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Introduction

Model of density estimation X1, . . . ,Xn
iid∼ Pp

Pp probability measure on (R,B(R)) with Lebesgue density p
(unknown to the statistician)

p ∈ P (some nonparametric class, i.e. some massive parameter set)
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Introduction

Bickel and Rosenblatt (1973):

Under certain regularity assumptions, the kernel density estimator

p̂n(t, hn) :=
1

nhn

n∑
i=1

K

(
Xi − t

hn

)

with bandwidth hn = n−δ and 1/5 < δ < 1/2 satisfies

lim
n→∞

Pp

(
sup

t∈[0,1]

|p̂n(t, hn)− p(t)|
σ̂n(t)

≤ zn(z)

)
= e−2e−z

with

σ̂n(t) =

(
p̂n(t, hn)‖K‖22

nhn

)1/2

, zn(z) =

(2δ log n)1/2 +
z + log

(
‖K ′‖2
2π‖K‖2

)
(2δ log n)1/2


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Introduction
zn(z) does not depend on p

If z = zα is chosen such that the RHS equals 1− α, then

P⊗n
p

(
p(t) ∈ [p̂n(t, hn)− σ̂n(t)zn(zα), p̂n(t, hn) + σ̂n(t)zn(zα)]

for all t ∈ [0, 1]
)
≈ 1− α

That is, (
[p̂n(t, hn)− σ̂n(t)zn(zα), p̂n(t, hn) + σ̂n(t)zn(zα)]

)
t∈[0,1]

is an asymptotic (1− α)-confidence band

Two questions are immediate ...

Uniformity (in p) of the asymptotic coverage property?

Choice of hn? A suitable choice of the bandwidth hn depends on the density’s
regularity ...
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Introduction

Typical nonparametric classes: ”Smoothness classes”,
such as Hölder balls H(β, L), or some union of Hölder balls

Hölder norm

‖p‖β = ‖p‖sup + sup
x 6=y

|p(x)− p(y)|
|x − y |β

, for 0 < β ≤ 1

Hölder ball
H(β, L) =

{
p : R→ R : ‖p‖β ≤ L

}
Probability densities within this Hölder ball

P(β, L) =
{
p : R→ R : p Lebegue density, ‖p‖β ≤ L

}

Kernel density estimators with bandwidth hn ∼ n−
1

2β+1 are minimax optimal
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Introduction
Adaptive estimation

The smoothness parameter β plays the crucial role in the construction of the
estimator, yet unknown to the statistician in many applications

An estimator p̂n is called adaptive up to a logarithmic factor within a range
of adaptation [β∗, β

∗], if for any β ∈ [β∗, β
∗] there exist cβ > 0 and γβ > 0,

such that for all n ∈ N

sup
p∈P(β,L)

Ep (p̂n(t)− p(t))2 ≤ cβ · n−
2β

2β+1 · (log n)γβ

−→ (Almost) optimal rates of convergence over P(β, L) simultaneously for a
large range of the parameter β

Adaptive estimation is well understood in a large variety of nonparametric
models

Is it possible to take advantage of adaptive density estimators for inference?
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Introduction
Adaptive Inference

Goal: Construction of confidence bands for a large union of models which
I maintain given coverage probability over the full model
I shrink at fastest possible rate over all submodels
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Introduction

Honesty

For any interval [a, b] and any significance level α ∈ (0, 1), a confidence band for
p, described by a family of random intervals

Cn(t, α), t ∈ [a, b],

is said to be (asymptotically) honest with respect to P if the coverage inequality

lim inf
n

inf
p∈P

P⊗np

(
p(t) ∈ Cn(t, α) for all t ∈ [a, b]

)
≥ 1− α

is satisfied.
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Introduction

Adaptivity

If P is some class of densities within a union of Hölder balls H(β, L) with fixed
radius L > 0, the confidence band is called globally adaptive if for every β > 0 and
for every ε > 0 there exists some constant c > 0, such that

lim sup
n

sup
p∈H(β,L)∩P

P⊗np

(
sup

t∈[a,b]
|Cn(t, α)| ≥ c · rn(β)

)
< ε.

rn(β) = minimax-optimal rate of convergence for estimation under supremum

norm loss over H(β, L) ∩ P, possibly up to some logarithmic factor
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Introduction

Negative Result

If P equals the set of all densities contained in⋃
0<β≤β∗

H(β, L),

honest and adaptive confidence bands provably do not exist!

