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'PLS: partial least squares / CG: conjugate gradients



PLS and CG Weak error decomposition

Early stopping Summary

Least squares

"White" Gaussian linear model:

e BeRP, X cR™P ¢~ N(,c2Ep)
o Least squares: 5 = (XTX) XY
e D<n, A\ =--- > Ap > 0singular values of X

(eigenvalues of (X X)1/?)
e Errors (conditional on X):

E[[|5S - B2 = 02 2 A2

E[|X(8"° - B)|%] = o*D

(strong norm error)

(prediction / weak norm error)
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Dimension reduction: PCR

Pr|n0|pal component regression: (Kendall 1957, Hotelling 1957)

B projection of 3 onto span(vy, ...

(v; singular vectors of X)

) Vm)

E[]|Bm —

Bl = [1Bm — Bl + 02 1y A2

E[|| X (Bm

=B = 11X (Bm

~ B +o%m

(strong error)

(weak error)
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Dimension reduction: PCR

Pr|n0|pal component regression: (Kendall 1957, Hotelling 1957)
Bm: projection of /3 onto span(vy,...,Vn)
(v; singular vectors of X)

E[||Bm — 8117 = |8m — BIZ + 0274 A\72|  (strong error)

E[|X(Bm — B = IX(Bm — B)IIF + 0®m|  (weak error)

Critique:
The principal directions v; of X" X bear no information about
their significance for predicting Y. (Jolliffe 1982)
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Dimension reduction: PLS
Partial least squares: (Wold 1982, Rosipal, Kramer 2006)

XY =(X"X)B+X"e

* Bo:=0
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Dimension reduction: PLS
Partial least squares: (Wold 1982, Rosipal, Kramer 2006)

XY =(X"X)B+X"e

[ ) I@O = 0
o B1:=a1X"Ysuchthat R := |Y — Xj3;|> — min,,!
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Dimension reduction: PLS
Partial least squares: (Wold 1982, Rosipal, Kramer 2006)

XY =(X"X)B+X"e

[ ) /@O = 0

o B1:=a1X"Ysuchthat R := |Y — Xj3;|> — min,,!
Solution: ay = | X T Y2/ XX T Y|?
Structure: X531 = p (X){T)Y, p1 linear with Y-degendent coefficient
Note: X orthogonal = 3y = XY =8+ X"e = -°
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Dimension reduction: PLS
Partial least squares: (Wold 1982, Rosipal, Kramer 2006)

XY =(X"X)B+X"e

[ ) Bo = 0

o B1:=a1X"Ysuchthat R := |Y — Xj3;|> — min,,!
Solution: ay = | X T Y2/ XX T Y|?
Structure: X531 = p (X){T)Y, p1 linear with Y-degendent coefficient
Note: X orthogonal = 3y = XY =8+ X"e = -°

e Update: Y1) .= Y — X3
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Dimension reduction: PLS
Partial least squares: (Wold 1982, Rosipal, Kramer 2006)

XY =(X"X)B+X"e

[ ) Bo = 0

o B1:=a1X"Ysuchthat R := |Y — Xj3;|> — min,,!
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e Update: Y1) .= Y — X3
o Bo =P +apXTYED st RZ .= [|Y — X[,/2 — min,,!
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Dimension reduction: PLS
Partial least squares: (Wold 1982, Rosipal, Kramer 2006)

XY =(X"X)B+X"e

e By:=0

o B1:=a1X"Ysuchthat R := |Y — Xj3;|> — min,,!
Solution: ay = | X T Y2/ XX T Y|?
Structure: X531 = p (X){T)Y, p1 linear with Y-degendent coefficient
Note: X orthogonal = 3y = XY =8+ X"e = -°

e Update: Y1) .= Y — X5,

o Bo =P +apXTYED st RZ .= [|Y — X[,/2 — min,,!
Structure: X3z = po(XX )Y, p2 € Pols o quadratic polynomial with
p2(0) = 0 and random coefficients
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Dimension reduction: PLS
Partial least squares: (Wold 1982, Rosipal, Kramer 2006)

XY =(X"X)B+X"e

[ ) /@O = 0

o B1:=a1X"Ysuchthat R := |Y — Xj3;|> — min,,!
Solution: ay = | X T Y2/ XX T Y|?
Structure: X531 = p (X){T)Y, p1 linear with Y-degendent coefficient
Note: X orthogonal = 3y = XY =8+ X"e = -°

e Update: Y1) .= Y — X
o Bo =P +apXTYED st RZ .= [|Y — X[,/2 — min,,!

