Sharp oracle inequalities for non-convex loss

Sara van de Geer

December 22, 2017

Joint work with Andreas Elsener and Jana Jancová

Meeting in Mathematical Statistics

RUSSIAN ROMANCES Русские романсы OLEG

2) for any $p \in [1, \infty]$, $\varepsilon \le \varepsilon(\tau, q)$ and any countable $H \subset \mathfrak{S}_d$

$$\mathbb{E}\left\{\sup_{\vec{h} \in \mathbb{H}} \left[\left\|\xi_{\vec{h}}\right\|_{p} - \widetilde{\Psi}_{\varepsilon,p}(\vec{h})\right]_{+}\right\}$$

We will need also the following technical res

Lemma 1. For any $d \ge 1$, $\varkappa \in (0,1/d)$, $\mathfrak{L} > 0$ a

 (\mathbf{i}) $\mathbb{H}_d(arkappa, \mathfrak{L}, \mathcal{A}) \subseteq \mathbb{H}_d\Big(darkappa, \mathfrak{L})$

(ii) $\vec{h} \lor \vec{\eta} \in \mathbb{H}_{\bullet}(d\varkappa, (2\mathfrak{L})^d, \varkappa)$

The first statement of the lemma is obvious and the second

5.3. Proof of Theorem 1

Let $\vec{h} \in \mathbb{H}$ be fixed. We have in view of

$$\|\widehat{f}_{\hat{\mathbf{h}}} - f\|_{p} \le \|\widehat{f}_{\hat{\mathbf{h}} \lor}\|_{p}$$

RUSSIAN ROMANCES Русские романсы OLEG

2) for any $p \in [1, \infty]$, $\varepsilon \le \varepsilon(\tau, q)$ and any countable $H \subset \mathfrak{S}_d$

$$\mathbb{E}\left\{\sup_{\widetilde{h}\in\mathcal{H}}\left[\left\|\xi_{\widetilde{h}}\right\|_{p}-\widetilde{\Psi}_{\varepsilon,p}(\overrightarrow{h})\right]_{+}\right\}$$

We will need also the following technical rest

Lemma 1. For

 $(d\varkappa, (2\mathfrak{L})^d,$

The first statement of the

5.3. Proof of Theorem 1

Let $\vec{h} \in \mathbb{H}$ be fixed. We have in view of

 $\|\widehat{f}_{\vec{h}} - f\|_{p} \le \|\widehat{f}_{\vec{h}\vee}\|_{p}$

RUSSIAN ROMANCES Русские романсы OLEG

2) for any $p \in [1, \infty]$, $\varepsilon \le \varepsilon(\tau, q)$ and any countable $H \subset \mathfrak{S}_d$

$$\mathbb{E}\left\{\sup_{\vec{h} \in \mathcal{H}} \left[\left\|\xi_{\vec{h}}\right\|_{p} - \widetilde{\Psi}_{\varepsilon,p}(\vec{h})\right]_{+}\right\}$$

We will need also the following technical res

Lemma 1. For any $d \ge 1$, $\varkappa \in (0, 1/d)$, $\mathfrak{L} > 0$ a

 (\mathbf{i}) $\mathbb{H}_d(arnothing, \mathfrak{L}, \mathcal{A}) \subseteq \mathbb{H}_d\Big(darnothing, \mathfrak{L}, \mathcal{A})$

(ii) $\vec{h} \vee \vec{\eta} \in \mathbb{R}_d (d\varkappa, (2\mathfrak{L})^d, \mathcal{A})$

The first statement of the lemma is obvious and the second

5.3. Proof of Theorem 1

Let $\vec{h} \in \mathbb{H}$ be fixed. We have in view of

$$\left\| \widehat{f}_{\widetilde{\mathbf{h}}} - f \right\|_{p} \le \left\| \widehat{f}_{\widetilde{\mathbf{h}} \vee} \right\|_{p}$$

My favourite quote:

"You know adaptive estimators converge very fast if the function is very smooth (or has a prescribed complexity) but you can tell nothing about the estimated function itself"

Marc Hoffmann and Oleg Lepski (2002)

Aim in the rest of the talk

Show sharp oracle inequalities for

- o global minimizers of convex but possibly non-differentiable loss
- o stationary points of differentiable but possibly non-convex loss

Data:

• X_1, \ldots, X_n

Parameter space:

• $\mathcal{B} \subset \mathbb{R}^p$ convex.