Low (1997): Honest random-length intervals for a probability density at a
fixed point cannot have smaller expected width than fixed-length confidence
intervals with the size corresponding to the lowest regularity under
consideration

Not even possible to construct a family of random intervals Cn(t, α), t ∈ [a, b],
whose expected length shrinks at the fastest possible rate simultaneously over two
distinct nested Hölder balls with fixed radius, and which is at the same time
asymptotically honest for the union P of these Hölder balls
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Introduction

Numerous attempts to tackle this adaptation problem in alternative formulations

Genovese and Wasserman (2008) relax the coverage property
→ do not require the confidence band to cover the function itself but a
simpler surrogate function capturing the original function’s significant features

Under qualitative shape constraints, Hengartner and Stark (1995), Dümbgen
(1998, 2003), and Davies, Kovacz and Meise (2009) achieve adaptive
inference

Picard and Tribouley (2000) investigate on pointwise adaptive confidence
intervals under a self-similarity condition on the parameter space

Under such a condition, Giné and Nickl (2010) even develop asymptotically
honest confidence bands for probability densities whose width is adaptive to
the global Hölder exponent

...

12 / 48



Preliminaries

X1, · · · ,Xn
iid∼ Pp

Kernel density estimator

p̂n(·, h) =
1

n

n∑
i=1

Kh (Xi − ·)

with bandwidth h > 0 and rescaled kernel

Kh(·) = h−1K (·/h)

K is a symmetric kernel of bounded variation supported on [−1, 1]

K is said to be of order l ∈ N, if∫
x jK (x)dx = 0 for 1 ≤ j ≤ l ,

∫
x l+1K (x)dx = c with c 6= 0
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Globally adaptive confidence bands
Giné and Nickl (2010) consider globally adaptive confidence bands over

P̃ =
⋃

β∗≤β≤β∗

{
p ∈ P(β, L) : p ≥ δ on [−ε, 1 + ε],

c · hβ ≤ ‖Kh ∗ p − p‖sup ≤ C · hβ for all h ≤ h0

}
for some constants C > c > 0 and 0 < ε < 1

β∗ = l + 1 with l the order of the kernel

Their honest and globally adaptive confidence bands are of the form

Cn(t, α) =
[
p̂n(t)−

√
p̂n(t) · ∆̂n(α), p̂n(t) +

√
p̂n(t) · ∆̂n(α)

]
, t ∈ [0, 1],

Stochastic order of the confidence band’s width is determined by ∆̂n(α),
which is independent of t

For every β > 0 and for every ε > 0 there exist c , κ > 0, such that

lim sup
n→∞

sup
p∈H(β,L)∩P̃

Pp

(
∆̂n(α) ≥ c · n−

β
2β+1 · (log n)κ

)
< ε
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Admissible functions

Remark

If K (·) = 1
21{· ∈ [−1, 1]} is the rectangular kernel, the set of all twice

differentiable densities p ∈ P(2, L) that are supported in a fixed compact interval
[a, b] satisfies c · h2 + o(h2) ≤ ‖Kh ∗ p − p‖sup with a constant c > 0.

The reason is that due to the constraint of being a probability density, ‖p′′‖sup is
bounded away from zero uniformly over this class, in particular p′′ cannot vanish
everywhere.

x0 point of maximum

1

b − a
≤ p(x0)− p(b)︸︷︷︸

=0

= (x0 − b) p′(x0)︸ ︷︷ ︸
=0

−1

2
(x0 − b)2︸ ︷︷ ︸
≤(b−a)2

p′′(xi )

Hence,

‖p′′‖sup ≥
2

(b − a)3
.
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Locally adaptive confidence bands

However, even one small wiggly part of the density inhibits stronger
performance of the procedure in smooth segments

Ideally, a confidence band is automatically tighter in regions where the
unknown density is smooth and wider in less smooth parts

