Online Prediction: Rademacher Averages via Burkholder's Method

Sasha Rakhlin

UPenn

Dec 16, 2017

Joint work with D. Foster and K. Sridharan

Outline

Motivation: Online Supervised Learning

Burkholder's Method

prediction paradigm

Data \longrightarrow Estimate Model \longrightarrow Make Prediction

prediction paradigm

Data \longrightarrow Estimate Model \longrightarrow Make Prediction

Example 0: Bit Prediction

Suppose we want to predict a $0 / 1$ sequence

$$
y_{1}, y_{2}, \ldots
$$

Example 0: Bit Prediction

Suppose we want to predict a $0 / 1$ sequence

$$
y_{1}, y_{2}, \ldots
$$

If iid Bernoulli, then predicting majority $\mathbf{I}\left\{\bar{y}_{t} \geq .5\right\}$ ensures that proportion of correct predictions $\overline{\mathrm{c}}_{\mathrm{t}}$ satisfies

$$
\bar{c}_{\mathrm{t}} \leadsto \max \{\mathrm{p}, 1-\mathrm{p}\} \approx \max \left\{\bar{y}_{\mathrm{t}}, 1-\bar{y}_{\mathrm{t}}\right\}
$$

Example 0: Bit Prediction

Suppose we want to predict a $0 / 1$ sequence

$$
\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots
$$

If iid Bernoulli, then predicting majority $\mathbf{I}\left\{\bar{y}_{t} \geq .5\right\}$ ensures that proportion of correct predictions $\overline{\mathrm{c}}_{\mathrm{t}}$ satisfies

$$
\overline{\mathrm{c}}_{\mathrm{t}} \leadsto \max \{\mathrm{p}, 1-\mathrm{p}\} \approx \max \left\{\overline{\mathrm{y}}_{\mathrm{t}}, 1-\bar{y}_{\mathrm{t}}\right\}
$$

More precisely:

$$
\liminf _{n \rightarrow \infty}\left(\bar{c}_{n}-\max \left\{\bar{y}_{n}, 1-\bar{y}_{n}\right\}\right) \geq 0 \quad \text { almost surely } \quad(*)
$$

Example 0: Bit Prediction

Suppose we want to predict a $0 / 1$ sequence

$$
\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots
$$

If iid Bernoulli, then predicting majority $\mathbf{I}\left\{\bar{y}_{t} \geq .5\right\}$ ensures that proportion of correct predictions $\overline{\mathrm{c}}_{\mathrm{t}}$ satisfies

$$
\overline{\mathrm{c}}_{\mathrm{t}} \leadsto \max \{\mathrm{p}, 1-\mathrm{p}\} \approx \max \left\{\overline{\mathrm{y}}_{\mathrm{t}}, 1-\bar{y}_{\mathrm{t}}\right\}
$$

More precisely:

$$
\liminf _{n \rightarrow \infty}\left(\bar{c}_{n}-\max \left\{\bar{y}_{n}, 1-\bar{y}_{n}\right\}\right) \geq 0 \quad \text { almost surely } \quad(*)
$$

Claim: there is a method that ensures (*) for an arbitrary sequence.

Any idea how to do it? Majority will not work. Need randomized strategy.

```
Minimax vs Bayes prediction
            By
            D. Blackwell
University of California, Berkeley
```

Let $\mathrm{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2} \ldots\right)$ be an infinite sequence of 0 s and 1 s , initially unknown to you. On day $n=1,2, \ldots$ you observe $h_{n}=\left(x_{1}, \ldots, x_{n-1}\right)$, the first $n-1$ terms of the sequence, and must predict x_{a}. What is a good prediction method, and how well can you do?

A prediction method p is just a function that associates with each finite sequence h of 0 s and is a prediction $\mathrm{p}(\mathrm{h})=0$ or 1 , your prediction of the next x when you have observed history h. Denote by $w_{n}(p, x)$ the proportion of correct predictions that method p makes against sequence x in the first n days.