Empirical (random) risk function:

• $\hat{R}_n(b)$, $b \in \mathcal{B}$.

Theoretical (nonrandom) risk function:

• R(b), $b \in \mathcal{B}$.

Aim

Estimate

$$\beta^0 := \arg\min_{b \in \mathcal{B}} R(b).$$

9/51

We consider

 β^0 is high-dimensional: $p \gg n$

and

- $b \mapsto \hat{R}_n(b)$ is possibly not differentiable
- \circ $b\mapsto \hat{R}_n(b)$ is possibly not convex and has multiple local minima
- \circ *b* \mapsto *R*(*b*) is convex

Example Least absolute deviations regression

Observed:

- $Y \in \mathbb{R}^n$
- $X \in \mathbb{R}^{n \times p}$

Empirical risk function

$$\circ \hat{R}_{n}(b) := \frac{1}{n} \sum_{i=1}^{n} |Y_{i} - (Xb)_{i}|$$

not really differentiable, sign-function not "smooth"

Example Linear regression with errors in variables

$$Y = X\beta^0 + \epsilon,$$

Observed:

- Y
- Z = X + U with $U \perp X$, $cov(U) := \Sigma_u$ known.

Let
$$\hat{\Sigma}_z := Z^T Z/n$$
.

We use

$$R_n(b) := Y^T Z b / n + b^T (\hat{\Sigma}_z - \Sigma_u) b.$$

 $\hat{\Sigma}_z - \Sigma_u$ is not necessarily positive semi-definite \sim possibly non-convex empirical risk

Example Principal components

Observed:

• $X \in \mathbb{R}^{n \times p}$

Let
$$\hat{\Sigma} := X^T X / n$$
 and $\Sigma_0 := \mathbb{E} \hat{\Sigma}$

We aim at estimating the first eigenvector of Σ_0 .

The risk function is for example

$$\hat{R}_n(b) := \|\hat{\Sigma} - bb^T\|_2^2$$
not convex

Example Estimation of an inverse Fisher information

Suppose $\hat{R}(\beta^0)$ exists and we want to estimate its inverse

$$\ddot{R}^{-1}(\beta^0)$$
.

To estimate the first column of $\ddot{R}(\beta^0)$ use a node-wise Lasso

$$\min_{\gamma \in \mathbb{R}^p: \ \gamma_1 = 1} \gamma^T \ddot{\hat{R}}_n(\hat{\beta}) \gamma + 2\lambda \|\gamma_{-1}\|_1.$$

Since $\hat{R}_n(\hat{\beta})$ is not necessarily positive definite this is again a non-convex problem.

Our aim:

Extend the theory to sharp oracle inequalities when

- the empirical risk is not differentiable
- or
- the empirical risk is not convex

Related work:

Po-Ling Loh and Martin Wainwright (2014, 2015)

Song Mei, Yu Bai, and Andrea Montanari (2016)

New: sharp oracle inequalities

Main idea from:

Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion,

Koltchinskii, V. and Lounici, K. and Tsybakov, A.B.

The estimator

To deal with β high-dimensional we consider a norm Ω on \mathbb{R}^p . The regularized empirical risk is

$$\hat{R}_n(b) + \lambda \Omega(b)$$

where $\lambda > 0$ is a tuning parameter.