Our goal / challenges

(i) Find a proper notion of a locally adaptive confidence band

(ii) Design a suitably restricted class of densities tailored to local adaptation

(iii) Construct a locally adaptive confidence band

(iv) Prove honesty of the confidence band (calibration)

(v) Analyze the performance of the confidence band
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Some notation
Hölder class to the parameter β > 0 on the open interval U ⊂ R

HU(β) =
{
p : U → R : ‖p‖β,U <∞

}
with Hölder norm

‖p‖β,U =

bβc∑
k=0

‖p(k)‖U + sup
x,y ∈U
x 6=y

|p(bβc)(x)− p(bβc)(y)|
|x − y |β−bβc

<∞

Corresponding Hölder ball with radius L > 0:

HU(β, L) =
{
p : U → R : ‖p‖β,U ≤ L

}

With this definition of ‖ · ‖β,U , the Hölder balls are nested, that is

HU(β2, L) ⊂ HU(β1, L)

for 0 < β1 ≤ β2 <∞ and |U| < 1

HU(∞, L) =
⋂
β>0HU(β, L) and HU(∞) =

⋂
β>0HU(β)
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Locally adaptive confidence bands

What is locally adaptive confidence band?

Disregarding any measurability issues, we call a confidence band (Cn,α(t))t∈[0,1]
locally adaptive if for every ε > 0 there exists some c > 0, such that

sup
U⊂[a,b]:

U open interval

lim sup
n→∞

sup
p∈P:

p|Uδ∈HUδ
(β,L∗)

P⊗np

(
|Cn,α(t)| ≥ c · rn(β) for some t ∈ U

)
< ε

(1)

for any δ > 0, ideally for any β in the range of adaptation.

Typically, rn(β′)/rn(β)→ 0, whenever β′ > β, implying that (1) guarantees
significantly tighter confidence bands in case of inhomogeneous smoothness
than the corresponding global condition
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Locally adaptive confidence bands

Kind of adaptivity that the construction should reveal for the triangular density
and for fixed sample size n

Shaded area: sketches the intended locally adaptive confidence band
Dashed line: globally adaptive band

The triangular density is not smoother than Lipschitz at its maximal point
but infinitely smooth at both sides

The region where globally and locally adaptive confidence bands coincide up
to logarithmic factors (light gray regime) should shrink as the sample size
increases
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Localizing the self-similarity condition

Design a restricted class of densities P
I for which both honesty and local adaptivity are achievable
I which is sufficiently massive for statistical purposes

A localized self-similarity condition reads as follows:

For any nondegenerate interval (u, v) ⊂ [0, 1], there exists some β ∈ [β∗, β
∗]

with p|(u,v) ∈ P(u,v)(β, L
∗) and

c · hβ ≤ sup
s∈(u+h,v−h)

∣∣(Kh ∗ p)(s)− p(s)
∣∣ (2)

for all h ≤ h0 ∨ (v − u)

Remark

Inequality (2) can be satisfied only for

β̃ = β̃p(U) = sup
{
β ∈ (0,∞] : p|U ∈ HU(β)

}
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Localizing the self-similarity condition

(i) In contrast to the observation in Remark above, for any density p, ‖p′′‖U may
vanish for subintervals U within the support of p.

⇒ The lower bound condition (2) is violated on such subintervals U for every
β ∈ (0, β∗]. [Recall that the kernel K is symmetric and hence of order l ≥ 1.]

Example

Assume that the kernel K is of order l ≥ 1, and recall β∗ = l + 1. Then (2)
excludes for instance the triangular density

p(t) = max{1− |t − 1/2|, 0}, t ∈ R, (3)

because the second derivative exists and vanishes when restricted to any open
interval U ⊂ [0, 1/2) ∪ (1/2, 1].

In general, if p restricted to U is a polynomial of order at most l , (2) is
violated as the left-hand side is not equal to zero.
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Localizing the self-similarity condition

(ii) For p ∈ P(β∗, L) and any fixed h > 0, the map

t 7→ ‖K2−j ∗ p − p‖(t−h+2−j ,t+h−2−j )

is continuous for any natural number j with 2−j < h. At the same time, the map

t 7→ sup
{
β ≤ β∗ : p|(t−h,t+h) ∈ H(t−h,t+h)(β, L)

}
(4)

may be discontinuous, in which case the Local self-similarity condition 2 is
violated.

