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My favourite quote:

“You know adaptive estimators converge very fast if the function is very
smooth (or has a prescribed complexity) but you can tell nothing about
the estimated function itself”

Marc Hoffmann and Oleg Lepski (2002)
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Aim in the rest of the talk

Show sharp oracle inequalities for
o global minimizers of convex but possibly non-differentiable loss

o stationary points of differentiable but possibly non-convex loss



Data:
.X1,...,Xn

Parameter space:
e B C RP convex.

Empirical
function:
® Rn(b), b € B

Theoretical
risk function:
e R(b), b e B.

(random)  risk

(nonrandom)

Aim
Estimate
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B = arg rt;]elg R(b).
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We consider

(0 is high-dimensional: p > n

and
o b+ Rp(b) is possibly not differentiable
o b+ Rp(b) is possibly not convex and has multiple local minima

o b+~ R(b) is convex
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Example Least absolute deviations regression

Observed:
oY cR"
e X ¢ R™P

Empirical risk function
o Rn(b) = 5 311 |Yi — (Xb)

not really differentiable, sign-function not “smooth”
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Example Linear regression with errors in variables

Y = X8° + ¢,

Observed:
oY
o Z =X+ Uwith U L X, cov(U) := X, known.

Lets,:=Z27Z/n.

We use A
Rn(b) := YT2Zb/n+ b7 (£, — L,)b.

A

Y, — ¥, is not necessarily positive semi-definite
~» possibly non-convex empirical risk
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Example Principal components

Observed:
o X ¢ R™P

Lets := XTX/nand ¥, := EX

We aim at estimating the first eigenvector of .

The risk function is for example
Rn(b) := |£ — bb"|3

not convex
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Example Estimation of an inverse Fisher information

Suppose R(3°) exists and we want to estimate its inverse
R71(5°).

To estimate the first column of R(3°) use a node-wise Lasso

. TA 4
min R 2 |[[v=1]1-
Leamin v Ra(B)y + 27yl

Since IA?,,( B) is not necessarily positive definite this is again a
non-convex problem.



Our aim:

Extend the theory to sharp oracle inequalities when
o the empirical risk is not differentiable

or

o the empirical risk is not convex

Related work:
Po-Ling Loh and Martin Wainwright (2014, 2015)
Song Mei, Yu Bai, and Andrea Montanari (2016)

New: sharp oracle inequalities

Main idea from:

Nuclear-norm penalization and optimal rates for noisy low-rank matrix
completion,

Koltchinskii, V. and Lounici, K. and Tsybakov, A.B.
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The estimator

To deal with ‘ 5 high-dimensional ‘we consider a norm Q on RP.
The regularized empirical risk is

A

BRn(b) + AQ(b)

where \ > 0 is a tuning parameter.
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Definition (argmin) Let

B = ﬁargmin = Ig]elg{Rn(b) + )‘Q(b)}

Sub-differential:
The sub-differential of Q is

oQ(b) = {z eRP: Q' (2) <1, zTb= Q(b)}

Example: Q = || - ||1
134
)bl =
{zeRP:|Z|o <1,
zj = sign(), f; # 0}

+1

-1

subdifferential calculus
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Suppose 9Rn(b)/db = RT(b) exists.

Definition (stationary) Let 3 := Basionary be @ solution of the KKT
conditions .

RI(B)+A2=0, 2 e dQ(p).

@

Definition (semi stationary) Let 3 := Bsemi stationary SALISTy

N

RIA)(B - B) + A(B) - xQ(8) < 0.

Here, and throughout, 3 € B is fixed (not necessarily 5 = 3°).
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Note

B = /Bargmin = [ = Bsemi stationary

5 = /Bstationary = 6 = ﬁsemi stationary



Let 7 be some semi-norm on RP and G : [0, c0) — [0, 00) be an
increasing strictly convex function with G(0) = 0.

Definition We say that strict convexity holds ifV 0 < t < 1 sufficiently
small

R((1 — b+ tﬁ) < (1 - t)R(b) + tR(B) — t(1 — t)G<T(B - b)>

for all b € B.

Definition We say that the Bregman condition holds if

R(3) - R(b) = AT(b)(B - b) + G(T(ﬁ _ b))

for all b € B.

Note G-convexity = G-margin condition
Note G is a convex lower bound for the “Bregman divergence”
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Results when Q = || - |4
We first consider the /4-penalty.

