)+\lambda\|Z\|_{1}\right\}
$$

[d’Aspremont, El Ghaoui, Jordan, Lanckriet (2007)] [Vu, Cho, Lei, Rohe (2013)]
$\leadsto \hat{\beta}_{\text {init }}$ with $\left\|\hat{\beta}_{\text {init }}-\beta^{0}\right\|_{2}=o_{\mathbb{P}}(1)$.

Second step: nonconvex loss
We now let

$$
\hat{R}_{n}(b):=\left\|\hat{\Sigma}-b b^{T}\right\|_{2}^{2} / 4
$$

and so

$$
\dot{\hat{R}}_{n}(b)=-\hat{\Sigma} b+\|b\|^{2} b
$$

We let $\hat{\beta}=\hat{\beta}_{\text {semi stationary }} \in \mathcal{B}:=\left\{b:\left\|b-\hat{\beta}_{\text {init }}\right\|_{2} \leq \eta\right\}:$

$$
\dot{\hat{R}}_{n}^{T}(\hat{\beta})(\hat{\beta}-\beta)+\lambda\|\hat{\beta}\|-\lambda\|\beta\|_{1} \leq 0
$$

Note

$$
\left(\dot{\hat{R}}_{n}-\dot{R}\right)^{T}(\hat{\beta})(\hat{\beta}-\beta)=-\hat{\beta}^{T}\left(\hat{\Sigma}-\Sigma_{0}\right)(\hat{\beta}-\beta)
$$

Using assumption (subGaus) we get

$$
\left|\left(\dot{\hat{R}}_{n}-\dot{R}\right)^{T}(\hat{\beta})(\hat{\beta}-\beta)\right|=O_{\mathbb{P}}\left(\sqrt{\frac{\log p}{n}}\right)\left(\|\hat{\beta}-\beta\|_{1}+\frac{1}{n}\right) .
$$

We obtain $\lambda_{0} \asymp \sqrt{\log p / n}$ in Theorem semi stationary.
The Bregman condition holds with $G(u)=$ const. u^{2} and $\tau(b)=\|b\|_{2}$. The effective sparsity is thus $\Gamma^{2}(L, S) \sim|S|$.

It follows that

$$
R(\hat{\beta}) \leq R(\beta)+\mathcal{O}\left(\frac{\log p}{n}\right)\left|S_{\beta}\right|
$$

De-biasing in sparse PCA

Suppose the parameter of interest is β_{1}^{0}.
We have

$$
\ddot{\hat{R}}_{n}(\hat{\beta})=-\hat{\Sigma}-\|\hat{\beta}\|_{2}^{2} I+2 \hat{\beta} \hat{\beta}^{T} .
$$

We obtain the first column of the surrogate inverse of $\ddot{\hat{R}}_{n}(\hat{\beta})$ by doing a "node-wise" Lasso:

$$
\begin{aligned}
\hat{\gamma}_{\text {argmin }} & :=\arg \min _{\gamma^{T}=\left(1, \gamma_{2}, \ldots, \gamma_{p}\right)}\left\{\gamma^{T} \ddot{\hat{R}}_{n}(\hat{\beta}) \gamma+2 \lambda_{1}\|\gamma\|_{1}\right\} \\
\hat{\gamma} & :=\hat{\gamma}_{\text {stationary }}:\left(\ddot{\hat{R}}_{n}(\hat{\beta})\right)_{-1, \cdot} \hat{\gamma}+\lambda \hat{z}_{-1}=0 \\
\hat{\Theta}_{1,1}^{-1} & :=\hat{\gamma}^{T} \ddot{\hat{R}}_{n}(\hat{\beta}) \hat{\gamma} \\
\hat{\Theta}_{1} & :=\hat{\gamma}_{1,1} .
\end{aligned}
$$

Note: $\ddot{\hat{R}}_{n}(\hat{\beta})$ is not necessarily p.s.d. \leadsto non-convex problem.