Example (continued)

We consider again the triangular density in (3). Then,

sup
{
β ≤ β∗ : p|(t−h,t+h) ∈ H(t−h,t+h)(β, 1)

}
=

1 if t ∈
(

1
2
− h, 1

2
+ h
)

β∗ if t ∈ [0, 1] \
(

1
2
− h, 1

2
+ h
)
.
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Localizing the self-similarity condition

Localized version rules out examples which seem to be typical to statisticians

In view of these deficiencies, a condition like (2) is insufficient for statistical
purposes

23 / 48



Localizing the self-similarity condition

β∗-capped Hölder norm

‖p‖β,β∗,U =

bβ∧β∗c∑
k=0

∥∥p(k)∥∥
U

+ sup
x,y ∈U
x 6=y

∣∣p(bβ∧β∗c)(x)− p(bβ∧β
∗c)(y)

∣∣
|x − y |β−bβ∧β∗c

,

for β > 0, U bounded and open

0 < β1 ≤ β2 <∞ and |U| ≤ 1:

‖ · ‖β1,β∗,U ≤ ‖ · ‖β2,β∗,U

Hβ∗,U(β) = {p : U → R : ‖p‖β,β∗,U is well-defined and <∞}
Hβ∗,U(∞, L) =

⋂
β>0Hβ∗,U(β, L)

Hβ∗,U(∞) =
⋂
β>0Hβ∗,U(β)�

sup{β ∈ (0,∞] : p|U ∈ Hβ∗,U(β)} ∈ (0, β∗] ∪ {∞}
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Admissible densities

Assumption

For sample size n ∈ N, some 0 < ε < 1, 0 < β∗ < 1, and L∗ > 0, a density p is
said to be admissible if p ∈ P(−ε,1+ε)(β∗, L

∗) and the following holds true.

For any t ∈ [0, 1] and for any h ∈ G∞ with

G∞ = {2−j : j ∈ N, j ≥ jmin = d2 ∨ log2(2/ε)e},

there exists some β ∈ [β∗, β
∗] ∪ {∞} such that the following conditions are

satisfied for u = h or u = 2h:

p|(t−u,t+u) ∈ Hβ∗,(t−u,t+u)(β, L
∗) (5)

and

sup
s∈(t−(u−g),t+(u−g))

|(Kg ∗ p)(s)− p(s)| ≥ gβ

log n
(6)

for all g ∈ G∞ with g ≤ u/8.
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Admissible densities

Passing from the Hölder norm to the β∗-capped Hölder norm enlarges the set
of densities under consideration

I Densities which restricted to [0, 1] are described by a polynomial of order at
most l are now included

I The order l is a natural limit because a kernel of order l provides bias-free
estimators for polynomials up to the order l , that is, for any 0 < h < 1/2,

Ep p̂n(t, h) = p(t), t ∈ [h, 1− h].

We do not require (5) and (6) to hold for every u = h but only for u = h or
u = 2h

I Essential to incorporate densities with abrupt changes in the smoothness
behavior

Padm
n ⊂Padm

n+1 , n ∈ N, permitting smaller and smaller Lipschitz constants

Pn =

{
p ∈Padm

n : inf
x∈[−ε,1+ε]

p(x) ≥ M

}
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Admissible functions

Example (Triangular density)

If K is the rectangular kernel and L∗ is sufficiently large, the triangular density is
(eventually – for sufficiently large n) admissible.

It is globally not smoother than Lipschitz, and the bias lower bound condition
(6) is (eventually) satisfied for β = 1 and pairs (t, h) with |t − 1/2| < (7/8)h

Although the bias lower bound condition to the exponent β∗ = 2 is not
satisfied for any (t, h) with t ∈ [0, 1] \ (1/2− h, 1/2 + h), these tuples (t, h)
fulfill (5) and (6) for β =∞, which is not excluded anymore

Finally, if the conditions (5) and (6) are not simultaneously satisfied for some
pair (t, h) with

1

2
+

7

8
h < |t| < 1

2
+ h,

then they are fulfilled for the pair (t, 2h) and β = 1, because

|t − 1/2| < (7/8)2h
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How massive is our set of admissible functions?