Looking for a p th
struct \times sequential
The contrast between the minimax predictor p_{0} and the Bayes predictor y is strong. The minimax predictor is not obvious, it is randomized, it satisfies (*) for every \mathbf{x}, but the proof is not easy. The Bayes predictor is extremely obvious, it is not randomized,
etc. it satisfies (*) only for almost all x, and the proof is simple.
But we can impro

approach 50% as $n \rightarrow \infty$, with probability 1. A random prediction method is a func-

Online Supervised Learning

```
For t=1,\ldots,n
    observe side info }\mp@subsup{x}{t}{}\in\mathcal{X
    predict }\mp@subsup{\widehat{y}}{t}{
    observe outcome }\mp@subsup{y}{t}{
```


Online Supervised Learning

```
For t=1,\ldots,n
        observe side info }\mp@subsup{x}{t}{}\in\mathcal{X
    predict }\mp@subsup{\widehat{y}}{t}{
    observe outcome }\mp@subsup{y}{t}{
```

Goal:

$$
\forall\left(x_{t}, y_{t}\right)_{t=1}^{n}, \quad \sum_{t=1}^{n}\left|\widehat{y}_{t}-y_{t}\right| \leq
$$

small if sequence is "nice"

Online Supervised Learning

```
For t=1,\ldots,n
        observe side info }\mp@subsup{x}{t}{}\in\mathcal{X
        predict }\mp@subsup{\widehat{y}}{t}{
        observe outcome yt
```

Goal:

$$
\forall\left(x_{t}, y_{t}\right)_{t=1}^{n}, \quad \sum_{t=1}^{n}\left|\widehat{y}_{t}-y_{t}\right| \leq \phi\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)
$$

Online Supervised Learning

```
For t=1,\ldots,n
    observe side info }\mp@subsup{x}{t}{}\in\mathcal{X
    predict }\mp@subsup{\widehat{y}}{t}{
    observe outcome }\mp@subsup{y}{t}{
```

Goal:

$$
\forall\left(x_{t}, y_{t}\right)_{t=1}^{n}, \quad \sum_{t=1}^{n}\left|\widehat{y}_{t}-y_{t}\right| \leq \inf _{\mathbf{w} \in \mathcal{F}} \sum_{t=1}^{n}\left|\left\langle\mathbf{w}, x_{\mathrm{t}}\right\rangle-y_{t}\right|+C_{n}\left(x_{1}, \ldots, x_{n}\right)
$$

Online Supervised Learning

```
For t=1,\ldots,n
    observe side info }\mp@subsup{x}{t}{}\in\mathcal{X
    predict }\mp@subsup{\widehat{y}}{t}{
    observe outcome }\mp@subsup{y}{t}{
```

Goal:

$$
\forall\left(x_{t}, y_{t}\right)_{t=1}^{n}, \quad \sum_{t=1}^{n}\left|\widehat{y}_{t}-y_{t}\right| \leq \inf _{\mathbf{w} \in \mathcal{F}} \sum_{t=1}^{n}\left|\left\langle\mathbf{w}, x_{t}\right\rangle-y_{t}\right|+C_{n}\left(x_{1}, \ldots, x_{n}\right)
$$

If $C_{n}\left(x_{1}, \ldots, x_{n}\right)=C_{n}$ is data-independent, we have full characterization.

Best possible: Empirical Rademacher

$$
C_{n}\left(x_{1}, \ldots, x_{n}\right) \sim \mathbb{E}_{\epsilon}\left\|\sum_{t=1}^{n} \epsilon_{t} x_{t}\right\|
$$

Example: Matrix Completion.

