Adaptivity of early stopping for PLS / CG¹

Markus Reiß

Institut für Mathematik Humboldt-Universität zu Berlin www.mathematik.hu-berlin.de/~mreiss

Luminy, 20 December 2017

¹PLS: partial least squares / CG: conjugate gradients

Least squares

"White" Gaussian linear model:

$$Y = X\beta + \varepsilon$$

- $\beta \in \mathbb{R}^D$, $X \in \mathbb{R}^{n \times D}$, $\varepsilon \sim N(0, \sigma^2 E_n)$
- Least squares: $\hat{\beta}^{LS} = (X^{T}X)^{-1}X^{T}Y$
- $D \le n$, $\lambda_1 \ge \cdots \ge \lambda_D > 0$ singular values of X (eigenvalues of $(X^\top X)^{1/2}$)
- Errors (conditional on X):

$$\mathbb{E}[\|\hat{\beta}^{LS} - \beta\|^2] = \sigma^2 \sum_{i=1}^{D} \lambda_i^{-2}$$

(strong norm error)

$$\mathbb{E}[\|X(\hat{\beta}^{LS} - \beta)\|^2] = \sigma^2 D$$

(prediction / weak norm error)

Principal component regression: (Kendall 1957, Hotelling 1957) $\hat{\beta}_m$: projection of $\hat{\beta}$ onto span (v_1, \ldots, v_m) $(v_i \text{ singular vectors of } X)$

$$\mathbb{E}[\|\hat{\beta}_m - \beta\|^2] = \|\beta_m - \beta\|^2 + \sigma^2 \sum_{i=1}^m \lambda_i^{-2}$$
 (strong error)

$$\mathbb{E}[\|X(\hat{\beta}_m - \beta)\|^2] = \|X(\beta_m - \beta)\|^2 + \sigma^2 m$$
 (weak error)

Critique

The principal directions v_i of X^TX bear no information about their significance for predicting Y. (Jolliffe 1982)

Principal component regression: (Kendall 1957, Hotelling 1957) $\hat{\beta}_m$: projection of $\hat{\beta}$ onto span (v_1, \ldots, v_m) $(v_i \text{ singular vectors of } X)$

$$\mathbb{E}[\|\hat{\beta}_m - \beta\|^2] = \|\beta_m - \beta\|^2 + \sigma^2 \sum_{i=1}^m \lambda_i^{-2}$$
 (strong error)

$$\mathbb{E}[\|X(\hat{\beta}_m - \beta)\|^2] = \|X(\beta_m - \beta)\|^2 + \sigma^2 m$$
 (weak error)

Critique:

The principal directions v_i of X^TX bear no information about their significance for predicting Y. (Jolliffe 1982)

$$X^{\top}Y = (X^{\top}X)\beta + X^{\top}\varepsilon$$

- $\hat{\beta}_0 := 0$
- $\hat{\beta}_1 := \alpha_1 X^\top Y$ such that $R_1^2 := \|Y X\hat{\beta}_1\|^2 \to \min_{\alpha_1}!$ Solution: $\alpha_1 = \|X^\top Y\|^2/\|XX^\top Y\|^2$ Structure: $X\hat{\beta}_1 = p_1(XX^\top)Y$, p_1 linear with Y-dependent coefficier Note: X orthogonal $\Rightarrow \hat{\beta}_1 = X^\top Y = \beta + X^\top \varepsilon = \hat{\beta}^{LS}$
- Update: $Y^{(-1)} := Y X\hat{\beta}_1$
- $\hat{\beta}_2 := \hat{\beta}_1 + \alpha_2 X^\top Y^{(-1)}$ s.t. $R_2^2 := \|Y X\hat{\beta}_2\|^2 \to \min_{\alpha_2}!$ Structure: $X\hat{\beta}_2 = p_2(XX^\top)Y$, $p_2 \in \operatorname{Pol}_{2,0}$ quadratic polynomial with $p_2(0) = 0$ and random coefficients :
- $\hat{\beta}_k := \hat{\beta}_{k-1} + \alpha_k X^\top Y^{(-(k-1))}, R_k^2 := \|Y X\hat{\beta}_k\|^2 \rightarrow \min_{\alpha_k}!$ Structure: $X\hat{\beta}_k = p_k(XX^\top)Y, p_k \in \text{Pol}_{k,0}$