Rectangular kernel KR(·) = 1
21{· ∈ [−1, 1]}

Proposition (Lower pointwise risk bound)

The pointwise minimax rate of convergence remains unchanged when passing
from the class H(β, L∗) to Padm

n ∩H(β, L∗), β < 1.

Proposition (Set of permanently excluded densities is pathological)

Let

R =
⋃
n∈N

Padm
n (KR , β∗, L

∗, ε).

Then, for any t ∈ [0, 1], for any h ∈ G∞ and for any β ∈ [β∗, 1), the set

P(t−h,t+h)(β, L
∗) \ R|(t−h,t+h)

is nowhere dense in P(t−h,t+h)(β, L
∗) with respect to ‖ · ‖β,(t−h,t+h).
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Specific functions

Lemma

For all β ∈ (0, 1), the Weierstraß function Wβ satisfies Wβ|U ∈ HU(β, LW ) with
some Lipschitz constant LW = LW (β) for every open interval U. For the
rectangular kernel KR and β ∈ (0, 1], the Weierstraß function fulfills the bias lower
bound condition

sup
s(t−(h−g),t+h−g)

|(KR,g ∗Wβ)(s)−Wβ(s)| >
(

4

π
− 1

)
gβ

for any t ∈ R and for any g , h ∈ G∞ with g ≤ h/2.
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Construction of the confidence band

The new confidence band is based on a kernel density estimator with variable
bandwidth incorporating a localized but not the fully pointwise Lepski
bandwidth selection procedure

A suitable discretization of the interval [a, b] and a locally constant
approximation of both the density estimator and the (random) bandwidth
allow to piece the segmentwise confidence statements together to obtain a
continuum of confidence statements over [a, b]

Due to the discretization, the band is computable and feasible from a
practical point of view without losing optimality between the mesh points
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Construction of the confidence band
Divide the sample into two parts of equal size ñ = bn/2c → p̂

(1)
n , p̂

(2)
n

The interval [0, 1] is discretized into equally spaced grid points

Tn := {kδn : k ∈ Z} ∩ [0, 1]

Let

Jn :=

{
j ∈ N0 : jmin ≤ j ≤ jmax := log2

(
ñ

(log ñ)κ2

)}
and

Gn :=
{

2−j : j ∈ Jn
}

be the corresponding dyadic grid of bandwidths
Define the set of admissible bandwidths for each t ∈ [0, 1] as

An(t) :=
{
j ∈ Jn : max

s∈(t−c·2−j ,t+c·2−j )∩Tn

∣∣∣p̂(2)
n (s,m′)− p̂(2)

n (s,m)
∣∣∣ ≤ c

√
log ñ

ñ2−m

for all m,m′ ∈ Jn with m > m′ > j + 2
}
,

and choose

ĵn(t) = minAn(t), t ∈ [0, 1]
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Construction of the confidence band

For t ∈ Ik := [(k − 1)δn, kδn), set furthermore

ĥlocn (t) = min
{

2−ĵn((k−1)δn), 2−ĵn(kδn)
}

2−un

and

p̂locn (t, h) := p̂(1)n (kδn, h),

where un � log log ñ

Define the class of densities

Pn :=

{
p ∈ H(β∗, L

∗) : inf
[0−ε,1+ε]

p(x) ≥ M

}
∩Padm

n
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Calibration to the level 1− α

Theorem (Least favorable case)

For these estimators and normalizing sequences

An = c3(−2 log δn)1/2, Bn =
3

c3

{
(−2 log δn)1/2 − log(− log δn) + log 4π

2(−2 log δn)1/2

}
,

with c3 =
√

2/TV (K ), it holds

lim inf
n→∞

inf
p∈Pn

P⊗np

An

 sup
t∈[0,1]