Structure: X3z = po(XX )Y, p2 € Pols o quadratic polynomial with
p2(0) = 0 and random coefficients

o Br= Bt + axXTYER=D) B2 .— ||y — X2 — min,, !
Structure: X3k = px(XXT)Y, px € Polko
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Partial least squares & conjugate gradients
Residual polynomials: A
re :==1 — px € Polx 1 where XBx = p(XXT)Y. Then

Ik = argminrePolkJ ||I’(XXT)YH

~ PLS is conjugate gradient method for solving Y = XJ.

e Nemirovski (1986)
Hanke (1995)
Phatak, de Hoog (2003)
Blanchard, Mathé (2010)
Blanchard, Kramer (2016)
¢ Singer, Krivobokova, de Groot, Munk (2016)
deterministic noise:
rate-optimal when stopped via discrepancy principle
statistical noise:
minimax bounds, not adaptive/sequential, not easy



Weak error decomposition

Basic error analysis?
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Weak error for PLS/CG

Y =r(XXT)Y: XBe=(1-r)Y, rc=argmin.cpg, (Y]

residual polynomial r,, singular values and first zero

Crucial bound:

2. 2 1/2
RZ = [Inc Y2 < 2V

fk(x):l_[;(:1(1 — X/Xjk) »
Me<(X) = nc(X)1(X < X14) == \/

Weak norm error:
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Weak error for PLS/CG

Summary

Y =r(XXT)Y: XBe=(1-r)Y, rc=argmin.cpg, (Y]

H - residual polynomial r, singular values and first zero
Crucial bound: polynomial 1, Singular v

2 2 1/2
RZ = [Inc Y2 < 2V

) = 1 (1 - x/xh) o

e <(X) = ()X < X)) = \/

Weak norm error:
IX(Bk — B)|I2
=[I(1 = re)Y — XB|2

= [Ire Y12 + llell? — 2(e, i Y)
= [l 2(XB) |12+ RZ — I 2 VI + [[(1 — ri <) V2€]2 — 2(e, re > Y)

bias control <0 stochastic error cross term
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Weak error decomposition

Sk = [1(1 = <)% )2 (stochastic error)
k = f,l/f(XfB)ll2 + Ft’,f — ||r,1/<2 Y|? (bias-type error)
Weak norm error:
IX(Bk — B)|I? = B\ + Skr — 2(e, 1> Y) < 2(BE, + Sk,»)
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Weak error decomposition

Sk = [1(1 = <)% )2 (stochastic error)
B%, = r,1/<2(XfB)||2 + R2 — ||r,1/<2 Y|2 (bias-type error)
Weak norm error:
IX(Bk — B)IP = BE\ + Skx —2(e. 1> Y) < 2(Bf 5 + Skn)
Lemma. The stochastic error term Sy  satisfies:
1. Sk =0fore=0;
2. So,)\ =0and SD7,\ = ”6”2;
3. k — Sk, is increasing.
Lemma. The bias-type error term Bj , satisfies:
1. B2, <|I/2(Xp)|? and B, < 0if X5 = 0;
2. B§7A = |]X5H2 and B2 oA=0

3. the upper bound Hr,l/j(Xﬁ)H2 is decreasing in k.
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Early stopping

Upper bounds

Interpolation: t = k + o, a € [0, 1):

Br = (1 — @) Bk + Bk

Summary
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Early stopping

Upper bounds

Interpolation: t = k + o, a € [0, 1):

Source condition: [|(XXT)S/2(Xp)||

= (1 — @) Bk + B

Bt
<R

Summary
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Upper bounds

Interpolation: t = k + o, a € [0, 1):

Source condition: [|(XXT)S/2(Xp)||

Mam weak bounds:

(1- Q)Bk + OéBk+1

Or =
<R

< I 2(XB)|? < R?s°%|r}(0)|~ (bias bound)

Sr,A < I((H©O)1x) A 1) 2e)?

Argument:

r: on [0, x4 ] is convex and log-concave | /

such that

(1 H(O)x)+ < i< (%) < exp(—|F{(0)}x) -

(stochastic error bound)
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Oracle and minimax upper bound
Weakly balanced oracle 7:

T = inf{t > 0] BZ, < S;a}
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Oracle and minimax upper bound
Weakly balanced oracle 7:

T = inf{t > 0| B2, < S}

For X-singular values \; ~ i~P, p > 0, use
¥p >0 E[f[((0x) A1)2(XXT)e]|?] < Cpo2p!/(2P)

Theorem (Weak upper bound):
Under (s, R)-source condition and \; ~ i~P we have

E [”X(/@TIU - B)HZ} < CpSRZ/(ZPS+1)O_4S/(25+1//J)

This rate is minimax optimal.
p = 1/d gives standard Sobolev ellipsoids in d-dimensional
domains.



