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Outline

Motivation: Online Supervised Learning

Burkholder’s Method
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prediction paradigm

Data Ð→ Estimate Model Ð→ Make Prediction
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Example 0: Bit Prediction

Suppose we want to predict a 0/1 sequence

y1,y2, . . .

If iid Bernoulli, then predicting majority I{ȳt ≥ .5} ensures that proportion
of correct predictions c̄t satisfies

c̄t // max{p, 1 − p} ≈ max{ȳt, 1 − ȳt}

More precisely:

lim inf
n→∞

(c̄n −max{ȳn, 1 − ȳn}) ≥ 0 almost surely (∗)

Claim: there is a method that ensures (∗) for an arbitrary sequence.

Any idea how to do it? Majority will not work. Need randomized strategy.
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Online Supervised Learning

For t = 1, . . . ,n
observe side info xt ∈ X
predict ŷt
observe outcome yt

Goal:

∀(xt,yt)nt=1,
n

∑
t=1

∣ŷt − yt∣ ≤

If Cn(x1, . . . ,xn) = Cn is data-independent, we have full characterization.
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Best possible: Empirical Rademacher

Cn(x1, . . . ,xn) ∼ Eε ∥
n

∑
t=1
εtxt∥

Example: Matrix Completion.
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Motivation: Online Supervised Learning

Proper learning: ŷt = ⟨wt,xt⟩,
n

∑
t=1

∣ŷt − yt∣
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
ft(wt)

≤ inf
w∈F

n

∑
t=1

∣ ⟨w,xt⟩ − yt∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ft(w)

+ Cn(x1, . . . ,xn)

Gradient Descent:
wt+1 = wt − η∇ft(wt)

Mirror Descent: different geometry

∇R(wt+1) = ∇R(wt) − η∇ft(wt)

(e.g. Exponential Weights Algorithm: R(w) = ∑w(i) logw(i) is strongly
convex w.r.t. `1 norm on simplex)
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Motivation: Online Supervised Learning

Gradient/mirror descent with adaptive step size:

Cn ∝
¿
ÁÁÀ

n

∑
t=1

∥∇ft(wt)∥2 =
¿
ÁÁÀ

n

∑
t=1

∥xt∥2

Can be much worse than

Eε ∥
n

∑
t=1
εtxt∥ .

Is this easy to fix?
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Key issue: GD is not keeping the right statistics about the sequence

▸ Need additional information about geometry of functions: not just the
size of gradients but also their “spread”

▸ Beyond usual notions of smoothness and strong convexity?

We would be searching in the dark if not for the connections:

Online Prediction
minimax←→ Martingale Inequalities

Burkholder←→ Geometry
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Outline

Motivation: Online Supervised Learning

Burkholder’s Method
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Reference:

Adam Osekowski, Sharp Martingale and Semimartingale Inequalities, 2012

Next: adaptation of some of these ideas to our setting.
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ε1, . . . ,εt, . . . i.i.d. Rademacher, Ft = σ(ε1, . . . ,εt).

X1, . . . ,Xt, . . . martingale difference sequence w.r.t. (Ft).

E[Xt∣Ft−1] = 0

Note: Xt can be written as εtxt(ε1∶t−1) for some function xt.

14 / 26



A martingale inequality can be generically written as

EB(X1, . . . ,Xn) ≤ 0 (1)

for some B ∶ ∪Xn → R.

(FRS’17+): (1) holds ∀ martingale difference sequences (Xt) and all n

iff

there exists a function U ∶ ∪Xn → R satisfying three properties:

1○. U(x1, . . . ,xt) ≥ B(x1, . . . ,xt) for all t

2○. U(⋅) ≤ 0

3○. for all x1, . . . ,xt

EεU(x1, . . . ,xt−1,εxt) ≤ U(x1, . . . ,xt−1)
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proof

(⇐):

EB(X1, . . . ,Xn)
1○

≤ EU(X1, . . . ,Xn)
3○

≤ EU(X1, . . . ,Xn−1) . . . ≤ U(⋅)
2○

≤ 0.

(⇒): Define

U
∗(x1, . . . ,xt) ≜ sup

n≥t,(X)n
t+1

EB(x1, . . . ,xt,Xt+1, . . . ,Xn).

Claim: U∗ satisfies 1○ − 3○.
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Claim: U∗ is the smallest function that satisfies 1○ − 3○.

Proof:

For any n ≥ t, (X)nt+1,

EB(x1, . . . ,xt,Xt+1, . . . ,Xn) ≤ EU ′(x1, . . . ,xt,Xt+1, . . . ,Xn) ≤ U ′(x1, . . . ,xt)

Hence, U∗(x1, . . . ,xt) ≤ U ′(x1, . . . ,xt).
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Example 1: Smoothness/Strong Convexity

Let ∥⋅∥ be some norm on X . Martingale inequality corresponding to
smoothness:

E∥
n

∑
t=1
Xt∥

2

≤ K ⋅ E
n

∑
t=1

∥Xt∥2

Hence,

B(x1, . . . ,xn) = B(
n

∑
t=1
xt,

n

∑
t=1

∥xt∥2) = ∥
n

∑
t=1
xt∥

2

− K
n

∑
t=1

∥xt∥2

Optimal U∗ inherits

U
∗(x,α2) = U∗(x, 0) − Kα2.