Definition (argmin) Let

$$\hat{\beta} := \hat{\beta}_{\operatorname{argmin}} := \min_{b \in \mathcal{B}} \left\{ \hat{R}_{n}(b) + \lambda \Omega(b) \right\}$$

Sub-differential:

The sub-differential of Ω is

$$\partial\Omega(b) := \left\{z \in \mathbb{R}^p : \ \Omega^*(z) \leq 1, \ z^T b = \Omega(b)\right\}$$

Example:
$$\Omega = \|\cdot\|_1$$

$$\begin{aligned} \partial \|b\|_1 &= \\ \{z \in \mathbb{R}^p : \|z\|_{\infty} \le 1, \\ z_i &= \operatorname{sign}(\beta_i), \ \beta_i \ne 0 \} \end{aligned}$$

subdifferential calculus

Suppose $\partial \hat{R}_n(b)/\partial b := \dot{\hat{R}}_n^T(b)$ exists.

Definition (stationary) Let $\hat{\beta} := \hat{\beta}_{\text{stationary}}$ be a solution of the KKT conditions

$$\dot{\hat{R}}_{n}^{T}(\hat{\beta}) + \lambda \hat{z} = 0, \ \hat{z} \in \partial \Omega(\hat{\beta}).$$

Definition (semi stationary) Let $\hat{\beta} := \hat{\beta}_{\text{semi stationary}}$ satisfy

$$\dot{\hat{R}}_n^T(\hat{\beta})(\hat{\beta}-\beta) + \lambda\Omega(\hat{\beta}) - \lambda\Omega(\beta) \leq 0.$$

Here, and throughout, $\beta \in \mathcal{B}$ is fixed (not necessarily $\beta = \beta^0$).

Note

$$\hat{\beta} = \hat{\beta}_{\text{argmin}} \ \Rightarrow \ \ \hat{\beta} = \hat{\beta}_{\text{semi stationary}}$$

$$\hat{\beta} = \hat{\beta}_{\text{stationary}} \Rightarrow \quad \hat{\beta} = \hat{\beta}_{\text{semi stationary}}$$

19/51

Let τ be some semi-norm on \mathbb{R}^p and $G:[0,\infty)\to [0,\infty)$ be an increasing strictly convex function with G(0)=0.

Definition We say that <u>strict convexity</u> holds if \forall $0 \le t \le 1$ sufficiently small

$$R\Big((1-t)b+t\beta\Big) \leq (1-t)R(b)+tR(\beta)-t(1-t)G\Big(\tau(\beta-b)\Big)$$

for all $b \in \mathcal{B}$.

Definition We say that the Bregman condition holds if

$$R(\beta) - R(b) \ge \dot{R}^T(b)(\beta - b) + G\bigg(au(eta - b)\bigg)$$

for all $b \in \mathcal{B}$.

Note G-convexity $\Rightarrow G$ -margin condition Note G is a convex lower bound for the "Bregman divergence"

Bregman divergence

21 / 51

Results when $\Omega = \|\cdot\|_1$

We first consider the ℓ_1 -penalty.

Let for $S \subset \{1, \dots, p\}$ and $b \in \mathbb{R}^p$,

$$b_{\mathcal{S}} = \{b_{j} \mid \{j \in \mathcal{S}\}\}, \ b_{-\mathcal{S}} = \{b_{j} \mid \{j \notin \mathcal{S}\}\}$$

and

$$S_b := \{j: \ b_j \neq 0\}.$$

Example: p = 7, |S| = 3, $S = \{2, 3, 7\}$

$$b_{\mathcal{S}} = egin{pmatrix} 0 \\ * \\ 0 \\ 0 \\ 0 \\ * \end{pmatrix}$$

$$p_{-S} = \begin{pmatrix} * \\ 0 \\ 0 \\ * \\ * \\ 0 \end{pmatrix}$$

Definition The effective sparsity at S with stretching constant L is

$$\Gamma^2(L,S) = \max \left\{ \frac{\|b\|_1^2}{\tau^2(b)} : \|b_{-S}\|_1 \le L\|b_S\|_1 \right\}.$$

Remark: Think of $\Gamma^2(L, S)$ as being of the flavour $\approx |S|$

We have $\hat{\Gamma}^2(L, S) = |S|/\hat{\phi}^2(L, S)$ where $\hat{\phi}^2(L, S)$ ="compatibility constant" \approx "restricted eigenvalue"

Theorem argmin (No differentiablity assumed)

Let $\hat{\beta} = \hat{\beta}_{\text{argmin}}$.