Motivation: Online Supervised Learning

Proper learning: $\widehat{y}_{t}=\left\langle w_{t}, x_{t}\right\rangle$,

$$
\sum_{t=1}^{n} \underbrace{\left|\widehat{y}_{t}-y_{t}\right|}_{f_{t}\left(w_{t}\right)} \leq \inf _{w \in \mathcal{F}} \sum_{t=1}^{n} \underbrace{\left|\left\langle\mathbf{w}, x_{t}\right\rangle-y_{t}\right|}_{f_{t}(w)}+C_{n}\left(x_{1}, \ldots, x_{n}\right)
$$

Motivation: Online Supervised Learning

Proper learning: $\widehat{y}_{t}=\left\langle\mathbf{w}_{t}, x_{t}\right\rangle$,

$$
\sum_{t=1}^{n} \underbrace{\left|\widehat{y}_{t}-y_{t}\right|}_{f_{t}\left(w_{t}\right)} \leq \inf _{w \in \mathcal{F}} \sum_{t=1}^{n} \underbrace{\left|\left\langle\mathbf{w}, x_{t}\right\rangle-y_{t}\right|}_{f_{t}(w)}+C_{n}\left(x_{1}, \ldots, x_{n}\right)
$$

Gradient Descent:

$$
w_{t+1}=w_{t}-\eta \nabla f_{t}\left(w_{t}\right)
$$

Mirror Descent: different geometry

$$
\nabla R\left(w_{t+1}\right)=\nabla R\left(w_{\mathrm{t}}\right)-\eta \nabla \mathrm{f}_{\mathrm{t}}\left(w_{\mathrm{t}}\right)
$$

(e.g. Exponential Weights Algorithm: $R(w)=\sum w(i) \log w(i)$ is strongly convex w.r.t. ℓ_{1} norm on simplex)

Motivation: Online Supervised Learning

Gradient/mirror descent with adaptive step size:

$$
C_{n} \propto \sqrt{\sum_{t=1}^{n}\left\|\nabla f_{t}\left(w_{t}\right)\right\|^{2}}=\sqrt{\sum_{t=1}^{n}\left\|x_{t}\right\|^{2}}
$$

Can be much worse than

$$
\mathbb{E}_{e}\left\|\sum_{\mathrm{t}=1}^{\mathrm{n}} \epsilon_{\mathrm{t}} x_{\mathrm{t}}\right\|
$$

Is this easy to fix?

Key issue: GD is not keeping the right statistics about the sequence

- Need additional information about geometry of functions: not just the size of gradients but also their "spread"
- Beyond usual notions of smoothness and strong convexity?

Key issue: GD is not keeping the right statistics about the sequence

- Need additional information about geometry of functions: not just the size of gradients but also their "spread"
- Beyond usual notions of smoothness and strong convexity?

We would be searching in the dark if not for the connections:

Online Prediction $\stackrel{\text { minimax }}{\longleftrightarrow}$ Martingale Inequalities $\stackrel{\text { Burkholder }}{\longleftrightarrow}$ Geometry

Key issue: GD is not keeping the right statistics about the sequence

- Need additional information about geometry of functions: not just the size of gradients but also their "spread"
- Beyond usual notions of smoothness and strong convexity?

We would be searching in the dark if not for the connections:

Outline

Motivation: Online Supervised Learning

Burkholder's Method

Reference:

Adam Osekowski, Sharp Martingale and Semimartingale Inequalities, 2012

Next: adaptation of some of these ideas to our setting.
$\epsilon_{1}, \ldots, \epsilon_{\mathrm{t}}, \ldots$ i.i.d. Rademacher, $\mathcal{F}_{\mathrm{t}}=\sigma\left(\epsilon_{1}, \ldots, \epsilon_{\mathrm{t}}\right)$.
$X_{1}, \ldots, X_{t}, \ldots$ martingale difference sequence w.r.t. $\left(\mathcal{F}_{t}\right)$.

$$
\mathbb{E}\left[X_{\mathrm{t}} \mid \mathcal{F}_{\mathrm{t}-1}\right]=0
$$

Note: X_{t} can be written as $\epsilon_{t} \mathbf{x}_{\mathrm{t}}\left(\epsilon_{1: \mathrm{t}-1}\right)$ for some function \mathbf{x}_{t}.