Restricted concavity 3○ is

EεU∗(x + εy,α2 + ∥y∥2) ≤ U∗(x,α2).

Corollary: x↦ U∗(x, 0) is smooth wrt ∥⋅∥ (and its dual is strongly cvx).
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Proof:

Φ(x) = U∗(x, 0)
≥ EεU∗(x + εy, ∥y∥2)

= 1

2
(U∗(x + y, 0) − K ∥y∥2) + 1

2
(U∗(x − y, 0) − K ∥y∥2)

= 1

2
Φ(x + y) + 1

2
Φ(x − y) − K ∥y∥2
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Example 2

Hilbert space:

E∥
n

∑
t=1
Xt∥ ≤ 2E

¿
ÁÁÀ

n

∑
t=1

∥Xt∥2

Hence,
B(x,a) = ∥x∥ − 2y

and interested in

B
⎛
⎝
n

∑
t=1
xt,

¿
ÁÁÀ

n

∑
t=1

∥xt∥2
⎞
⎠

Elementary algebra gives

U(x,a) =
⎧⎪⎪⎨⎪⎪⎩

−
√

2a2 − ∥x∥2, a ≥ ∥x∥
∥x∥ − 2a, a < ∥x∥

satisfies concavity property

U(x + d,
√
a2 + d2) ≤ U(x,a) +

20 / 26
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Example 3: Empirical Rademacher

(FRS’16): Empirical Rademacher bound for Online Supervised Learning is
possible if (and close to “iff”)

Eε ∥
n

∑
t=1
εtxt∥

p

≤ KEε,ε ′ ∥
n

∑
t=1
ε
′
txt∥

p

where xt is Ft−1-measurable, p ≥ 1. Decoupling inequality.

Two-sided version of above is equivalent to deterministic UMD

∀σ1, . . . ,σn ∈ {±1}, E∥
n

∑
t=1
σtXt∥

p

≤ KE∥
n

∑
t=1
Xt∥

p

This gives

B(x1, . . . ,xn) = B(
n

∑
t=1
xt,

n

∑
t=1
σtxt) = ∥

n

∑
t=1
σtxt∥

p

− K∥
n

∑
t=1
xt∥

p
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Example 3: Empirical Rademacher

Then U satisfying 1○ − 3○ is called Burkholder function. Property 3○ reads

EεU(x + εz,y ± εz) ≤ U(x,y)

which is equivalent to zigzag concavity.

We can now go back and use U to derive an algorithm for Online
Supervised Learning with Empirical Rademacher regret bound.

22 / 26



Back to Online Supervised Learning

Enough to solve linearized problem

n

∑
t=1
`
′
t ⋅ ŷt ≤ min

w∈F

n

∑
t=1
`
′
t ⋅ ⟨w,xt⟩ +Cn(x1, . . . ,xn)

which can be written as

n

∑
t=1
`
′
t ⋅ ŷt + ∥

n

∑
t=1
`
′
txt∥ −CEε ∥

n

∑
t=1
εt`

′
txt∥

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤EεU(∑nt=1 `

′

t
xt,∑nt=1 εt`
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Back to Online Supervised Learning

Enough to solve linearized problem

n

∑
t=1
`
′
t ⋅ ŷt ≤ min

w∈F

n

∑
t=1
`
′
t ⋅ ⟨w,xt⟩ +Cn(x1, . . . ,xn)

which can be written as

n

∑
t=1
`
′
t ⋅ ŷt + ∥

n

∑
t=1
`
′
txt∥ −CEε ∥

n

∑
t=1
εt`

′
txt∥

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤EεU(∑nt=1 `

′

t
xt,∑nt=1 εt`

′

t
xt)

≤ 0
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Last step:

min
ŷn

max
` ′n∈[−1,1]

{` ′n ⋅ ŷn + EεU(
n

∑
t=1
`
′
txt,

n

∑
t=1
εt`

′
txt)}

Choosing ŷn = −G ′(0) for

G(α) = EσU(
n−1
∑
t=1
`
′
txt + αxt,

n−1
∑
t=1
εt`

′
txt + σαxt)

ensures
−` ′n ⋅G ′(0) +G(`n) ≤ G(0)

by diagonal concavity and yields clean recursion.
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Martingale Inequalities Online Learning / Optimization

Geometric properties
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Conclusions

▸ Gradient/Mirror Descent does not keep the right “statistics” about the
sequence.

▸ Strong convexity/smoothness is not enough as a geometric primitive.

▸ Can find the right primitive by exploiting connections between
probabilistic inequalities and geometry.
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