$$X^{\top}Y = (X^{\top}X)\beta + X^{\top}\varepsilon$$

- $\hat{\beta}_0 := 0$
- $\hat{\beta}_1 := \alpha_1 X^\top Y$ such that $R_1^2 := \|Y X\hat{\beta}_1\|^2 \to \min_{\alpha_1}!$ Solution: $\alpha_1 = \|X^\top Y\|^2 / \|XX^\top Y\|^2$ Structure: $X\hat{\beta}_1 = p_1(XX^\top)Y$, p_1 linear with Y-dependent coefficier Note: X orthogonal $\Rightarrow \hat{\beta}_1 = X^\top Y = \beta + X^\top \varepsilon = \hat{\beta}^{LS}$
- Update: $Y^{(-1)} := Y X\hat{\beta}_1$
- $\hat{\beta}_2 := \hat{\beta}_1 + \alpha_2 X^\top Y^{(-1)}$ s.t. $R_2^2 := \|Y X \hat{\beta}_2\|^2 \to \min_{\alpha_2}!$ Structure: $X \hat{\beta}_2 = p_2(XX^\top) Y$, $p_2 \in \text{Pol}_{2,0}$ quadratic polynomial with $p_2(0) = 0$ and random coefficients :
- $\hat{\beta}_k := \hat{\beta}_{k-1} + \alpha_k X^\top Y^{(-(k-1))}, R_k^2 := \|Y X\hat{\beta}_k\|^2 \rightarrow \min_{\alpha_k}!$ Structure: $X\hat{\beta}_k = p_k(XX^\top)Y, p_k \in \text{Pol}_{k,0}$

$$X^{\top}Y = (X^{\top}X)\beta + X^{\top}\varepsilon$$

- $\bullet \ \hat{\beta}_0 := 0$
- $\hat{\beta}_1 := \alpha_1 X^\top Y$ such that $R_1^2 := \|Y X \hat{\beta}_1\|^2 \to \min_{\alpha_1}!$ Solution: $\alpha_1 = \|X^\top Y\|^2 / \|XX^\top Y\|^2$ Structure: $X \hat{\beta}_1 = p_1(XX^\top) Y$, p_1 linear with Y-dependent coefficient Note: X orthogonal $\Rightarrow \hat{\beta}_1 = X^\top Y = \beta + X^\top \varepsilon = \hat{\beta}^{LS}$
- Update: $Y^{(-1)} := Y X\hat{\beta}_1$
- $\hat{\beta}_2 := \hat{\beta}_1 + \alpha_2 X^\top Y^{(-1)}$ s.t. $R_2^2 := \|Y X \hat{\beta}_2\|^2 \to \min_{\alpha_2}!$ Structure: $X \hat{\beta}_2 = p_2(XX^\top) Y$, $p_2 \in \text{Pol}_{2,0}$ quadratic polynomial with $p_2(0) = 0$ and random coefficients :
- $\hat{\beta}_k := \hat{\beta}_{k-1} + \alpha_k X^\top Y^{(-(k-1))}, R_k^2 := \|Y X\hat{\beta}_k\|^2 \rightarrow \min_{\alpha_k}!$ Structure: $X\hat{\beta}_k = p_k(XX^\top)Y, p_k \in \text{Pol}_{k,0}$

Partial least squares: (Wold 1982, Rosipal, Krämer 2006)

$$X^{\top}Y = (X^{\top}X)\beta + X^{\top}\varepsilon$$

- $\hat{\beta}_0 := 0$
- $\hat{\beta}_1 := \alpha_1 X^\top Y$ such that $R_1^2 := \|Y X\hat{\beta}_1\|^2 \to \min_{\alpha_1}!$ Solution: $\alpha_1 = \|X^\top Y\|^2 / \|XX^\top Y\|^2$ Structure: $X\hat{\beta}_1 = p_1(XX^\top)Y$, p_1 linear with Y-dependent coefficient

Note: *X* orthogonal $\Rightarrow \hat{\beta}_1 = X^\top Y = \beta + X^\top \varepsilon = \hat{\beta}^{LS}$

- Update: $Y^{(-1)} := Y X \hat{\beta}_1$
- $\hat{\beta}_2 := \hat{\beta}_1 + \alpha_2 X^\top Y^{(-1)}$ s.t. $R_2^2 := \|Y X \hat{\beta}_2\|^2 \to \min_{\alpha_2}!$ Structure: $X \hat{\beta}_2 = p_2(XX^\top) Y$, $p_2 \in \text{Pol}_{2,0}$ quadratic polynomial with $p_2(0) = 0$ and random coefficients :
- $\hat{\beta}_k := \hat{\beta}_{k-1} + \alpha_k X^\top Y^{(-(k-1))}, R_k^2 := \|Y X\hat{\beta}_k\|^2 \rightarrow \min_{\alpha_k}!$ Structure: $X\hat{\beta}_k = p_k(XX^\top)Y, p_k \in \text{Pol}_{k,0}$

Partial least squares: (Wold 1982, Rosipal, Krämer 2006)

$$X^{\top}Y = (X^{\top}X)\beta + X^{\top}\varepsilon$$

- $\bullet \ \hat{\beta}_0 := 0$
- $\hat{\beta}_1 := \alpha_1 X^\top Y$ such that $R_1^2 := \|Y X\hat{\beta}_1\|^2 \to \min_{\alpha_1}!$ Solution: $\alpha_1 = \|X^\top Y\|^2 / \|XX^\top Y\|^2$ Structure: $X\hat{\beta}_1 = p_1(XX^\top)Y$, p_1 linear with Y-dependent coefficient