A martingale inequality can be generically written as

$$
\begin{equation*}
\mathbb{E B}\left(X_{1}, \ldots, X_{n}\right) \leq 0 \tag{1}
\end{equation*}
$$

for some $B: \cup \mathcal{X}^{n} \rightarrow \mathbb{R}$.

A martingale inequality can be generically written as

$$
\begin{equation*}
\mathbb{E B}\left(X_{1}, \ldots, X_{n}\right) \leq 0 \tag{1}
\end{equation*}
$$

for some $B: \cup \mathcal{X}^{n} \rightarrow \mathbb{R}$.
(FRS'17+): (1) holds \forall martingale difference sequences $\left(X_{t}\right)$ and all n iff
there exists a function $\mathrm{U}: \cup \mathcal{X}^{n} \rightarrow \mathbb{R}$ satisfying three properties:

A martingale inequality can be generically written as

$$
\begin{equation*}
\mathbb{E B}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right) \leq 0 \tag{1}
\end{equation*}
$$

for some $B: \cup \mathcal{X}^{n} \rightarrow \mathbb{R}$.
(FRS'17+): (1) holds \forall martingale difference sequences $\left(X_{t}\right)$ and all n iff
there exists a function $\mathrm{U}: \cup \mathcal{X}^{n} \rightarrow \mathbb{R}$ satisfying three properties:
1°. $\mathrm{U}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{t}}\right) \geq \mathrm{B}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{t}}\right)$ for all t
2°. $\mathrm{U}(\cdot) \leq 0$
3°. for all x_{1}, \ldots, x_{t}

$$
\mathbb{E}_{\varepsilon} \mathrm{U}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{t}-1}, \epsilon \chi_{\mathrm{t}}\right) \leq \mathrm{U}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{t}-1}\right)
$$

proof

(\leftarrow) :
$\left.\mathbb{E B}\left(X_{1}, \ldots, X_{n}\right) \stackrel{1^{\circ}}{\leq} \mathbb{E U}\left(X_{1}, \ldots, X_{n}\right) \stackrel{3^{\circ}}{\leq} \mathbb{E U}\left(X_{1}, \ldots, X_{n-1}\right) \ldots \leq U(\cdot)\right)^{2^{\circ}} \leq 0$.

proof

(\Leftarrow) :

$$
\left.\left.\mathbb{E B}\left(X_{1}, \ldots, X_{n}\right){ }^{1^{\circ}} \leq \mathbb{E} U\left(X_{1}, \ldots, X_{n}\right)\right)^{3^{\circ}} \leq \mathbb{E} U\left(X_{1}, \ldots, X_{n-1}\right) \ldots \leq U(\cdot)\right)^{2^{\circ}} \leq 0 .
$$

(\Rightarrow) : Define

$$
\mathrm{u}^{*}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{t}}\right) \stackrel{\Leftrightarrow}{=} \sup _{n \geq \mathrm{t},(\mathrm{x})_{\mathrm{t}+1}^{n}} \mathbb{E B}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{t}}, \mathrm{X}_{\mathrm{t}+1}, \ldots, \mathrm{X}_{\mathrm{n}}\right) .
$$

Claim: U^{*} satisfies $1^{\circ}-3^{\circ}$.

Claim: U^{*} is the smallest function that satisfies $1^{\circ}-3^{\circ}$.

Proof:

For any $n \geq t,(X)_{t+1}^{n}$,
$\mathbb{E B}\left(x_{1}, \ldots, x_{\mathrm{t}}, \mathrm{X}_{\mathrm{t}+1}, \ldots, \mathrm{X}_{\mathrm{n}}\right) \leq \mathbb{E} \mathrm{U}^{\prime}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{t}}, \mathrm{X}_{\mathrm{t}+1}, \ldots, \mathrm{X}_{\mathrm{n}}\right) \leq \mathrm{U}^{\prime}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{t}}\right)$

Hence, $\mathrm{U}^{*}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{t}}\right) \leq \mathrm{U}^{\prime}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{t}}\right)$.