Assume strict convexity with $G(u) = u^2/2$. Let for appropriate fixed 0 < t < 1

$$\lambda_0 := \lambda_{\operatorname{argmin}} \ge \frac{\left| [\hat{R}_n - R] \left((1 - t) \hat{\beta} + t\beta \right) - [\hat{R}_n - R] (\hat{\beta}) \right|}{t \|\hat{\beta} - \beta\|_1 + 1/n}$$

We refer to λ_0 as the <u>noise level</u>.

For $\lambda > \lambda_0$ we have

$$R(\hat{\beta}) \le R(\beta) + (\lambda + \lambda_0)^2 \Gamma^2(L, S_{\beta})/2$$

with
$$L := (\lambda + \lambda_0)/(\lambda - \lambda_0)$$
.

Flavour of Theorem argmin (No differentiablity assumed)

Let $\hat{\beta} = \hat{\beta}_{\text{argmin}}$.

Assume strict convexity with $G(u) = u^2/2$. Let for appropriate fixed 0 < t < 1

$$\lambda_0 := \lambda_{\operatorname{argmin}} \ge \frac{\left| [\hat{R}_n - R] \left((1 - t) \hat{\beta} + t \beta \right) - [\hat{R}_n - R] (\hat{\beta}) \right|}{t \|\hat{\beta} - \beta\|_1 + 1/n}$$

We refer to λ_0 as the <u>noise level</u>. Then $\lambda_0 \simeq \sqrt{\log p/n}$ and for $\lambda \simeq \lambda_0$ we have

$$R(\hat{\beta}) - R(\beta) \simeq \lambda^2 |S_{\beta}|$$

with high probability.

Theorem semi stationary (Differentiablity assumed)

Consider $\hat{\beta} = \hat{\beta}_{\text{semi stationary}}$.

Assume the Bregman condition with $G(u) = u^2/2$. Let

$$\lambda_0 := \lambda_{\text{semi stationary}} \ge \frac{\left| (\dot{\hat{R}}_n - \dot{R})^T (\hat{\beta} - \beta) \right|}{\|\hat{\beta} - \beta\|_1 + 1/n}.$$

We refer to λ_0 as the <u>noise level</u>. For $\lambda > \lambda_0$ we have

$$R(\hat{\beta}) \leq R(\beta) + (\lambda + \lambda_0)^2 \Gamma^2(L, S_{\beta})/2$$

with
$$L := (\lambda + \lambda_0)/(\lambda - \lambda_0)$$
.

Remark Both theorems have the same flavour.

Remark For general *G* we get in both theorems

$$R(\hat{\beta}) \leq R(\beta) + H\bigg((\lambda + \lambda_0)\Gamma(L, S_{\beta})\bigg).$$

where *H* is the convex conjugate of *G*.

Example
$$G(u) = u^2/2 \Rightarrow H(v) = v^2/2$$
.

Remark

Determining the noise level λ_0 is the random part of the problem.

The noise level λ_0 should be such that the inequality in the theorems holds with large probability.

We call this the empirical process condition.

Example: generalized linear models ...

Generalized linear model

Suppose

$$\hat{R}_n(b) = \frac{1}{n} \sum_{i=1}^n \rho(Y_i, (Xb)_i)$$

with a normalized X.

Assumption (ρ Lipschitz) $z \mapsto \rho(\cdot, z)$ is Lipschitz.

Let $\dot{\rho}(\cdot, z) := d\rho(\cdot, z)/dz$.