Early stopping

Adaptive choice of iteration number?
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Early stopping via residuals

Residual norm / weak empirical risk / contrast:

R? == ||Y — XB||? = ||e||* + B2\ — S + 2(e, 11,<(XB))

Empirical risk minimisation: open; heavy for D large
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Early stopping via residuals

Residual norm / weak empirical risk / contrast:

R? == ||Y — XB||? = ||e||* + B2\ — S + 2(e, 11,<(XB))

Empirical risk minimisation: open; heavy for D large

Weakly balanced oracle ,:

T = inf{t > 0| BZ, < S;a} = inf{t > 0| RZ < |le]|® + 2(e, 11, XB)}
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Early stopping via residuals

Residual norm / weak empirical risk / contrast:

R? == ||Y — XB||? = ||e||* + B2\ — S + 2(e, 11,<(XB))

Empirical risk minimisation: open; heavy for D large

Weakly balanced oracle ,:

T = inf{t > 0| BZ, < S;a} = inf{t > 0| RZ < |le]|® + 2(e, 11, XB)}

Early stopping iteration 7: e ~ N(0,0°Ep) = E[|e|]’] = Do?

T =inf{t > 0| R? < Do?}
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Weak norm oracle inequality

Lemma. || X(5: — Bs)||? < |R? — R2| with equality for integer t, s.
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Weak norm oracle inequality
Lemma. || X(5: — Bs)||? < |R? — R2| with equality for integer t, s.
Proposition (Distance to balanced oracle estimator).
E[I|X(B: — Br)|I?] < 0*V2D + 2E]|(e, 17, <(XB)) ]-
For \i ~ i~P we have

E[HX(B"'_BT\U)Hz] < 02 v 2D+Cpa)\(]E[STm7)\]2571;0‘&?—"_1{5[87!07)\]1/20 V |Og D)
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Weak norm oracle inequality
Lemma. || X(5: — Bs)||? < |R? — R2| with equality for integer t, s.
Proposition (Distance to balanced oracle estimator).
E[|X(Br — Br)I?] < 02V2D + 2E|(e, 17, <(XB))]]-
For \; ~ i~" we have
B[ X (3 —Brn )|I2] < 02V2D+Cpa (ElSry 212 0 52 +E[S,, 2]/ y/log D).

Theorem (weak norm oracle-type inequality).
For any (\;) we have with a numerical constant C > 0

E[|IX(3, _ﬁm)uz} < C(E[ (A + sm)] +02\FD)

inf
>0

Remark. 3, is weak minimax adaptive for smoothness s < [0, 3].
Remainder 02\/ D unavoidable for PCR.(BIanchard, Hoffmann, MR 2016)
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Strong norm oracle inequality

Lemma. |1 — Bill* = (Iri1 ()] = I OIDIX (Bt = Br)II?
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Strong norm oracle inequality
Lemma. || Bk1 — Bkl|? = (1414 (0)] = 17k (O)DIX (Bry1 — B2

Theorem (minimax adaptive).
B+ is rate-optimal in strong norm over the same source

conditions s € [0, 8]. (o be polished)
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Strong norm oracle inequality

Lemma. ||Bic1 — Bkl® = (1721 (0)] = Ik O)DIX (Bt — Bi) 12

Theorem (minimax adaptive).
B+ is rate-optimal in strong norm over the same source

conditions s € [0, S]. (o be polished)

Discussion:
¢ Only one-sided oracle inequality (counterexample!).
¢ Two-stage procedure:
1. Compute iterates (o, A1, ..., A7 with T > 7, St.\ > 02V/D.
2. "Standard" model selection on 3, 51, . .., A1.
Theory: strongly balanced oracle 7; in [0, T] w.h.p.,
but nonlinear model selection???



Summary

PLS/CG (often =) popular nonlinear methods.

Early stopping is regularisation.

Nonlinear error decomposition, optimal rates.
Stopping rule 7 mimics weakly balanced oracle 7.
Weak norm oracle-type inequality, remainder ¢2+/D.

Adaptive minimax over range of smoothness classes.

Challenges (contributions welcome!):
o "Standard" model selection
¢ Analysis of two-stage procedure
« Oracle inequality for true risk, not for 2(B2, + S; )
e Number of iterations (on average) ’
e Deterministic vs. statistical noise

Summary
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Summary

PLS/CG (often =) popular nonlinear methods.
Early stopping is regularisation.
Nonlinear error decomposition, optimal rates.
Stopping rule 7 mimics weakly balanced oracle 7.
Weak norm oracle-type inequality, remainder ¢+/D.
Adaptive minimax over range of smoothness classes.
Challenges (contributions welcome!):

e "Standard" model selection
Analysis of two-stage procedure
Oracle inequality for true risk, not for 2(B,27A + Stn)

Number of iterations (on average)
Deterministic vs. statistical noise

Happy birthday and a long life, Oleg & Sashal



PLS and CG Weak error decomposition Early stopping Summary

Summary

PLS/CG (often =) popular nonlinear methods.

Early stopping is regularisation.

Nonlinear error decomposition, optimal rates.
Stopping rule 7 mimics weakly balanced oracle 7.
Weak norm oracle-type inequality, remainder o+/D.
Adaptive minimax over range of smoothness classes.

Yet another challenge

Thanks to all for listening.
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