Note: X orthogonal $\Rightarrow \hat{\beta}_1 = X^\top Y = \beta + X^\top \varepsilon = \hat{\beta}^{LS}$

- Update: $Y^{(-1)} := Y X \hat{\beta}_1$
- $\hat{\beta}_2 := \hat{\beta}_1 + \alpha_2 X^\top Y^{(-1)}$ s.t. $R_2^2 := \|Y X \hat{\beta}_2\|^2 \to \min_{\alpha_2}!$ Structure: $X \hat{\beta}_2 = p_2(XX^\top)Y$, $p_2 \in \text{Pol}_{2,0}$ quadratic polynomial with $p_2(0) = 0$ and random coefficients :
- $\hat{\beta}_k := \hat{\beta}_{k-1} + \alpha_k X^\top Y^{(-(k-1))}, R_k^2 := \|Y X\hat{\beta}_k\|^2 \rightarrow \min_{\alpha_k}!$ Structure: $X\hat{\beta}_k = p_k(XX^\top)Y, p_k \in \text{Pol}_{k,0}$

Partial least squares: (Wold 1982, Rosipal, Krämer 2006)

$$X^{\top}Y = (X^{\top}X)\beta + X^{\top}\varepsilon$$

- $\bullet \ \hat{\beta}_0 := 0$
- $\hat{\beta}_1 := \alpha_1 X^\top Y$ such that $R_1^2 := \|Y X \hat{\beta}_1\|^2 \to \min_{\alpha_1}!$ Solution: $\alpha_1 = \|X^\top Y\|^2 / \|XX^\top Y\|^2$ Structure: $X \hat{\beta}_1 = p_1(XX^\top) Y$, p_1 linear with Y-dependent coefficient Note: X orthogonal $\Rightarrow \hat{\beta}_1 = X^\top Y = \beta + X^\top \varepsilon = \hat{\beta}^{LS}$

• Update: $Y^{(-1)} := Y - X\hat{\beta}_1$

• $\hat{\beta}_2 := \hat{\beta}_1 + \alpha_2 X^\top Y^{(-1)}$ s.t. $R_2^2 := \|Y - X \hat{\beta}_2\|^2 \to \min_{\alpha_2}!$ Structure: $X \hat{\beta}_2 = p_2(XX^\top)Y$, $p_2 \in \text{Pol}_{2,0}$ quadratic polynomial with $p_2(0) = 0$ and random coefficients :

• $\hat{\beta}_k := \hat{\beta}_{k-1} + \alpha_k X^\top Y^{(-(k-1))}, R_k^2 := \|Y - X\hat{\beta}_k\|^2 \rightarrow \min_{\alpha_k}!$ Structure: $X\hat{\beta}_k = p_k(XX^\top)Y, p_k \in \text{Pol}_{k,0}$

$$X^{\top}Y = (X^{\top}X)\beta + X^{\top}\varepsilon$$

- $\bullet \ \hat{\beta}_0 := 0$
- $\hat{\beta}_1 := \alpha_1 X^\top Y$ such that $R_1^2 := \|Y X \hat{\beta}_1\|^2 \to \min_{\alpha_1}!$ Solution: $\alpha_1 = \|X^\top Y\|^2 / \|XX^\top Y\|^2$ Structure: $X \hat{\beta}_1 = p_1(XX^\top) Y$, p_1 linear with Y-dependent coefficient Note: X orthogonal $\Rightarrow \hat{\beta}_1 = X^\top Y = \beta + X^\top \varepsilon = \hat{\beta}^{LS}$
- Update: $Y^{(-1)} := Y X\hat{\beta}_1$
- $\hat{\beta}_2 := \hat{\beta}_1 + \alpha_2 X^\top Y^{(-1)}$ s.t. $R_2^2 := \|Y X\hat{\beta}_2\|^2 \to \min_{\alpha_2}!$ Structure: $X\hat{\beta}_2 = p_2(XX^\top)Y$, $p_2 \in \text{Pol}_{2,0}$ quadratic polynomial with $p_2(0) = 0$ and random coefficients :
- $\hat{\beta}_k := \hat{\beta}_{k-1} + \alpha_k X^\top Y^{(-(k-1))}, R_k^2 := \|Y X\hat{\beta}_k\|^2 \rightarrow \min_{\alpha_k}!$ Structure: $X\hat{\beta}_k = p_k(XX^\top)Y, p_k \in \text{Pol}_{k,0}$

Partial least squares & conjugate gradients Residual polynomials:

 $r_k := 1 - p_k \in \text{Pol}_{k,1}$ where $X\hat{\beta}_k = p_k(XX^\top)Y$. Then

$$r_k = \operatorname{argmin}_{r \in \operatorname{Pol}_{k,1}} || r(XX^\top) Y ||$$

 \rightarrow PLS is conjugate gradient method for solving $Y = X\hat{\beta}$.