Assumption ($\dot{\rho}$ Lipschitz) $z \mapsto \dot{\rho}(\cdot, z)$ is Lipschitz.

concentration, contraction, peeling \rightsquigarrow Assumption (ρ -Lipschitz) $\Rightarrow \lambda_{\operatorname{argmin}} \asymp \sqrt{\frac{\log p}{n}}$

Assumption ($\dot{\rho}$ -Lipschitz) $\Rightarrow \lambda_{\mathrm{semi\ stationary}} \asymp \sqrt{\frac{\log p}{n}}$

Thus, the empirical process condition \leadsto the \asymp usual value for λ_0

Conclusion

- Assumption (ρ-Lipschitz)
 - ⇒ sharp oracle inequalities for the global minimizer
 - → useful for the convex non-differentiable case
- Assumption (ρ-Lipschitz)
 - ⇒ sharp oracle inequalities for (semi) stationary points
 - → useful for non convex case

Note

In both cases we assume $\beta \mapsto R(\beta)$ to be convex The non convexity is about $\beta \mapsto \hat{R}_n(\beta)$

An example of a generalized linear model Non-differentiable case

Example Least absolute deviations

Observed

- $Y \in \mathbb{R}^n$
- $X \in \mathbb{R}^{n \times p}$

Model

$$Y = X\beta^0 + \epsilon$$

with

 $\epsilon_1, \ldots, \epsilon_n$ i.i.d. with density f_0

We take

$$\rho(y,(xb))=|y-xb|.$$

Assumption (ρ Lipschitz) holds.

But

$$\dot{\rho}(y,z) = -\mathrm{sign}(y-z).$$

Assumption ($\dot{\rho}$ Lipschitz) does not hold.

33 / 51

We have:

$$\mathcal{B} \subset \{b : \|Xb\|_{\infty} \le \text{const.}\}\$$
fixed design (say) + cond. f_0 \Rightarrow (strictconvexity)

with $G(u) = \text{const. } u^2 \text{ and } \tau^2(b) = ||Xb||_2^2/n.$

It follows that with high probability

$$R(\hat{\beta}) \leq R(\beta) + \mathcal{O}\left(\frac{\log \rho}{n}\right) \frac{|\mathcal{S}_{\beta}|}{\phi^2(\mathcal{S}_{\beta}, L)},$$

where

$$\phi^{2}(L,S) := |S|/\Gamma^{2}(L,S) = \min \left\{ \|Xb\|_{2}^{2}/n : \|b_{-S}\|_{1} \le L\|b_{S}\|_{1} \right\}$$

is the compatibility constant (\approx restricted eigenvalue).

Beyond generalized linear models: some examples

Example Sparse principal components

Observed:

• $X \in \mathbb{R}^{n \times p}$

Let
$$\hat{\Sigma} := X^T X / n$$
 and $\Sigma_0 := \mathbb{E} \hat{\Sigma}$

We aim at estimating the first scaled eigenvector β^0 of Σ_0 :

$$\beta^0 = \arg\min_b \|\Sigma_0 - bb^T\|_2^2.$$

Assumption (subGaus)

X has i.i.d. sub-Gaussian rows.

Assumption (gap)

There is a gap \sim 1 between the first and second eigenvalue of Σ_0 .

Assumption (sparse)

$$s_0 := |S_{\beta^0}| = o(\sqrt{n/\log p})$$
 (or a "weak sparsity" version)

First step: localizing

$$\hat{Z} := \arg\min_{\text{trace}(Z) = 1, 0 \le Z \le I} \left\{ -\text{trace}(\hat{\Sigma}Z) + \lambda \|Z\|_1 \right\}.$$

[d'Aspremont, El Ghaoui, Jordan, Lanckriet (2007)] [Vu, Cho, Lei, Rohe (2013)]

$$\sim \hat{\beta}_{\text{init}} \text{ with } \|\hat{\beta}_{\text{init}} - \beta^0\|_2 = o_{\mathbb{P}}(1).$$

Second step: nonconvex loss

We now let

$$\hat{R}_n(b) := \|\hat{\Sigma} - bb^T\|_2^2/4$$

and so

$$\dot{\hat{R}}_n(b) = -\hat{\Sigma}b + \|b\|^2b.$$

We let $\hat{\beta} = \hat{\beta}_{\text{semi stationary}} \in \mathcal{B} := \{b : \|b - \hat{\beta}_{\text{init}}\|_2 \le \eta\}$:

$$\dot{\hat{R}}_n^T(\hat{\beta})(\hat{\beta}-\beta) + \lambda \|\hat{\beta}\| - \lambda \|\beta\|_1 \leq 0.$$