∣∣∣p̂locn (t, ĥlocn (t))− p(t)
∣∣∣

[ñĥlocn (t)]−
1
2

− Bn

 ≤ x


≥ 2 P

(√
L∗G ≤ x

)
− 1

for some standard Gumbel distributed random variable G .
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Calibration to the level 1− α

We use non-asymptotic approximation techniques of Chernozhukov,
Chetverikov and Kato (2014) to pass over to the supremum over a Gaussian
process

Whereas the related globally adaptive procedure of Giné and Nickl (2010)
reduces to the limiting distribution of the supremum of a stationary Gaussian
process, our locally adaptive approach leads to a highly non-stationary
situation

This highly non-stationary Gaussian process even depends on the unknown
density p

Identify a stationary process as a least favorable case by means of Slepian’s
comparison inequality
→ not dependent on p any longer
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Locally adaptive confidence bands

Confidence band:

Cαn (t) =

[
p̂locn (t, ĥlocn (t))−

(
q1−α2
An

+ Bn

)(
ñĥlocn (t)

)− 1
2

,

p̂locn (t, ĥlocn (t)) +

(
q1−α2
An

+ Bn

)(
ñĥlocn (t)

)− 1
2

]

Corollary (Honesty)

The confidence band satisfies

lim inf
n→∞

inf
p∈Pn

P⊗np

(
p(t) ∈ Cαn (t) for every t ∈ [0, 1]

)
≥ 1− α.
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Locally adaptive confidence bands
Performance

Theorem (Local adaptivity)

For every open interval U ⊂ [0, 1], and for any δ > 0,

lim sup
n→∞

sup
p∈Pn:

p|Uδ∈HUδ
(β,L∗)

Pp

(
sup
t∈U
|Cn,α(t)| ≥

(
log n

n

) β
2β+1

(log n)γ

)
= 0

for every β ∈ [β∗, β
∗] and γ = γ(c1), where Uδ is the open δ-enlargement of U.

Recall that the minimax-rate of convergence over Pn|Uδ ∩Hβ∗,Uδ(β, L∗)

remains n−β/(2β+1)
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Locally adaptive confidence bands
Performance

Let p ∈ H(β, L) and p|Uδ ∈ HUδ(β′, L) for some β′ > β and some open interval
U ⊂ [0, 1]

Locally adaptive confidence bands: the maximal width over U is of the
stochastic order (up to logarithmic factors)

OPp

(
n
− β′

2β′+1

)
Globally adaptive confidence bands: only guarantee a width of stochastic
order (up to logarithmic factors)

OPp

(
n−

β
2β+1

)
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Locally adaptive confidence bands
Performance

Can we formulate the asymptotic statement not only for arbitrary but fixed
intervals?

The more observations are available the more localized and smaller are
regions the statistician would like to learn about

Is it even possible to adapt to some ”local Hölder exponent”?
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Locally adaptive confidence bands
Performance

Theorem
Attaining the minimax rates of convergence corresponding to the pointwise or
local Hölder exponent (possibly inflated by some logarithmic factor) uniformly
over Pn is an unachievable goal.
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Locally adaptive confidence bands
Performance

Is our confidence band adaptive to some notion of local Hölder regularity
nevertheless?

Set hβ,n = 2−jmin ·
(

log n
n

) 1
2β+1

(optimal adaptive bandwidth within H(β, L∗))

n-dependent local Hölder exponent

Define

βn,p(t) = sup
{
β > 0 : ‖p‖β,β∗,(t−hβ,n,t+hβ,n) ≤ L∗

}
.

(If the supremum is running over the empty set, we set βn,p(t) = 0.)

Roughly speaking, we intend the local Hölder exponent to be the maximal β
such that the density attains this Hölder exponent within (t − hβ,n, t + hβ,n)

40 / 48



Locally adaptive confidence bands
Performance

Theorem (Strong local adaptivity)

There exists some γ = γ(c1), such that

lim sup
n→∞

sup
p∈Pn

Pp

 sup
t∈[0,1]

|Cn,α(t)| ·
(

log n

n

)− βn,p (t)

2βn,p (t)+1

≥ (log n)γ

 = 0.