The de-biased estimator is

$$
\hat{b}_{1}:=\hat{\beta}_{1}-\hat{\Theta}_{1}^{T}(\underbrace{\|\hat{\beta}\|_{2}^{2} \hat{\beta}-\hat{\Sigma} \hat{\beta}}_{\hat{\hat{R}}_{n}(\hat{\beta})}) .
$$

Lemma Assume

- $\lambda \asymp \sqrt{\log p / n}$
- $\lambda_{1} \asymp \sqrt{\log p / n}$
- $s_{0}=o(\sqrt{n} / \log p)$
- $s_{1}=o(\sqrt{n} / \log p)$

Then

$$
\sqrt{n}\left(\hat{b}_{1}-\beta_{1}^{0}\right) \rightarrow \mathcal{N}\left(0, \sigma_{1}^{2}\right)
$$

where

$$
\sigma_{1}^{2}=n \operatorname{var}\left(\Theta_{1}^{0 T} \hat{\Sigma} \beta^{0}\right)
$$

Results for general Ω

Let Ω be a norm on \mathbb{R}^{p}.
Recall

$$
\hat{\beta}_{\text {argmin }}:=\arg \min _{b \in \mathcal{B}}\left\{\hat{R}_{n}(b)+\lambda \Omega(b)\right\},
$$

etc.
For $\hat{\beta}=\hat{\beta}_{\text {argmin }}$ we assume strict convexity.
For $\hat{\beta}=\hat{\beta}_{\text {semi stationary }}$ we assume the Bregman condition.
Definition The triangle property holds if $\forall b$

$$
\Omega(\beta)-\Omega(b) \leq \Omega^{+}(\beta-b)-\Omega^{-}(b) .
$$

We then write $\underline{\Omega}:=\Omega^{+}+\Omega^{-}$.
Definition The effective sparsity is

$$
\Gamma^{2}(L):=\max \left\{\tau^{2}(b): \Omega^{-}(b) \leq L, \Omega^{+}(b)=1\right\} .
$$

Theorem
Let

$$
\begin{aligned}
\lambda_{\text {argmin }} & \geq \frac{\left|\left(\hat{R}_{n}-R\right)((1-t) \hat{\beta}+t \beta)-\left(\hat{R}_{n}-R\right)(\hat{\beta})\right|}{t \underline{\Omega}(\hat{\beta}-\beta)+1 / n} \\
\lambda_{\text {semi stationary }} & \geq \frac{\left|\left(\dot{\hat{R}}_{n}-\dot{R}\right)^{T}(\hat{\beta}-\beta)\right|}{\underline{\Omega}(\hat{\beta}-\beta)+1 / n} .
\end{aligned}
$$

Define for appropriate $\lambda_{0} \in\left\{\lambda_{\text {argmin }}, \lambda_{\text {semi stationary }}\right\}$

$$
L=\frac{\lambda+\lambda_{0}}{\lambda-\lambda_{0}} .
$$

Then for appropriate $\hat{\beta} \in\left\{\hat{\beta}_{\text {argmax }}, \hat{\beta}_{\text {semi stationary }}\right\}$

$$
R(\hat{\beta}) \leq R(\beta)+H\left(\left(\lambda+\lambda_{0}\right) \Gamma(L)\right)
$$

where H is the convex conjugate of G.

Examples of norms used

$$
\ell_{1} \text {-norm: } \Omega(b)=\|b\|_{1}=: \sum_{j=1}^{p}\left|b_{j}\right|
$$

[Bondell and Reich 2008]

Examples of norms used

$$
\ell_{1} \text {-norm: } \Omega(b)=\|b\|_{1}=: \sum_{j=1}^{p}\left|b_{j}\right|
$$

Oscar: given $\tilde{\lambda}>0$

$$
\Omega(b):=\sum_{j=1}^{p}(\tilde{\lambda}(j-1)+1)|b|_{(j)} \quad \text { where }|b|_{(1)} \geq \cdots \geq|b|_{(p)}
$$

[Bondell and Reich 2008]

Examples of norms used

$$
\ell_{1} \text {-norm: } \Omega(b)=\|b\|_{1}=: \sum_{j=1}^{p}\left|b_{j}\right|
$$

Oscar: given $\tilde{\lambda}>0$

$$
\Omega(b):=\sum_{j=1}^{p}(\tilde{\lambda}(j-1)+1)|b|_{(j)} \quad \text { where }|b|_{(1)} \geq \cdots \geq|b|_{(p)}
$$