Note

$$(\hat{R}_n - \dot{R})^T (\hat{\beta})(\hat{\beta} - \beta) = -\hat{\beta}^T (\hat{\Sigma} - \Sigma_0)(\hat{\beta} - \beta)$$

Using assumption (subGaus) we get

$$\left| (\dot{\hat{R}}_n - \dot{R})^T (\hat{\beta}) (\hat{\beta} - \beta) \right| = O_{\mathbb{P}} \left(\sqrt{\frac{\log p}{n}} \right) \left(\|\hat{\beta} - \beta\|_1 + \frac{1}{n} \right).$$

We obtain $\lambda_0 \simeq \sqrt{\log p/n}$ in Theorem semi stationary.

The Bregman condition holds with $G(u) = \text{const.} u^2$ and $\tau(b) = ||b||_2$.

The effective sparsity is thus $\Gamma^2(L,\mathcal{S})\sim |\mathcal{S}|.$

It follows that

$$R(\hat{\beta}) \leq R(\beta) + \mathcal{O}\left(\frac{\log p}{n}\right) |\mathcal{S}_{\beta}|.$$

De-biasing in sparse PCA

Suppose the parameter of interest is β_1^0 .

We have

$$\hat{\hat{R}}_n(\hat{\beta}) = -\hat{\Sigma} - \|\hat{\beta}\|_2^2 I + 2\hat{\beta}\hat{\beta}^T.$$

We obtain the first column of the surrogate inverse of $\hat{R}_n(\hat{\beta})$ by doing a "node-wise" Lasso:

$$\begin{split} \hat{\gamma}_{\text{argmin}} & := & \text{arg} \min_{\gamma^T = (1, \gamma_2, \dots, \gamma_p)} \left\{ \gamma^T \ddot{R}_n(\hat{\beta}) \gamma + 2\lambda_1 \| \gamma \|_1 \right\} \\ \hat{\gamma} & := & \hat{\gamma}_{\text{stationary}} : \left(\ddot{R}_n(\hat{\beta}) \right)_{-1, \cdot} \hat{\gamma} + \lambda \hat{z}_{-1} = 0 \\ \hat{\Theta}_{1, 1}^{-1} & := & \hat{\gamma}^T \ddot{R}_n(\hat{\beta}) \hat{\gamma}, \\ \hat{\Theta}_{1} & := & \hat{\gamma} \hat{\Theta}_{1, 1}. \end{split}$$

Note: $\hat{R}_n(\hat{\beta})$ is not necessarily p.s.d. \rightsquigarrow non-convex problem.

The de-biased estimator is

$$\hat{b}_1 := \hat{\beta}_1 - \hat{\Theta}_1^T \left(\underbrace{\|\hat{\beta}\|_2^2 \hat{\beta} - \hat{\Sigma} \hat{\beta}}_{\hat{R}_n(\hat{\beta})} \right).$$

Lemma Assume

$$0 \lambda \approx \sqrt{\log p/n}$$

$$\circ \lambda_1 \asymp \sqrt{\log p/n}$$

$$\circ s_0 = o(\sqrt{n}/\log p)$$

$$\circ s_1 = o(\sqrt{n}/\log p)$$

Then

$$\sqrt{n}(\hat{b}_1 - \beta_1^0) \rightarrow \mathcal{N}(0, \sigma_1^2)$$

where

$$\sigma_1^2 = n \text{var}(\Theta_1^{0T} \hat{\Sigma} \beta^0).$$

Results for general Ω

Let Ω be a norm on \mathbb{R}^p .

Recall

$$\hat{eta}_{\operatorname{argmin}} := \arg\min_{b \in \mathcal{B}} \Big\{ \hat{R}_n(b) + \lambda \Omega(b) \Big\},$$

etc.

For $\hat{\beta} = \hat{\beta}_{argmin}$ we assume strict convexity.

For $\hat{\beta} = \hat{\beta}_{semi\ stationary}$ we assume the Bregman condition.