- Nemirovski (1986)
- Hanke (1995)
- Phatak, de Hoog (2003)
- Blanchard, Mathé (2010)
- Blanchard, Krämer (2016)
- Singer, Krivobokova, de Groot, Munk (2016)

deterministic noise:

rate-optimal when stopped via discrepancy principle statistical noise:

minimax bounds, not adaptive/sequential, not easy

Basic error analysis?

Weak error for PLS/CG

$$rY := r(XX^{\top})Y : X\hat{\beta}_k = (1 - r_k)Y, \quad r_k = \operatorname{argmin}_{r \in Pol_{k,1}} ||rY||$$

Crucial bound:

Weak norm error:

$$||X(\hat{\beta}_{k} - \beta)||^{2}$$

$$= ||(1 - r_{k})Y - X\beta||^{2}$$

$$= ||r_{k}Y||^{2} + ||\varepsilon||^{2} - 2\langle \varepsilon, r_{k}Y \rangle$$

$$= ||r_{k,<}^{1/2}(X\beta)||^{2} + ||R_{k}^{2} - ||r_{k,<}^{1/2}Y||^{2} + ||(1 - r_{k,<})^{1/2}\varepsilon||^{2} - 2\langle \varepsilon, r_{k,>}Y \rangle$$

Weak error for PLS/CG

$$rY := r(XX^{\top})Y : X\hat{\beta}_k = (1 - r_k)Y, \quad r_k = \operatorname{argmin}_{r \in \mathsf{Pol}_{k,1}} \|rY\|$$

Crucial bound:

Weak norm error:

$$\begin{split} &\|X(\hat{\beta}_{k}-\beta)\|^{2} \\ &= \|(1-r_{k})Y-X\beta\|^{2} \\ &= \|r_{k}Y\|^{2} + \|\varepsilon\|^{2} - 2\langle\varepsilon,r_{k}Y\rangle \\ &= \underbrace{\|r_{k,<}^{1/2}(X\beta)\|^{2}}_{\text{bias control}} + \underbrace{R_{k}^{2} - \|r_{k,<}^{1/2}Y\|^{2}}_{\leqslant 0} + \underbrace{\|(1-r_{k,<})^{1/2}\varepsilon\|^{2}}_{\text{stochastic error}} - \underbrace{2\langle\varepsilon,r_{k,>}Y\rangle}_{\text{cross term}} \end{split}$$

Weak error decomposition

$$S_{k,\lambda} = \|(1 - r_{k,<})^{1/2} \varepsilon\|^2$$
 (stochastic error)
 $B_{k,\lambda}^2 = \|r_{k,<}^{1/2}(X\beta)\|^2 + R_k^2 - \|r_{k,<}^{1/2}Y\|^2$ (bias-type error)

Weak norm error:

$$||X(\hat{\beta}_k - \beta)||^2 = B_{k,\lambda}^2 + S_{k,\lambda} - 2\langle \varepsilon, r_{k,>} Y \rangle \leqslant 2(B_{k,\lambda}^2 + S_{k,\lambda})$$

Lemma. The stochastic error term $S_{k,\lambda}$ satisfies

- 1. $S_{k,\lambda} = 0$ for $\varepsilon = 0$
- 2. $S_{0,\lambda}=0$ and $S_{D,\lambda}=\|arepsilon\|^2$;
- 3. $k \mapsto S_{k,\lambda}$ is increasing

Lemma. The bias-type error term $B_{k,\lambda}^2$ satisfies

- 1. $B_{k,\lambda}^2 \le ||r_{k,\lambda}^{1/2}(X\beta)||^2$ and $B_{k,\lambda}^2 \le 0$ if $X\beta = 0$;
- 2. $B_{0,\lambda}^2 = ||X\beta||^2$ and $B_{D,\lambda}^2 = 0$
- 3. the upper bound $||r_k||^{1/2} (X\beta)||^2$ is decreasing in k

Weak error decomposition

$$S_{k,\lambda} = \|(1 - r_{k,<})^{1/2} \varepsilon\|^2$$
 (stochastic error)
 $B_{k,\lambda}^2 = \|r_{k,<}^{1/2}(X\beta)\|^2 + R_k^2 - \|r_{k,<}^{1/2}Y\|^2$ (bias-type error)

Weak norm error:

$$||X(\hat{\beta}_k - \beta)||^2 = B_{k,\lambda}^2 + S_{k,\lambda} - 2\langle \varepsilon, r_{k,>} Y \rangle \leqslant 2(B_{k,\lambda}^2 + S_{k,\lambda})$$

Lemma. The stochastic error term $S_{k,\lambda}$ satisfies:

- 1. $S_{k,\lambda} = 0$ for $\varepsilon = 0$;
- 2. $S_{0,\lambda} = 0$ and $S_{D,\lambda} = \|\varepsilon\|^2$;
- 3. $k \mapsto S_{k,\lambda}$ is increasing.