Note that βn,p(t) =∞ is not excluded

The confidence band attains even adaptively the parametric width n−1/2 (up
to logarithmic factors) if p can be locally represented as a polynomial of
degree strictly less than β∗
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Locally adaptive confidence bands
Performance

The stochastic order of the width of our confidence band is (up to
logarithmic factors) given by

n
− βn,p (t)

2βn,p (t)+1 , t ∈ [0, 1],

Example: triangular density p(t) = max{1− |t − 1/2|, 0}, L∗ ≥ 2

If |t − 1/2 | ≥ 2−jmin −→ βn,p(t) =∞ and n
− βn,p (t)

2βn,p (t)+1 = n−1/2

If |t − 1/2 | ≤ h1,n −→ βn,p(t) = 1 and n
− βn,p (t)

2βn,p (t)+1 = n−1/3

If h1,n < |t − 1/2 | < 2−jmin −→ βn,p(t) is the solution of hβ,n = |t − 1/2|
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Locally adaptive confidence bands
Performance

0,5 1

0,1

0,2

Abbildung: n
− βn,p (t)

2βn,p (t)+1 and n−1/3, t ∈ [0, 1], n = 200, jmin = 4

0,5 1

0,5

1

Abbildung: p(t)± n
− βn,p (t)

2βn,p (t)+1 and p(t)± n−1/3, t ∈ [0, 1], n = 200, jmin = 4
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Thank you for your attention!
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Localizing the self-similarity condition

Remark

(i) There exist functions p : U → R, U ⊂ R some interval, which are not Hölder

continuous to their exponent β̃.

Example:

W1(·) =
∞∑
n=0

2−n cos (2nπ ·) (Weierstraß function)

Hardy (1916):
W1(x + h)−W1(x) = O (|h| log (1/|h|)) ,

which implies the Hölder continuity to any parameter β < 1, hence β̃ ≥ 1.

Hardy shows in the same reference that W1 is nowhere differentiable, meaning
that it cannot be Lipschitz continuous, that is β̃ = 1 but W1 /∈ HU(β̃).
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Localizing the self-similarity condition

Remark

(ii) It can also happen that p|U ∈ HU(β̃) but

lim sup
δ→0

sup
|x−y |≤δ
x,y∈U

|p(bβ̃c)(x)− p(bβ̃c)(y)|
|x − y |β̃−bβ̃c

= 0,

meaning that (2) is violated. In the analysis literature, the subset of functions in

HU(β̃) with this property is called little Lipschitz (or little Hölder) space.

As a complement of an open and dense set, it forms a nowhere dense subset of
HU(β̃).
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Poiwise Hölder exponent

Pointwise Hölder exponent, Seuret and Lévy-Véhel

Let p : R→ R be a function, β > 0, β /∈ N, and t ∈ R. Then p ∈ Ht(β) if and
only if there exists a real R > 0, a polynomial P with degree less than bβc, and a
constant c such that

|p(x)− P(x − t)| ≤ c |x − t|β

for all x ∈ (t − R, t + R). The pointwise Hölder exponent is denoted by

βp(t) = sup{β : p ∈ Ht(β)}.
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Local Hölder exponent

Local Hölder exponent, Seuret and Lévy-Véhel (2002)

Let p : Ω→ R be a function and Ω ⊂ R an open set. One classically says that
p ∈ Hloc(β,Ω), where 0 < β < 1, if there exists a constant c such that

|p(x)− p(y)| ≤ c|x − y |β

for all x , y ∈ Ω. If m < β < m + 1 for some m ∈ N, then p ∈ Hloc(β,Ω) means that
there exists a constant c such that

|∂mp(x)− ∂mp(y)| ≤ c|x − y |β−m

for all x , y ∈ Ω. Set now

βp(Ω) = sup{β : p ∈ Hloc(β,Ω)}.

Finally, the local Hölder exponent in t is defined as

β loc
p (t) = sup{βp(Oi ) : i ∈ I},

where (Oi )i∈I is a decreasing family of open sets with ∩i∈IOi = {t}. [By Lemma 2.1 in
Seuret and Lévy-Véhel (2002), this notion is well defined, that is, it does not depend on
the particular choice of the decreasing sequence of open sets.]
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