Definition The triangle property holds if ∀ b

$$\Omega(\beta) - \Omega(b) \le \Omega^+(\beta - b) - \Omega^-(b).$$

We then write $\Omega := \Omega^+ + \Omega^-$.

Definition The effective sparsity is

$$\Gamma^{2}(L) := \max\{\tau^{2}(b): \ \Omega^{-}(b) \leq L, \ \Omega^{+}(b) = 1\}.$$

Theorem

Let

$$\lambda_{\operatorname{argmin}} \geq \frac{\left| (\hat{R}_{n} - R)((1 - t)\hat{\beta} + t\beta) - (\hat{R}_{n} - R)(\hat{\beta}) \right|}{t\underline{\Omega}(\hat{\beta} - \beta) + 1/n}$$

$$\lambda_{\operatorname{semi stationary}} \geq \frac{\left| (\dot{\hat{R}}_{n} - \dot{R})^{T}(\hat{\beta} - \beta) \right|}{\underline{\Omega}(\hat{\beta} - \beta) + 1/n}.$$

Define for appropriate $\lambda_0 \in \{\lambda_{argmin}, \lambda_{semi\ stationary}\}$

$$L = \frac{\lambda + \lambda_0}{\lambda - \lambda_0}.$$

Then for appropriate $\hat{\beta} \in \{\hat{\beta}_{argmax}, \hat{\beta}_{semi \ stationary}\}$

$$R(\hat{\beta}) \leq R(\beta) + H\bigg((\lambda + \lambda_0)\Gamma(L)\bigg)$$

where H is the convex conjugate of G.

Examples of norms used

$$\boxed{\ell_1\text{-norm:}}\ \Omega(b) = \|b\|_1 =: \sum_{j=1}^p |b_j|$$

Oscar: given $\tilde{\lambda} > 0$

$$\Omega(b) := \sum_{j=1}^{p} (\tilde{\lambda}(j-1)+1)|b|_{(j)} \quad \text{where } |b|_{(1)} \ge \cdots \ge |b|_{(p)}$$

[Bondell and Reich 2008]

sorted ℓ_1 -norm: given $\lambda_1 \geq \cdots \geq \lambda_p > 0$,

$$\Omega(b) := \sum_{i=1}^{
ho} \lambda_j |b|_{(j)}$$
 where $|b|_{(1)} \geq \cdots \geq |b|_{(
ho)}$

[Bogdan et al. 2013]

Examples of norms used

$$\boxed{\ell_1\text{-norm:}}\ \Omega(b) = \|b\|_1 =: \sum_{j=1}^p |b_j|$$

Oscar: given $\tilde{\lambda} > 0$

$$\Omega(b) := \sum_{j=1}^{p} (\tilde{\lambda}(j-1)+1)|b|_{(j)}$$
 where $|b|_{(1)} \ge \cdots \ge |b|_{(p)}$

[Bondell and Reich 2008]

sorted ℓ_1 -norm: given $\lambda_1 \ge \cdots \ge \lambda_p > 0$,

$$\Omega(b) := \sum_{i=1}^{p} \lambda_j |b|_{(j)}$$
 where $|b|_{(1)} \ge \cdots \ge |b|_{(p)}$

[Bogdan et al. 2013]

Examples of norms used

$$\boxed{\ell_1\text{-norm:}}\ \Omega(b) = \|b\|_1 =: \sum_{j=1}^p |b_j|$$

Oscar: given $\tilde{\lambda} > 0$

$$\Omega(b) := \sum_{i=1}^{p} (\tilde{\lambda}(j-1)+1)|b|_{(j)} \quad \text{where } |b|_{(1)} \geq \cdots \geq |b|_{(p)}$$

[Bondell and Reich 2008]

sorted
$$\ell_1$$
-norm: given $\lambda_1 \geq \cdots \geq \lambda_p > 0$,

$$\Omega(b) := \sum_{i=1}^{p} \lambda_j |b|_{(j)}$$
 where $|b|_{(1)} \geq \cdots \geq |b|_{(p)}$