Lemma. The bias-type error term $B_{k,\lambda}^2$ satisfies:

- 1. $B_{k,\lambda}^2 \le ||r_{k,\lambda}^{1/2}(X\beta)||^2$ and $B_{k,\lambda}^2 \le 0$ if $X\beta = 0$;
- 2. $B_{0,\lambda}^2 = \|X\beta\|^2$ and $B_{D,\lambda}^2 = 0$;
- 3. the upper bound $||r_k||^{1/2} (X\beta)||^2$ is decreasing in k.

Upper bounds

Interpolation:
$$t = k + \alpha$$
, $\alpha \in [0, 1)$: $\hat{\beta}_t = (1 - \alpha)\hat{\beta}_k + \alpha\hat{\beta}_{k+1}$

Source condition: $\|(XX^{\top})^{s/2}(X\beta)\| \leqslant R$

Main weak bounds

$$B_{t,\lambda}^2 \leqslant \|r_{t,<}^{1/2}(X\beta)\|^2 \leqslant R^2 s^s |r_t'(0)|^{-s}$$
 (bias bound) $S_{t,\lambda} \leqslant \|((|r_t'(0)|x) \wedge 1)^{1/2} \varepsilon\|^2$ (stochastic error bound)

Argument:

 r_t on $[0, x_{1,t}]$ is convex and log-concave such that

$$(1 - |r'_t(0)|x)_+ \leqslant r_{t,<}(x) \leqslant \exp(-|r'_t(0)|x)^{\frac{6}{46}}$$

Upper bounds

Interpolation:
$$t = k + \alpha$$
, $\alpha \in [0, 1)$: $\hat{\beta}_t = (1 - \alpha)\hat{\beta}_k + \alpha\hat{\beta}_{k+1}$

Source condition: $\|(XX^{\top})^{s/2}(X\beta)\| \leqslant R$

Main weak bounds:

$$B_{t,\lambda}^2 \leqslant \|r_{t,<}^{1/2}(Xeta)\|^2 \leqslant R^2 s^s |r_t'(0)|^{-s}$$
 (bias bound) $S_{t,\lambda} \leqslant \|((|r_t'(0)|x) \land 1)^{1/2} arepsilon\|^2$ (stochastic error bound)

Argument:

 r_t on $[0, x_{1,t}]$ is convex and log-concave such that

$$(1 - |r'_t(0)|x)_+ \leqslant r_{t,<}(x) \leqslant \exp(-|r'_t(0)|x)$$

Upper bounds

Interpolation:
$$t = k + \alpha$$
, $\alpha \in [0, 1)$: $\hat{\beta}_t = (1 - \alpha)\hat{\beta}_k + \alpha\hat{\beta}_{k+1}$

Source condition: $\|(XX^{\top})^{s/2}(X\beta)\| \leq R$

Main weak bounds:

$$B_{t,\lambda}^2 \leqslant \|r_{t,<}^{1/2}(X\beta)\|^2 \leqslant R^2 s^s |r_t'(0)|^{-s}$$
 (bias bound)
 $S_{t,\lambda} \leqslant \|((|r_t'(0)|x) \land 1)^{1/2} \varepsilon\|^2$ (stochastic error bound)

Argument:

 r_t on $[0, x_{1,t}]$ is convex and log-concave such that

$$(1-|r'_t(0)|x)_+\leqslant r_{t,<}(x)\leqslant \exp(-|r'_t(0)|x)^{-\frac{4}{3}}$$

Oracle and minimax upper bound Weakly balanced oracle τ_m :

$$\tau_{\mathfrak{w}} = \inf\{t \geqslant 0 \mid B_{t,\lambda}^2 \leqslant S_{t,\lambda}\}$$

$$\forall \, \rho \geqslant 0 : \mathbb{E}[\|((\rho x) \wedge 1)^{1/2} (XX^{\top}) \varepsilon \|^2] \leqslant C_p \sigma^2 \rho^{1/(2\rho)}$$

$$\mathbb{E}\left[\|X(\hat{\beta}_{\tau_{\mathfrak{w}}}-\beta)\|^2\right] \leqslant C_{\rho,s}R^{2/(2\rho s+1)}\sigma^{4s/(2s+1/\rho)}$$

Oracle and minimax upper bound Weakly balanced oracle τ_m :

$$\tau_{\mathfrak{w}} = \inf\{t \geqslant 0 \mid B_{t,\lambda}^2 \leqslant S_{t,\lambda}\}$$

