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Outline

Motivation: Online Supervised Learning
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prediction paradigm

Data — Estimate Model — Make Prediction
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Example 0: Bit Prediction

Suppose we want to predict a 0/1 sequence

Y1, Y2, ...
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Example 0: Bit Prediction

Suppose we want to predict a 0/1 sequence

Yi,Y2,...

If iid Bernoulli, then predicting majority I{§¢ > .5} ensures that proportion
of correct predictions C¢ satisfies

e ~+ max{p,1-p} ~ max{ye,1-y}

More precisely:

liminf (Cn - max{gn,1-Yn}) 20  almost surely  (x)

n—o0

Claim: there is a method that ensures (*) for an arbitrary sequence.

Any idea how to do it? Majority will not work. Need randomized strategy.
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Minimax vs Bayes prediction
B

y
D. Blackwell
University of California, Berkeley

Let x = (x X3~ be an infinite sequence of Os and s, initally unknown 1© you. On
day n = 12.. you observe hy = (X1, - - - Xouy). the first n — 1 terms of the sequence,
and must predict x,. What is a good prediction method. and how well can you do?

A prediction method p is just a function that associates with each finite sequence h of
0s and 1s a prediction p(h) =0 or 1, your prediction of the next x when you have
observed history h. Denote by wy(p.x) the proportion of comrect predictions that
method p makes against sequence x in the firs n days.

Looking for a p
is an x for which
struct x sequentiall

Then choose x; sof

e

But we can imprq

toss a fair coin

The contrast between the minimax predictor py and the Bayes predictor y is strong.
The minimax predictor is not obvious, it is randomized, it satisfies (*) for every x, but
the proof is not easy. The Bayes predictor is extremely obvious, it is not randomized,
it satisfies (*) only for almost all x, and the proof is simple.

numbers guarantees that, for every x, the proportion of comect predictions will
approach 0% as n —» =, with probability 1. A random prediction method is 2 func-




Online Supervised Learning

Fort=1,...,n
observe side info xt € X
predict Yt
observe outcome Yy
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predict Yt
observe outcome Yy

Goal:

n
YV (Xt,Yt) o1, Z e -ye| < small if sequence is “nice”
t=1
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Online Supervised Learning

Fort=1,...,n
observe side info xt € X
predict Yt
observe outcome Yy

Goal:

V(x,yt)ier, oG-y < inf Y [{w,xe) = ye| + Cn(xa, ..., xn).
=1

weF t=1

If Crn(x1,...,%n) = Cn is data-independent, we have full characterization.



Best possible: Empirical Rademacher

Cn(X1,...yxn) ~ Ee

Example: Matrix Completion.

n
Z €t Xt
t=1




Motivation: Online Supervised Learning

Proper learning: Ut = (we, xt),

n

Y-y < 1an| w,xt) —Yt| + Cn(xX1,...,%Xn)
t=1 —— weF t= 1_,_/
fe(we) fe(w)
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Motivation: Online Supervised Learning

Proper learning: Ut = (we, xt),

n
Gt —ye| < inf 3O [(w,xe) ~ye| + Cnlx1,..0 xn)
1 —— weF t=1 —— —
fe(we) fe(w)

M=

t

Gradient Descent:
Wip1 = Wy =NV (wy)

Mirror Descent: different geometry
VR(Wis1) = VR(W) =V Fe(we)

(e.g. Exponential Weights Algorithm: R(w) = > w(i)logw(i) is strongly
convex w.r.t. {; norm on simplex)
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Motivation: Online Supervised Learning

Gradient/mirror descent with adaptive step size:

n n
Cooc\| L IVFe(w)[* = | 2 xe]?
t=1 t=1

Can be much worse than
Ee

n
Z €t Xt
t=1

Is this easy to fix?
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Key issue: GD is not keeping the right statistics about the sequence

» Need additional information about geometry of functions: not just the
size of gradients but also their “spread”

» Beyond usual notions of smoothness and strong convexity?
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Online Prediction —«— = Martingale Inequalities «— Geometry
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Outline

Burkholder’s Method
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Reference:
Adam Osekowski, Sharp Martingale and Semimartingale Inequalities, 2012

Adan ki

Sharp Marting:
and Semimar

Incqualities

® Birkhuser

Next:

adaptation of some of these ideas to our setting
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€1y...,€Et,... .i.d. Rademacher, F; = o(€1,...,€¢).

Xi,...,Xt, ... martingale difference sequence w.r.t. (Fy).

]E[Xt|.7:t71] = 0

Note: X; can be written as e x¢(€1:-1) for some function xi.
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A martingale inequality can be generically written as
EB(X1,...,Xn) <0

for some B: uX™ - R.
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A martingale inequality can be generically written as
EB(X1,...,Xn) <0 (1)

for some B: uX™ - R.

: (1) holds V martingale difference sequences (X¢) and all n
iff
there exists a function U: uX™ — R satisfying three properties:
1% U(x1,...,x¢) > B(x1,...,%x¢) for all t

2°. U() <0

3°. for all x1,...,xt

EcU(X1,...,Xt-1,€x¢) < U(X1,.. ., X¢-1)



proof

(<=):

EB(X1,...,Xn) € EU(X1,...,Xn) € EUX1, ..., Xno1) ... < U() < 0.
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proof

(<=):

. . "
EB(X,...,Xn) € EU(X1, ..., Xn) € EU(X1,...,Xn_1)... <U(-) £ 0.