[Bogdan et al. 2013]

norms generated from cones:

$$\Omega(b) := \min_{a \in \mathcal{A}} \frac{1}{2} \sum_{j=1}^p \left[\frac{b_j^2}{a_j} + a_j \right], \, \mathcal{A} \subset \mathbb{R}_+^p \, \, \text{a convex cone}.$$

[Micchelli et al. 2010] [Jenatton et al. 2011] [Bach et al. 2012]

unit ball for group Lasso norm

unit ball for wedge norm $A = \{a: a_1 \ge a_2 \ge \cdots \}$

nuclear norm for matrices: $B \in \mathbb{R}^{p_1 \times p_2}$,

$$\Omega(B) := \|B\|_{\text{nuclear}} := \text{trace}(\sqrt{B^T B})$$

nuclear norm for tensors: $B \in \mathbb{R}^{p_1 \times p_2 \times p_3}$

 $\Omega(B) := \text{dual norm of } \Omega_*$ where

$$\Omega_*(W) := \max_{\|u_1\|_2 = \|u_2\|_2 = \|u_3\|_2 = 1} \operatorname{trace}(W^T u_1 \otimes u_2 \otimes u_3), \ W \in \mathbb{R}^{p_1 \times p_2 \times p_3}.$$

[Yuan and Zhang 2014]

nuclear norm for matrices: $B \in \mathbb{R}^{p_1 \times p_2}$,

$$\Omega(B) := \|B\|_{\text{nuclear}} := \text{trace}(\sqrt{B^T B})$$

nuclear norm for tensors: $B \in \mathbb{R}^{p_1 \times p_2 \times p_3}$,

 $\Omega(B) := \text{dual norm of } \Omega_*$ where

$$\Omega_*(\textit{W}) := \max_{\|\textit{u}_1\|_2 = \|\textit{u}_2\|_2 = \|\textit{u}_3\|_2 = 1} \operatorname{trace}(\textit{W}^\mathsf{T} \textit{u}_1 \otimes \textit{u}_2 \otimes \textit{u}_3), \; \textit{W} \in \mathbb{R}^{\textit{p}_1 \times \textit{p}_2 \times \textit{p}_3}.$$

[Yuan and Zhang 2014]

Example Matrix completion using robust loss [Elsener and vdG, 2016] Let X_i be a mask with a "1" at a random entry.

$$X_i := egin{pmatrix} 0 & \cdots & 0 & \cdots & 0 \ dots & \ddots & dots & \ddots & dots \ 0 & \cdots & 1 & \cdots & 0 \ dots & \ddots & dots & \ddots & dots \ 0 & \cdots & 0 & \cdots & 0 \end{pmatrix}$$

$$\hat{R}_n(B) := \frac{1}{n} \sum_{i=1}^n \rho(Y_i - \operatorname{trace}(X_i B))$$

where

- $\rho = \rho_{\mathrm{Huber}}$ or $\rho = \rho_{\mathrm{LAD}}$
- $B \in \mathcal{B} := \{B \in \mathbb{R}^{p_1 \times p_2} : \|B\|_{\infty} \le \eta\}$ for some given η

Let $\Omega := \| \cdot \|_{nuclear}$.

<u>Dual norm:</u> use symmetrization, contraction, concentration ... more complicated due to non-linear random term, but doable

Margin semi-norm:

$$\overline{\tau^2(B) = \|B\|_2^2/(p_1p_2)}$$

Margin curvature:

$$\overline{G(u)=u^2/(2cp_1p_2)}$$

Effective sparsity:

$$\overline{\Gamma^2(L) = 3s_B, s_B := \operatorname{rank}(B)}.$$

From Theorem argmin

for
$$p_1 \ge p_2$$

and $\lambda = C_0 \frac{1}{\sqrt{np_2}} (\sqrt{\log p_1 + \log(1/\alpha)/p_1},$
with probability at least $1 - \alpha$

$$R(\hat{B}) \leq R(B) + C \times \left(\frac{p_1 s_B \log(p_1)}{n}\right).$$