For X-singular values $\lambda_i \sim i^{-p}$, p > 0, use

$$\forall \, \rho \geqslant 0 : \mathbb{E}[\|((\rho \mathbf{x}) \wedge 1)^{1/2} (\mathbf{X} \mathbf{X}^{\top}) \varepsilon \|^2] \leqslant C_p \sigma^2 \rho^{1/(2p)}$$

Theorem (Weak upper bound):

Under (s, R)-source condition and $\lambda_i \sim i^{-p}$ we have

$$\mathbb{E}\left[\|X(\hat{\beta}_{\tau_{w}}-\beta)\|^{2}\right] \leqslant C_{\rho,s}R^{2/(2\rho s+1)}\sigma^{4s/(2s+1/\rho)}$$

This rate is minimax optimal.

p = 1/d gives standard Sobolev ellipsoids in d-dimensional domains.

Early stopping

Adaptive choice of iteration number?

Early stopping via residuals

Residual norm / weak empirical risk / contrast:

$$R_t^2 := \|Y - X\hat{eta}_t\|^2 = \|arepsilon\|^2 + B_{t,\lambda}^2 - S_{t,\lambda} + 2\langle arepsilon, r_{t,<}(Xeta)
angle$$

Empirical risk minimisation: open; heavy for D large

Weakly balanced oracle $\tau_{\mathfrak{w}}$:

$$\tau_{\mathfrak{w}} = \inf\{t \geqslant 0 \mid B_{t,\lambda}^2 \leqslant S_{t,\lambda}\} = \inf\{t \geqslant 0 \mid R_t^2 \leqslant \|\varepsilon\|^2 + 2\langle \varepsilon, r_{t,<} X\beta \rangle\}$$

Early stopping iteration τ : $\varepsilon \sim N(0, \sigma^2 E_D) \Rightarrow \mathbb{E}[\|\varepsilon\|^2] = D\sigma^2$

$$\tau = \inf\{t \geqslant 0 \mid R_t^2 \leqslant D\sigma^2\}$$

Early stopping via residuals

Residual norm / weak empirical risk / contrast:

$$R_t^2 := \|Y - X\hat{eta}_t\|^2 = \|arepsilon\|^2 + B_{t,\lambda}^2 - S_{t,\lambda} + 2\langle arepsilon, r_{t,<}(Xeta)
angle$$

Empirical risk minimisation: open; heavy for D large

Weakly balanced oracle $\tau_{\mathfrak{w}}$:

$$\tau_{\mathfrak{w}} = \inf\{t \geqslant 0 \mid B_{t,\lambda}^2 \leqslant S_{t,\lambda}\} = \inf\{t \geqslant 0 \mid R_t^2 \leqslant \|\varepsilon\|^2 + 2\langle \varepsilon, r_{t,<} X\beta \rangle\}$$

Early stopping iteration τ : $\varepsilon \sim N(0, \sigma^2 E_D) \Rightarrow \mathbb{E}[\|\varepsilon\|^2] = D\sigma^2$

$$\tau = \inf\{t \geqslant 0 \mid R_t^2 \leqslant D\sigma^2\}$$

Early stopping via residuals

Residual norm / weak empirical risk / contrast:

$$R_t^2 := \|Y - X\hat{eta}_t\|^2 = \|arepsilon\|^2 + B_{t,\lambda}^2 - S_{t,\lambda} + 2\langle arepsilon, r_{t,<}(Xeta)
angle$$

Empirical risk minimisation: open; heavy for D large

Weakly balanced oracle $\tau_{\mathfrak{w}}$:

$$\tau_{\mathfrak{w}} = \inf\{t \geqslant 0 \mid B_{t,\lambda}^2 \leqslant S_{t,\lambda}\} = \inf\{t \geqslant 0 \mid R_t^2 \leqslant \|\varepsilon\|^2 + 2\langle \varepsilon, r_{t,<} X\beta \rangle\}$$

Early stopping iteration τ : $\varepsilon \sim N(0, \sigma^2 E_D) \Rightarrow \mathbb{E}[\|\varepsilon\|^2] = D\sigma^2$

$$\tau = \inf\{t \geqslant 0 \mid R_t^2 \leqslant D\sigma^2\}$$

Weak norm oracle inequality

Lemma. $||X(\hat{\beta}_t - \hat{\beta}_s)||^2 \le |R_t^2 - R_s^2|$ with equality for integer t, s.