Example 1: Smoothness/Strong Convexity

Let $\|\cdot\|$ be some norm on \mathcal{X}. Martingale inequality corresponding to smoothness:

$$
\mathbb{E}\left\|\sum_{t=1}^{n} X_{t}\right\|^{2} \leq K \cdot \mathbb{E} \sum_{t=1}^{n}\left\|X_{t}\right\|^{2}
$$

Hence,

$$
B\left(x_{1}, \ldots, x_{n}\right)=B\left(\sum_{t=1}^{n} x_{t}, \sum_{t=1}^{n}\left\|x_{t}\right\|^{2}\right)=\left\|\sum_{t=1}^{n} x_{t}\right\|^{2}-K \sum_{t=1}^{n}\left\|x_{t}\right\|^{2}
$$

Example 1: Smoothness/Strong Convexity

Let $\|\cdot\|$ be some norm on \mathcal{X}. Martingale inequality corresponding to smoothness:

$$
\mathbb{E}\left\|\sum_{t=1}^{n} X_{t}\right\|^{2} \leq K \cdot \mathbb{E} \sum_{t=1}^{n}\left\|X_{t}\right\|^{2}
$$

Hence,

$$
B\left(x_{1}, \ldots, x_{n}\right)=B\left(\sum_{t=1}^{n} x_{t}, \sum_{t=1}^{n}\left\|x_{t}\right\|^{2}\right)=\left\|\sum_{t=1}^{n} x_{t}\right\|^{2}-K \sum_{t=1}^{n}\left\|x_{t}\right\|^{2}
$$

Optimal U* inherits

$$
\mathrm{U}^{*}\left(x, \alpha^{2}\right)=\mathrm{U}^{*}(x, 0)-\mathrm{K} \alpha^{2} .
$$

Example 1: Smoothness/Strong Convexity

Let $\|\cdot\|$ be some norm on \mathcal{X}. Martingale inequality corresponding to smoothness:

$$
\mathbb{E}\left\|\sum_{t=1}^{n} X_{t}\right\|^{2} \leq K \cdot \mathbb{E} \sum_{t=1}^{n}\left\|X_{t}\right\|^{2}
$$

Hence,

$$
B\left(x_{1}, \ldots, x_{n}\right)=B\left(\sum_{t=1}^{n} x_{t}, \sum_{t=1}^{n}\left\|x_{t}\right\|^{2}\right)=\left\|\sum_{t=1}^{n} x_{t}\right\|^{2}-K \sum_{t=1}^{n}\left\|x_{t}\right\|^{2}
$$

Optimal U* inherits

$$
\mathrm{U}^{*}\left(x, \alpha^{2}\right)=\mathrm{U}^{*}(x, 0)-\mathrm{K} \alpha^{2}
$$

Restricted concavity 3° is

$$
\mathbb{E}_{\epsilon} \mathrm{U}^{*}\left(x+\epsilon y, \alpha^{2}+\|y\|^{2}\right) \leq \mathrm{U}^{*}\left(x, \alpha^{2}\right)
$$

Example 1: Smoothness/Strong Convexity

Let $\|\cdot\|$ be some norm on \mathcal{X}. Martingale inequality corresponding to smoothness:

$$
\mathbb{E}\left\|\sum_{t=1}^{n} X_{t}\right\|^{2} \leq K \cdot \mathbb{E} \sum_{t=1}^{n}\left\|X_{t}\right\|^{2}
$$

Hence,

$$
B\left(x_{1}, \ldots, x_{n}\right)=B\left(\sum_{t=1}^{n} x_{t}, \sum_{t=1}^{n}\left\|x_{t}\right\|^{2}\right)=\left\|\sum_{t=1}^{n} x_{t}\right\|^{2}-K \sum_{t=1}^{n}\left\|x_{t}\right\|^{2}
$$

Optimal U* inherits

$$
\mathrm{U}^{*}\left(x, \alpha^{2}\right)=\mathrm{U}^{*}(x, 0)-\mathrm{K} \alpha^{2}
$$

Restricted concavity 3° is

$$
\mathbb{E}_{\epsilon} \mathrm{U}^{*}\left(x+\epsilon y, \alpha^{2}+\|y\|^{2}\right) \leq \mathrm{U}^{*}\left(x, \alpha^{2}\right)
$$

Corollary: $\mathrm{x} \mapsto \mathrm{U}^{*}(\mathrm{x}, 0)$ is smooth wrt $\|\cdot\|$ (and its dual is strongly cvx).