(=): Define

U (x1,...,%) = sup  EB(x1,...,%t,Xts1,- -, Xn)-

nxt, (X))

Claim: U* satisfies 1° — 3°.
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Claim: U* is the smallest function that satisfies 1° — 3°.

Proof:

For any n > t, (X)T,1,

]EB(Xl,... Xty X1, - ..,Xn) SEUI(Xh.. cy Xty Xty e e e 7Xn) < U'(xl,. ..

Hence, U*(x1,...,%¢) < U (x1,...,%¢).

7Xt)



Example 1: Smoothness/Strong Convexity

Let |-| be some norm on X. Martingale inequality corresponding to
smoothness:

2

KD X

t=1

E

> X
t=1

Hence,

n n
B0 ) =B (35,3 ) -
t=1 t=1

Yoxe| =KD xi]
t=1 =1
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Let |-| be some norm on X. Martingale inequality corresponding to

smoothness: )

<K-EY X

t=1

E

> X
t=1

Hence,

2 n
2
=K [xe]
t=1

n n 5 n
B(X17~--7Xn):B(ZXt7Z||Xt|| ): ZXt
t=1 t=1 t=1

Optimal U* inherits

U* (x, ) = U*(x,0) - Koe®.

Restricted concavity 3° is

E.U*(x + ey, o + Jy|*) < U*(x, ).

Corollary: x = U*(x,0) is smooth wrt || (and its dual is strongly cvx).




Proof:

(D(X) = u*(xao)
>EcU*(x+ ey, [y[?)

1

= LU+ y,0) - K Iyl®) + 5 (U (x-,0) - Ky )

1 1
= SO(+y) + 5O -y) ~Kyl?

19 / 26



Example 2
Hilbert space:

E

< 2E\‘ > IXe?
t=1

B(x,a) = x| -2y

2, X
t=1

Hence,

and interested in
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< 2E\‘ > IXe?
t=1
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B (éXh \ Zz: HXt )

2_ 2
U, a) = {Mz I, x|

a< x|

Hence,
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Elementary algebra gives

satisfies concavity property
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Example 2

Hilbert space:

E

< 9E+ ‘ S X2
t=1

B(x,a) = x| -2y

n n 2
B> xe,n| 2 Ix]
t=1 t=1
Elementary algebra gives

_ 2 _ 2
U, a) = { Va2 - x|, az x|

Ix[ = 2a, a<|x]

> X
t=1

Hence,

and interested in

satisfies concavity property
-d
U(x+d,va?+d?) <U(x,a) + X

202 — x|
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Example 3: Empirical Rademacher

(FRS’16): Empirical Rademacher bound for Online Supervised Learning is
possible if (and close to “iff”)

P
SKEG’GI

P
E.

n
Z €+Xt
=1

n
Z et,Xt
t=1

where x¢ is Fi-i1-measurable, p > 1. Decoupling inequality.
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P
<KE

P
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P
SKEG’GI

P
E.

n
Z €+Xt
=1

n
Z €t,Xt
t=1

where x¢ is Fi-i1-measurable, p > 1. Decoupling inequality.

Two-sided version of above is equivalent to deterministic UMD

Z UtXt Z Xt
t=1 t=1

P
<KE

P
Voi,...,0n € {1}, E

This gives

n n
B(X]_,. ..,Xn) =B (ZXt, Z ULXt) =
t=1 t=1

)
-K

P

n
Z OtXt
t=1

n
> %t
t=1
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Example 3: Empirical Rademacher

Then U satisfying 1° — 3° is called Burkholder function. Property 3° reads
EcU(x+ez,y+ez) <U(x,y)

which is equivalent to zigzag concavity.

We can now go back and use U to derive an algorithm for Online
Supervised Learning with Empirical Rademacher regret bound.
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Back to Online Supervised Learning

Enough to solve linearized problem

n
N @tﬁmmzet (w,x¢) + Cn(x1, ...

t=1 weF t=1

,Xn)



Back to Online Supervised Learning

Enough to solve linearized problem
n

PN yt<mm2€t (w,x¢) + Cn(X1, -+, %Xn)
o

WeF =1

which can be written as

Z f{ 'gt +
t=1

n
Z ecdixt

n
Z e‘éxt
t=1

B U(ZP, 0xe, X0 eclfxt)
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Last step:

min max {21’1 gn+EcU (Z @{xt, Z etﬂéxt)}
t=1 t=1

Un the[-1,1]
Choosing Gn = —G'(0) for

n-1 n-1
G(x) =E,U ( D lixe +oxe, Y elixe + G(XXt)
t=1

t=1
ensures
0, G’(0) + G(Ln) < G(0)

by diagonal concavity and yields clean recursion.



Martingale Inequalities Online Learning / Optimization

Geometric properties
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Conclusions

» Gradient/Mirror Descent does not keep the right “statistics” about the
sequence.

» Strong convexity/smoothness is not enough as a geometric primitive.

» Can find the right primitive by exploiting connections between
probabilistic inequalities and geometry.
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