Proposition (Distance to balanced oracle estimator).

$$\mathbb{E}[\|X(\hat{\beta}_{\tau} - \hat{\beta}_{\tau_{w}})\|^{2}] \leqslant \sigma^{2}\sqrt{2D} + 2\mathbb{E}[|\langle \varepsilon, r_{\tau_{w}, <}(X\beta)\rangle|].$$

For $\lambda_i \sim i^{-p}$ we have

$$\mathbb{E}[\|X(\hat{\beta}_{\tau} - \hat{\beta}_{\tau_{\mathfrak{w}}})\|^2] \leqslant \sigma^2 \sqrt{2D} + C_{\rho,\lambda} \left(\mathbb{E}[S_{\tau_{\mathfrak{w}},\lambda}]^{\frac{4\rho+1}{4\rho+2}} \sigma^{\frac{2}{4\rho+2}} + \mathbb{E}[S_{\tau_{\mathfrak{w}},\lambda}]^{1/2} \sigma \sqrt{\log D} \right).$$

Theorem (weak norm oracle-type inequality).

For any (λ_i) we have with a numerical constant C > 0

$$\boxed{\mathbb{E}\left[\|X(\hat{\beta}_{\tau} - \hat{\beta}_{\tau_{\mathfrak{w}}})\|^{2}\right] \leqslant C\Big(\mathbb{E}\left[\inf_{t \geqslant 0}(A_{t,\lambda} + S_{t,\lambda})\right] + \sigma^{2}\sqrt{D}\Big)}$$

Remark. $\hat{\beta}_{\tau}$ is weak minimax adaptive for smoothness $s \in [0, \bar{s}]$. Remainder $\sigma^2 \sqrt{D}$ unavoidable for PCR. (Blanchard, Hoffmann, MR 2016)

Weak norm oracle inequality

Lemma. $||X(\hat{\beta}_t - \hat{\beta}_s)||^2 \le |R_t^2 - R_s^2|$ with equality for integer t, s.

Proposition (Distance to balanced oracle estimator).

$$\mathbb{E}[\|X(\hat{\beta}_{\tau} - \hat{\beta}_{\tau_{\mathfrak{w}}})\|^{2}] \leqslant \sigma^{2}\sqrt{2D} + 2\mathbb{E}[|\langle \varepsilon, r_{\tau_{w},<}(X\beta)\rangle|].$$

For $\lambda_i \sim i^{-p}$ we have

$$\mathbb{E}[\|X(\hat{\beta}_{\tau} - \hat{\beta}_{\tau_{\mathfrak{w}}})\|^{2}] \leqslant \sigma^{2}\sqrt{2D} + C_{\rho,\lambda}(\mathbb{E}[S_{\tau_{\mathfrak{w}},\lambda}]^{\frac{4\rho+1}{4\rho+2}}\sigma^{\frac{2}{4\rho+2}} + \mathbb{E}[S_{\tau_{\mathfrak{w}},\lambda}]^{1/2}\sigma\sqrt{\log D}).$$

Theorem (weak norm oracle-type inequality).

$$\left| \mathbb{E}\left[\|X(\hat{\beta}_{\tau} - \hat{\beta}_{\tau_{\varpi}})\|^{2} \right] \leqslant C\left(\mathbb{E}\left[\inf_{t \geqslant 0} (A_{t,\lambda} + S_{t,\lambda}) \right] + \sigma^{2} \sqrt{D} \right) \right|$$

Remark. $\hat{\beta}_{\tau}$ is weak minimax adaptive for smoothness $s \in [0, \bar{s}]$. Remainder $\sigma^2 \sqrt{D}$ unavoidable for PCR.(Blanchard, Hoffmann, MR 2016)

Weak norm oracle inequality

Lemma. $||X(\hat{\beta}_t - \hat{\beta}_s)||^2 \le |R_t^2 - R_s^2|$ with equality for integer t, s.

Proposition (Distance to balanced oracle estimator).

$$\mathbb{E}[\|X(\hat{\beta}_{\tau} - \hat{\beta}_{\tau_{w}})\|^{2}] \leqslant \sigma^{2}\sqrt{2D} + 2\,\mathbb{E}[|\langle \varepsilon, r_{\tau_{w},<}(X\beta)\rangle|].$$

For $\lambda_i \sim i^{-p}$ we have

$$\mathbb{E}[\|X(\hat{\beta}_{\tau} - \hat{\beta}_{\tau_{\mathfrak{w}}})\|^2] \leqslant \sigma^2 \sqrt{2D} + C_{\rho,\lambda} \Big(\mathbb{E}[S_{\tau_{\mathfrak{w}},\lambda}]^{\frac{4\rho+1}{4\rho+2}} \sigma^{\frac{2}{4\rho+2}} + \mathbb{E}[S_{\tau_{\mathfrak{w}},\lambda}]^{1/2} \sigma \sqrt{\log D} \Big).$$

Theorem (weak norm oracle-type inequality).