Proof:

$$
\begin{aligned}
\Phi(x) & =U^{*}(x, 0) \\
& \geq \mathbb{E}_{\epsilon} U^{*}\left(x+\epsilon y,\|y\|^{2}\right) \\
& =\frac{1}{2}\left(U^{*}(x+y, 0)-K\|y\|^{2}\right)+\frac{1}{2}\left(U^{*}(x-y, 0)-K\|y\|^{2}\right) \\
& =\frac{1}{2} \Phi(x+y)+\frac{1}{2} \Phi(x-y)-K\|y\|^{2}
\end{aligned}
$$

Example 2

Hilbert space:

$$
\mathbb{E}\left\|\sum_{t=1}^{n} X_{t}\right\| \leq 2 \mathbb{E} \sqrt{\sum_{t=1}^{n}\left\|X_{t}\right\|^{2}}
$$

Hence,

$$
B(x, a)=\|x\|-2 y
$$

and interested in

$$
B\left(\sum_{t=1}^{n} x_{t}, \sqrt{\sum_{t=1}^{n}\left\|x_{t}\right\|^{2}}\right)
$$

Example 2

Hilbert space:

$$
\mathbb{E}\left\|\sum_{t=1}^{n} X_{t}\right\| \leq 2 \mathbb{E} \sqrt{\sum_{t=1}^{n}\left\|X_{t}\right\|^{2}}
$$

Hence,

$$
B(x, a)=\|x\|-2 y
$$

and interested in

$$
B\left(\sum_{t=1}^{n} x_{t}, \sqrt{\sum_{t=1}^{n}\left\|x_{t}\right\|^{2}}\right)
$$

Elementary algebra gives

$$
U(x, a)= \begin{cases}-\sqrt{2 a^{2}-\|x\|^{2}}, & a \geq\|x\| \\ \|x\|-2 a, & a<\|x\|\end{cases}
$$

satisfies concavity property

$$
\mathrm{U}\left(\mathrm{x}+\mathrm{d}, \sqrt{\mathrm{a}^{2}+\mathrm{d}^{2}}\right) \leq \mathrm{U}(x, a)+\mathrm{U}_{x}(x, a) \mathrm{d}
$$

Example 2

Hilbert space:

$$
\mathbb{E}\left\|\sum_{t=1}^{n} X_{t}\right\| \leq 2 \mathbb{E} \sqrt{\sum_{t=1}^{n}\left\|X_{t}\right\|^{2}}
$$

Hence,

$$
B(x, a)=\|x\|-2 y
$$

and interested in

$$
B\left(\sum_{t=1}^{n} x_{t}, \sqrt{\sum_{t=1}^{n}\left\|x_{t}\right\|^{2}}\right)
$$

Elementary algebra gives

$$
U(x, a)= \begin{cases}-\sqrt{2 a^{2}-\|x\|^{2}}, & a \geq\|x\| \\ \|x\|-2 a, & a<\|x\|\end{cases}
$$

satisfies concavity property

$$
u\left(x+d, \sqrt{a^{2}+d^{2}}\right) \leq u(x, a)+\frac{x \cdot d}{\sqrt{2 a^{2}-\|x\|^{2}}}
$$

Example 3: Empirical Rademacher

(FRS'16): Empirical Rademacher bound for Online Supervised Learning is possible if (and close to "iff")

$$
\mathbb{E}_{\epsilon}\left\|\sum_{\mathrm{t}=1}^{\mathrm{n}} \epsilon_{\mathrm{t}} \mathbf{x}_{\mathrm{t}}\right\|^{\mathrm{p}} \leq K \mathbb{E}_{\epsilon, e^{\prime}}\left\|\sum_{\mathrm{t}=1}^{\mathrm{n}} \epsilon_{\mathrm{t}}^{\prime} \mathbf{x}_{\mathrm{t}}\right\|^{p}
$$

where \mathbf{x}_{t} is $\mathcal{F}_{\mathrm{t}-1}$-measurable, $\mathrm{p} \geq 1$. Decoupling inequality.