[Bondell and Reich 2008]
sorted ℓ_{1}-norm: given $\lambda_{1} \geq \cdots \geq \lambda_{p}>0$,

$$
\Omega(b):=\sum_{j=1}^{p} \lambda_{j}|b|_{(j)}
$$

where $|b|_{(1)} \geq \cdots \geq|b|_{(p)}$
[Bogdan et al. 2013]

norms generated from cones:

$\Omega(b):=\min _{a \in \mathcal{A}} \frac{1}{2} \sum_{j=1}^{p}\left[\frac{b_{j}^{2}}{a_{j}}+a_{j}\right], \mathcal{A} \subset \mathbb{R}_{+}^{p}$ a convex cone.
[Micchelli et al. 2010] [Jenatton et al. 2011] [Bach et al. 2012]

unit ball for group Lasso norm

unit ball for wedge norm $\mathcal{A}=\left\{a: a_{1} \geq a_{2} \geq \cdots\right\}$

nuclear norm for matrices: $B \in \mathbb{R}^{p_{1} \times p_{2}}$,

$$
\Omega(B):=\|B\|_{\text {nuclear }}:=\operatorname{trace}\left(\sqrt{B^{T} B}\right)
$$

nuclear norm for tensors: $\Omega(B):=$ dual norm of Ω_{*}

[Yuan and Zhang 2014]

nuclear norm for matrices: $B \in \mathbb{R}^{p_{1} \times p_{2}}$,
$\Omega(B):=\|B\|_{\text {nuclear }}:=\operatorname{trace}\left(\sqrt{B^{T} B}\right)$
nuclear norm for tensors: $B \in \mathbb{R}^{p_{1} \times p_{2} \times p_{3}}$,
$\Omega(B):=$ dual norm of Ω_{*}
where

$$
\Omega_{*}(W):=\max _{\left\|u_{1}\right\|_{2}=\left\|u_{2}\right\|_{2}=\left\|u_{3}\right\|_{2}=1} \operatorname{trace}\left(W^{T} u_{1} \otimes u_{2} \otimes u_{3}\right), W \in \mathbb{R}^{p_{1} \times p_{2} \times p_{3}}
$$

[Yuan and Zhang 2014]

Example Matrix completion using robust loss
[Elsener and vdG, 2016]
Let X_{i} be a mask with a " 1 " at a random entry.

$$
\begin{gathered}
X_{i}:=\left(\begin{array}{ccccc}
0 & \cdots & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
0 & \cdots & 1 & \cdots & 0 \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & \cdots & 0
\end{array}\right) \\
\hat{R}_{n}(B):=\frac{1}{n} \sum_{i=1}^{n} \rho\left(Y_{i}-\operatorname{trace}\left(X_{i} B\right)\right)
\end{gathered}
$$

where

- $\rho=\rho_{\text {Huber }}$ or $\rho=\rho_{\text {LAD }}$
- $B \in \mathcal{B}:=\left\{B \in \mathbb{R}^{p_{1} \times p_{2}}:\|B\|_{\infty} \leq \eta\right\}$ for some given η

Let $\Omega:=\|\cdot\|_{\text {nuclear }}$.
Dual norm: use symmetrization, contraction, concentration ... more complicated due to non-linear random term, but doable

Margin semi-norm:
$\tau^{2}(B)=\|B\|_{2}^{2} /\left(p_{1} p_{2}\right)$
Margin curvature:
$\left.\overline{G(u)=u^{2} /\left(2 c p_{1}\right.} p_{2}\right)$
Effective sparsity:
$\Gamma^{2}(L)=3 s_{B}, s_{B}:=\operatorname{rank}(B)$.

From Theorem argmin for $p_{1} \geq p_{2}$
and $\lambda=C_{0} \frac{1}{\sqrt{n p_{2}}}\left(\sqrt{\log p_{1}+\log (1 / \alpha) / p_{1}}\right.$,
with probability at least $1-\alpha$

$$
R(\hat{B}) \leq R(B)+C \times\left(\frac{p_{1} s_{B} \log \left(p_{1}\right)}{n}\right)
$$

December 22, 2017