LetforSc {1,...,p} and b € R,
bs = {bl{j € S}}, b_s = {bl{j ¢ S}}

and
Sp:={j: b #0}.
Example: p=7,|S|=8,5S=1{2,3,7}

b_s=

o
I
¥ % %X ¥ % % %

o

0

|
* O O O ¥ ¥ O
O % % ¥ OO *
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Definition The effective sparsity at S with stretching constant L is

Ibl?
72(b)

(L, s>=max{ - 1b_sll SLHbs\h}-

Remark: Think of I?(L, S) as being of the flavour < |S|

Xy, ..., Xp
We have . o(1,{1})
I2(L,S) =18]/¢%(L, S)
where ¢?(L, S) X

=“compatibility constant”
~ “restricted eigenvalue”
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Theorem argmin (No differentiablity assumed)

Let/B = /Bargmin-

Assume strict convexity with G(u) = u?/2. Let for appropriate fixed
0<t<1

\[ﬁn— Al ((1 0B+ w) B RIY)
tiB— Bl +1/n '

Ao = )\argrnin >

We refer to Ay as the noise level.
For A\ > \g we have

R(B) < R(B) + (A + X\o)?T3(L, S5)/2
with L := (A + Xo)/(X — Ao)-



Flavour of Theorem argmin (No differentiablity assumed)

LetB = Bargmin-
Assume strict convexity with G(u) = u?/2. Let for appropriate fixed

O<t<1

\[ﬁrn Al ((1 _0d+ tﬁ) Ao AID)
Ao = )\argmin > ~ .
03— Bl + 1/n

We refer to )y as the noise level.
Then \g < +/logp/n and for A < \y we have

R(B) — R(B) = X?| S|

with high probability.
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Theorem semi stationary (Differentiablity assumed)

Consider B = Bsemi stationary -

Assume the Bregman condition with G(u) = u?/2.

Let _ _ .

(Fn = R)T(B - 5)
1B=8l1+1/n

A0 = Asemi stationary >

We refer to Ay as the noise level.
For A\ > \g we have

R(B) < R(B) + (A + Xo)?T?(L, Sp)/2
with L := (A + Xo)/(A — o).
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Remark Both theorems have the same flavour.

Remark For general G we get in both theorems

R(B) < R(B3) + H((/\ + Xo)l(L, sg)> .

where H is the convex conjugate of G.
Example G(u) = u?/2 = H(v) = v?/2.
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Remark
Determining the noise level )\ is the random part of the problem.

The noise level \g should be such that the inequality in the theorems
holds with large probability.

We call this the empirical process condition.
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Example: generalized linear models ...



Generalized linear model
Suppose

Ralb) = =3~ ol Yi (X))
i=1

with a normalized X.
Assumption (p Lipschitz) z — p(-, z) is Lipschitz.
Let p(-,2) := dp(-,2)/dz.

Assumption (p Lipschitz) z — p(-, z) is Lipschitz.

concentration, contraction, peeling .... ~
Assumption (p-Lipschitz) = Aaremin < \/@

. - . |
Assumption (p-Lipschitz) = Asemi stationary < \/ 22

Thus, the empirical process condition ~» the =< usual value for \g
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Conclusion

o Assumption (p-Lipschitz)
= sharp oracle inequalities for the global minimizer
~» useful for the convex non-differentiable case

o Assumption (p-Lipschitz)
= sharp oracle inequalities for (semi) stationary points
~» useful for non convex case

Note
In both cases we assume 3 — Rﬁﬁ) to be convex
The non convexity is about 8 — Rn(3)
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An example of a generalized linear model

Non-differentiable case
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Example Least absolute deviations
Observed

e YR

e X € R™P

Model

Y = X8% + ¢

with
€1,...,€n i.i.d. with density f;
We take
p(y, (xb)) = |y — xb|.

Assumption (p Lipschitz) holds.
But

py.z) = —sign(y — 2).
Assumption (p Lipschitz) does not hold.
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We have:

B cC{b: ||Xb|sx < const.}

= (strict it
fixed design (say) + cond.® f (strictconvexity)

with G(u) = const. u? and 72(b) = || Xb||3/n.
It follows that with high probability

|Ssl
d)z(sﬁv L)7

n

R() < R(B) + 0('°g”)
where
P(L,S) = |S|/r(L.S) = min{Han%/n: Ib_slls < L||bs|r1}

is the compatibility constant (= restricted eigenvalue).



Beyond generalized linear models: some examples



Example Sparse principal components

Observed:
e X e R™P

Let$ := XTX/nand ¥, := ES.

We aim at estimating the first scaled eigenvector 3° of Xg:

8% = arg mbin [Zo — bbT|3.
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Assumption (subGaus)
X has i.i.d. sub-Gaussian rows.

Assumption (gap)
There is a gap ~ 1 between the first and second eigenvalue of ¥ .

Assumption (sparse)
So := |Sgo| = 0o(+/n/log p) (or a “‘weak sparsity” version)
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First step: localizing

Z :=arg min {—trace(iZ) + 24 }
trace(Z)=1,0<Z</

[d’Aspremont, EI Ghaoui, Jordan, Lanckriet (2007)]
[Vu, Cho, Lei, Rohe (2013)]

~ Binit With || Binic — 8°[l2 = op(1).
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Second step: nonconvex loss
We now let

Rn(b) == || £ — bbT[|3/4

and so A R
Rn(b) = —Sb+ ||b||?b.

We let 3 = Biemi sutionary € B = {b: ||b— Binll2 < n}:

RI(B)(B — B) + MBIl — AllBJ+ <oO.