Example 3: Empirical Rademacher

(FRS'16): Empirical Rademacher bound for Online Supervised Learning is possible if (and close to "iff")

$$
\mathbb{E}_{\epsilon}\left\|\sum_{\mathrm{t}=1}^{\mathrm{n}} \epsilon_{\mathrm{t}} \mathbf{x}_{\mathrm{t}}\right\|^{\mathrm{p}} \leq \mathrm{K} \mathbb{E}_{\epsilon, e^{\prime}}\left\|\sum_{\mathrm{t}=1}^{\mathrm{n}} \epsilon_{\mathrm{t}}^{\prime} \mathbf{x}_{\mathrm{t}}\right\|^{p}
$$

where \mathbf{x}_{t} is $\mathcal{F}_{\mathrm{t}-1}$-measurable, $\mathrm{p} \geq 1$. Decoupling inequality.

Two-sided version of above is equivalent to deterministic $U M D$

$$
\forall \sigma_{1}, \ldots, \sigma_{n} \in\{ \pm 1\}, \quad \mathbb{E}\left\|\sum_{\mathrm{t}=1}^{n} \sigma_{\mathrm{t}} X_{\mathrm{t}}\right\|^{\mathrm{p}} \leq K \mathbb{E}\left\|\sum_{\mathrm{t}=1}^{\mathrm{n}} X_{\mathrm{t}}\right\|^{\mathrm{p}}
$$

Example 3: Empirical Rademacher

(FRS'16): Empirical Rademacher bound for Online Supervised Learning is possible if (and close to "iff")

$$
\mathbb{E}_{\epsilon}\left\|\sum_{\mathrm{t}=1}^{\mathrm{n}} \epsilon_{\mathrm{t}} \mathbf{x}_{\mathrm{t}}\right\|^{\mathrm{p}} \leq K \mathbb{E}_{\epsilon, e^{\prime}}\left\|\sum_{\mathrm{t}=1}^{\mathrm{n}} \epsilon_{\mathrm{t}}^{\prime} \mathbf{x}_{\mathrm{t}}\right\|^{p}
$$

where \mathbf{x}_{t} is $\mathcal{F}_{\mathrm{t}-1}$-measurable, $\mathrm{p} \geq 1$. Decoupling inequality.

Two-sided version of above is equivalent to deterministic $U M D$

$$
\forall \sigma_{1}, \ldots, \sigma_{n} \in\{ \pm 1\}, \quad \mathbb{E}\left\|\sum_{t=1}^{n} \sigma_{t} X_{t}\right\|^{p} \leq K \mathbb{E}\left\|\sum_{t=1}^{n} X_{t}\right\|^{p}
$$

This gives

$$
B\left(x_{1}, \ldots, x_{n}\right)=B\left(\sum_{t=1}^{n} x_{t}, \sum_{t=1}^{n} \sigma_{t} x_{t}\right)=\left\|\sum_{t=1}^{n} \sigma_{t} x_{t}\right\|^{p}-K\left\|\sum_{t=1}^{n} x_{t}\right\|^{p}
$$

Example 3: Empirical Rademacher

Then U satisfying $1^{\circ}-3^{\circ}$ is called Burkholder function. Property 3° reads

$$
\mathbb{E}_{\epsilon} \mathrm{U}(x+\epsilon z, y \pm \epsilon z) \leq \mathrm{U}(\mathrm{x}, \mathrm{y})
$$

which is equivalent to zigzag concavity.