For any (λ_i) we have with a numerical constant C > 0

$$\boxed{\mathbb{E}\left[\|X(\hat{\beta}_{\tau} - \hat{\beta}_{\tau_{\mathfrak{w}}})\|^{2}\right] \leqslant C\Big(\mathbb{E}\left[\inf_{t \geqslant 0}(A_{t,\lambda} + S_{t,\lambda})\right] + \sigma^{2}\sqrt{D}\Big)}$$

Remark. $\hat{\beta}_{\tau}$ is weak minimax adaptive for smoothness $s \in [0, \overline{s}]$. Remainder $\sigma^2 \sqrt{D}$ unavoidable for PCR.(Blanchard, Hoffmann, MR 2016)

Strong norm oracle inequality

Lemma.
$$\|\hat{\beta}_{k+1} - \hat{\beta}_k\|^2 = (|r'_{k+1}(0)| - |r'_k(0)|) \|X(\hat{\beta}_{k+1} - \hat{\beta}_k)\|^2$$

Theorem (minimax adaptive)

 $\hat{eta}_{ au}$ is rate-optimal in strong norm over the same source conditions $s\in[0,ar{s}]$. (to be polished)

Discussion

- Only one-sided oracle inequality (counterexample!).
- Two-stage procedure:
 - 1. Compute iterates $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_T$ with $T \geqslant \tau$, $S_{T,\lambda} \geqslant \sigma^2 \sqrt{D}$.
 - 2. "Standard" model selection on $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_T$

Theory: strongly balanced oracle τ_s in [0, T] w.h.p., but nonlinear model selection???

Strong norm oracle inequality

Lemma.
$$\|\hat{\beta}_{k+1} - \hat{\beta}_k\|^2 = (|r'_{k+1}(0)| - |r'_k(0)|) \|X(\hat{\beta}_{k+1} - \hat{\beta}_k)\|^2$$

Theorem (minimax adaptive).

 $\hat{eta}_{ au}$ is rate-optimal in strong norm over the same source conditions $s\in[0,ar{s}]$. (to be polished)

Discussion

- Only one-sided oracle inequality (counterexample!).
- Two-stage procedure:
 - 1. Compute iterates $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_T$ with $T \geqslant \tau$, $S_{T,\lambda} \geqslant \sigma^2 \sqrt{D}$.
 - 2. "Standard" model selection on $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_T$

Theory: strongly balanced oracle τ_s in [0, T] w.h.p., but nonlinear model selection???

Strong norm oracle inequality

Lemma.
$$\|\hat{\beta}_{k+1} - \hat{\beta}_k\|^2 = (|r'_{k+1}(0)| - |r'_k(0)|) \|X(\hat{\beta}_{k+1} - \hat{\beta}_k)\|^2$$

Theorem (minimax adaptive).

 $\hat{eta}_{ au}$ is rate-optimal in strong norm over the same source conditions $s\in[0,ar{s}]$. (to be polished)

Discussion:

- Only one-sided oracle inequality (counterexample!).
- Two-stage procedure:
 - 1. Compute iterates $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_T$ with $T \geqslant \tau$, $S_{T,\lambda} \geqslant \sigma^2 \sqrt{D}$.
 - 2. "Standard" model selection on $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_T$.

Theory: strongly balanced oracle τ_s in [0, T] w.h.p., but nonlinear model selection???

Summary

- PLS/CG (often =) popular nonlinear methods.
- Early stopping is regularisation.
- Nonlinear error decomposition, optimal rates.
- Stopping rule au mimics weakly balanced oracle $au_{\mathfrak{w}}$
- Weak norm oracle-type inequality, remainder $\sigma^2 \sqrt{D}$.
- Adaptive minimax over range of smoothness classes.
- Challenges (contributions welcome!):
 - "Standard" model selection
 - · Analysis of two-stage procedure
 - Oracle inequality for true risk, not for $2(B_{t\lambda}^2 + S_{t,\lambda})$
 - Number of iterations (on average)
 - Deterministic vs. statistical noise

Summary

- PLS/CG (often =) popular nonlinear methods.
- Early stopping is regularisation.
- Nonlinear error decomposition, optimal rates.
- Stopping rule τ mimics weakly balanced oracle $\tau_{\mathfrak{w}}$.
- Weak norm oracle-type inequality, remainder $\sigma^2 \sqrt{D}$.
- Adaptive minimax over range of smoothness classes.
- Challenges (contributions welcome!):
 - "Standard" model selection
 - Analysis of two-stage procedure
 - Oracle inequality for true risk, not for $2(B_{t,\lambda}^2 + S_{t,\lambda})$
 - Number of iterations (on average)
 - Deterministic vs. statistical noise

Summary

- PLS/CG (often =) popular nonlinear methods.
- Early stopping is regularisation.
- Nonlinear error decomposition, optimal rates.
- Stopping rule au mimics weakly balanced oracle $au_{\mathfrak{w}}$.
- Weak norm oracle-type inequality, remainder $\sigma^2 \sqrt{D}$.
- Adaptive minimax over range of smoothness classes.

Yet another challenge