Note o A
(Ro— R (B)(B - B) = —BT(5 - So)(B - B)

Using assumption (subGaus) we get

(ﬁfn—R)T(B)(B—ﬁ)‘=Op<\/w)(llﬁ Bl + 5)

December 22, 2017
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We obtain A\g < \/log p/nin Theorem semi stationary.
The Bregman condition holds with G(u) = const.u? and 7(b) = ||b||z.
The effective sparsity is thus I3(L, S) ~ |S|.

It follows that |
R(3) < R(ﬁ)+0< °9p)rsﬂ|



De-biasing in sparse PCA
Suppose the parameter of interest is 6?.
We have

Ra(B) = —5 — ||BI31 + 2887

We obtain the first column of the surrogate inverse of i:;:’n(é) by doing a
“node-wise” Lasso:

/)\/argmin = arg min {VTﬁ?n(B)’V"‘Z)ﬂ ”’7”1}
’YT:(17’Y27"'7’YP)
o= 'Ii’stationary: (ﬁn(é)) 6’"‘)\2—1 =0
-1,
i1 = ATRa(B)A,
é1 = ﬁlé1 1.

Note: Rn(3) is not necessarily p.s.d. ~» non-convex problem.
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The de-biased estimator is

Lemma Assume
oAx+/logp/n
o\ =< +/logp/n
o 5o = o(v/n/log p)
o 1= 0(v/n/logp)
Then .
vn(by — 89) = N(0,5%)

where A
of = nvar(©97%30).
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Results for general Q2

Let Q be a norm on RP.
Recall

3 remin -— i lE‘l’ Q ,
Bare arg 222{ n(b) + A (b)}

etc.
For 3 = Bugmin WE assume strict convexity.

For 3 = Biemi sutionary W€ @assume the Bregman condition.
Definition The triangle property holds ifV b

Q(B) —Q(b) < Q7(8 — b) — Q2 (b).

We then write Q := Q+ + Q™.
Definition The effective sparsity is

M2(L) :== max{r2(b) : Q (b) <L, Q*(b) =1}.



Theorem

Let

(Bo— R)((1 - 0B +18) — (R — R)(B)
(3 —B)+1/n

(Bo—R)T(5-5)

QB-B)+1/n

Define for appropriate A\g € {Nargmins Asemi stationary }

v

Aargmin

>\semi stationary >

_)\-i-)\o
—)\—)\0.

L

Then for appropriate B € {Bargmam Bsemi stationary}

R(3) < R(B) + H((A n Ao>r<L>)

where H is the convex conjugate of G.



Examples of norms used

[t1-norm: [Q(b) = [1bll+ = 3+ |8y



Examples of norms used
a(b) = |Ibl = 2., Ity
given X > 0

p
Q(b) :=> (A(Jj—1)+1)|blg where |b|y > - > |b]p)
j=1

[Bondell and Reich 2008]



Examples of norms used
a(b) = |Ibl = 2., Ity
given X > 0

p
Q(b):=> (AG—1)+1)blg) where b4y > --- > |b]p
j=1

[Bondell and Reich 2008]

\sorted ¢4-norm: \ given Ay > --- > \p > 0,

P
Q(b) = Z)\/|b|(j) where |b|(1) Z cee 2 |b|(p)
Jj=1

[Bogdan et al. 2013]



‘ norms generated from cones: ‘

. P2
Q(b) = Minaca 3 >, [3’] + aj] , A C R? a convex cone.

[Micchelli et al. 2010] [Jenatton et al. 2011] [Bach et al. 2012]

unit ball for wedge norm

unit ball for group Lasso norm A={a: a>a>--}
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| nuclear norm for matrices: | B c RP1*P2,

Q(B) := ||Bl|nuctear := trace(v BT B)



| nuclear norm for matrices: | B € RP1*P2,

Q(B) := || Bllnuctear := trace(v BTB)

\ nuclear norm for tensors: \ B c RP1>P2xps

Q(B) := dual norm of Q,
where

Q.(W) =

= max trace( W Uy @ tp ® ug), W € RP1*P2xPs,
lurll2=lluzll2=|lus]|2=1

[Yuan and Zhang 2014]
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Example Matrix completion using robust loss
[Elsener and vdG, 2016]
Let X; be a mask with a “1” at a random entry.

0 0 0
Xi=10 - 1 0
0 -0 - 0
. 1
Rn(B) =~ >, p(Y; — trace(X;B))

where

= P = PHuber OF p = PLAD
-Be B:={BecRP*P: ||B|s < n} for some given n



LetQ:= || : ”nuclear-

Dual norm: use symmetrization, contraction, concentration ... more
complicated due to non-linear random term, but doable

Margin semi-norm:

72(B) = [|BII5/(p1p2)
Margin curvature:

G(u) = u?/(2cp1p2)
Effective sparsity:

(L) = 3sg, Sp := rank(B).




From Theorem argmin

for p; > po
and A = Coﬁ(\/logm +log(1/a)/px,
with probability at least 1 — «

p1sglog(p )) _

R(B) < R(B) + C ( -
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