We can now go back and use U to derive an algorithm for Online Supervised Learning with Empirical Rademacher regret bound.

Back to Online Supervised Learning

Enough to solve linearized problem

$$
\sum_{\mathrm{t}=1}^{\mathrm{n}} \ell_{\mathrm{t}}^{\prime} \cdot \widehat{y}_{\mathrm{t}} \leq \min _{w \in \mathcal{F}} \sum_{\mathrm{t}=1}^{\mathrm{n}} \ell_{\mathrm{t}}^{\prime} \cdot\left\langle w, x_{\mathrm{t}}\right\rangle+C_{n}\left(x_{1}, \ldots, x_{\mathrm{n}}\right)
$$

Back to Online Supervised Learning

Enough to solve linearized problem

$$
\sum_{\mathrm{t}=1}^{\mathrm{n}} \ell_{\mathrm{t}}^{\prime} \cdot \widehat{y}_{\mathrm{t}} \leq \min _{w \in \mathcal{F}} \sum_{\mathrm{t}=1}^{\mathrm{n}} \ell_{\mathrm{t}}^{\prime} \cdot\left\langle w, x_{\mathrm{t}}\right\rangle+C_{n}\left(x_{1}, \ldots, x_{n}\right)
$$

which can be written as

$$
\sum_{\mathrm{t}=1}^{n} \ell_{\mathrm{t}}^{\prime} \cdot \widehat{y}_{\mathrm{t}}+\underbrace{\left\|\sum_{\mathrm{t}=1}^{n} \ell_{\mathrm{t}}^{\prime} x_{\mathrm{t}}\right\|-\mathrm{E} \mathbb{E}_{\epsilon}\left\|\sum_{\mathrm{t}=1}^{n} \epsilon_{\mathrm{t}} \ell_{\mathrm{t}}^{\prime} x_{\mathrm{t}}\right\|}_{\leq \mathbb{E}_{e} \mathrm{u}\left(\sum_{\mathrm{t}=1}^{n} \ell_{\mathrm{t}}^{\prime} x_{\mathrm{t}}, \sum_{\mathrm{t}=1}^{n} \epsilon_{\mathrm{t}} \ell_{\mathrm{t}}^{\prime} x_{\mathrm{t}}\right)} \leq 0
$$

Last step:

$$
\min _{\widehat{y}_{n}} \max _{\ell_{n}^{\prime} \in[-1,1]}\left\{\ell_{n}^{\prime} \cdot \widehat{y}_{n}+\mathbb{E}_{\epsilon} u\left(\sum_{t=1}^{n} \ell_{t}^{\prime} x_{t}, \sum_{t=1}^{n} \epsilon_{t} \ell_{\mathrm{t}}^{\prime} x_{t}\right)\right\}
$$

Choosing $\widehat{y}_{n}=-G^{\prime}(0)$ for

$$
\mathrm{G}(\alpha)=\mathbb{E}_{\sigma} \mathrm{U}\left(\sum_{\mathrm{t}=1}^{\mathrm{n}-1} \ell_{\mathrm{t}}^{\prime} x_{\mathrm{t}}+\alpha x_{\mathrm{t}}, \sum_{\mathrm{t}=1}^{n-1} \epsilon_{\mathrm{t}} \ell_{\mathrm{t}}^{\prime} x_{\mathrm{t}}+\sigma \alpha x_{\mathrm{t}}\right)
$$

ensures

$$
-\ell_{\mathrm{n}}^{\prime} \cdot \mathrm{G}^{\prime}(0)+\mathrm{G}\left(\ell_{\mathrm{n}}\right) \leq \mathrm{G}(0)
$$

by diagonal concavity and yields clean recursion.

Conclusions

- Gradient/Mirror Descent does not keep the right "statistics" about the sequence.
- Strong convexity/smoothness is not enough as a geometric primitive.
- Can find the right primitive by exploiting connections between probabilistic inequalities and geometry.

