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Multitask Learning (MTL)

Aim is to exploit similarities among multiple learning tasks in order to
improve learning

(fl,...,f )—?rgm;n *Z Zg ft SUtz ym)"’)\R(fl;---,fT)
LoeenJT t=1

» S; = (24, yri)"q: i.i.d. sample from! a prescribed probability
measure py on X X R
» /:R xR — R: loss function?

» R: penalty function encouraging commonalities between the tasks

LFor simplicity we use the same sample size per task.
2The loss function could also depend on t¢.



Previous Work

Different examples of regularizer R:

v

T
Independent task learning: Z ||ft”2
t=1

v

T
Similarity regularizer: Z As

s,t=1

Groups lasso: fi(z) = (we, p(2)), Z?Zl S wy;

fe—fsl? Asi >0

v

v

Spectral regularization: fi(z) = (w, p(z)), |lo([w1 - wr])|1

The above methods do not constrain the values of f, rather they encourage
certain low complexity functions within a linear space.



Nonlinear MTL

We assume that f takes values on a set C C R”, e.g. we prescribe a
mapping v : RT — R™ and set C = {y € RT : y(y1,...,yr) =0}

(fula). falal)

NilaP + folz)* =1
Examples:
» Manifold-valued learning
> Physical systems (e.g. robotics)

> Logical constraints (e.g. ranking)



Nonlinear MTL (cont.)

Goal: estimate f* : X — C, minimizer of the expected risk

1 T
wmin_ (1), &)= 7 X [ o)) dorton,)

f:xX—=C

where f = (f1,..., fr) and we require that f(z) €C, Vo € X
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Difficulties of Empirical Risk Minimization

R 1 <
f—argmlnfzﬁzﬂft £0) )
=1

f:x—=C

Problems:
» Modeling: fi, fo : X — C does not guarantee f1 + fo: X — C
» Computations: Hard (non-convex) optimization!
» Statistics: How to study the generalization properties of f?
We take a different path, building on [Ciliberto, Rudi, Rosasco, 2016] who

considered a general structure prediction setting, showing how to reduce
this problem to a simpler vector-valued learning problem



Loss Function

» Assumption. There exist continuous mappings ¥ : R — H and
¢ : R — H, with H a Hilbert space, such that

Uy, y') = (W), o)  Vyy' eR

» Mild assumption: verified if £ has derivative Lipschitz continuous
almost everywhere

» Example (square loss): H=R?, (y —y')? = <(1, v,v%), (y'% -2y, 1)>



Implication: Decomposition of the Risk

elf) = %Z/é(ft(x)ayt) dpi(ye, )

_ 72 / (fo(@)), &) dpr () dpy ()

_ fZ/ /qbyt pluile) Yo (@)
MR

g; (x)

The minimizer of the expected risk is then:

= argmin Z



Nonlinear MTL Estimator (I)

Idea: Estimate g; with g, for each t =1,...,T. Then estimate

T

7o) = argmin 737 (0057 0)
with
. 1 &
f(@) = argmin 7. > (¥(er), 3u(a))

t=1
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Nonlinear MTL Estimator (I1)

Let k: X x X — R be a psd kernel (e.g. the Gaussian kernel). We learn
gz via kernel ridge regression:

g = argmin — Z lg9(i) — D(ye) |13 + Mlgll7
gEHK

Then [Thm. 4.1, Micchelli and P., 2005]:
Z o () d(Yss) (Ozﬂ (x),..., am(as)) = (K +nX\) Yoy (z)

where K; = (k(xti7mtj))zj:1 and vy(x) = (k(atti,x))?zl.
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Nonlinear MTL Estimator (l11)

Using again the property of the loss

T

() = argmin - D fwe) )

ceC

< Z( )qb(yf,)>
U (’t) (’!/tqi)>

= argmln (e, Yti)

ceC

Note that evaluating f(z) does not require knowledge of H, 1) or ¢!



Nonlinear MTL with Square Loss

» If / is the square loss then

f( = argmin Zat ct—bt )/at(:c))2

ceC —1

with

nt
(E) = Zati(m)a Zatz ytz
=1

> Interpretation: we perform the projection of (bt(x)/at(x))thl
according to the metric induced by the matrix diag(a;(x), ..., ar(x))

> If a;(x) is small it will affect less the weighted projection

13/21



Statistical Analysis

Thm. 1 (Comparison inequality).

T

E(f)-E(t )<2sup\l ! > (e IIQ\I legt G112, (o 20

t=1

qc,e, T

Proof idea: Let

80 =53 [ (@), @)dor(z)

Then

) —e(f) =€E) —Ef)+EWF) - ()

A B

and we can bound A and B with Cauchy Schwarz's inequality
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Statistical Analysis (cont.)

Thm. 1 (Comparison inequality).

T
E(fy—&(f) < 2sup¢ Zuw ct) IIQ\I legt—gflliz(px,m

qc,e, T

Implications:

» Thm. 2 (Consistency). £(f) —&(f*) =0  as.

» Thm. 3 (Rates). If gf € Hy forallt =1,...,T then

logT

1
n4

E(f)—E(f) Sacer w.h.p
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Example
Choose ¢(y,y') = (y — y')%. Then

» If C is the T'— 1 dimensional sphere then

E(f)=E(f) <O((nT)7%)  whp.

» In comparison if C = [~B, B]T then

Ef)—E(f)<O(n~1)  whp.

Proof sketch. WLOG we can use the modified loss £(y,y’) = y® — 2yy’. Then
Uy, z) = (W(y), ¢(y") = (%, y), (1, ~2y)). Hence

T T V2 if C = [-B,B]"
qc.er = Z Ol? = %ZC?JFQ% = { 1482 | ]
=1 By/=7= ifC={llcll. < B}
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Extension: Violating C

In practice, knowledge of the constraint set C may not be exact

One ways to overcome this is to penalize predictions depending on
their distance from the set C

C(;:{c—&—r :ceC, reRY, ||T||§5}

where § ranges from 0 (Co = C) to +00 (Coo = RT).

We can show that

fs(x) = f(x) + r(z) min(1,8/|r(z)]))

where f is the unperturbed solution and 7 = 2((3 — f(x)
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Empirical Results

¢ Ground Truth
* MTRL

STL
* NL-MTL

Synthetic data

Lemniscate (v} — (y? — y2) = 0)

Circumference

Inverse dynamics

STL  MTL[3%] CMITL{10] MTRL[1l] MTFL{13] FMTL{16] NL-MTL[R] NL-MTL[P]
(Sarcos) Expl. 405 345 33.0 1.6 9.9 50.3 55.4 54.6
Var (%)  £7.6 4102 +134 +7.1 +6.3 +5.8 +6.5 +5.1
Ranking NL-MIL  SELF[21] Linear (37] Hinge[38] Logistic[39] SVMStruct(20] STL  MTRL[l]
(Movielens100k) ~ Rank 0271 0396 0.430 0.432 0.432 0.451 0581 0.613
Loss +0.004  +0.003 40004  +0.008  +0.012 +0.008 0.003  +0.005
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Open Problems

» Can we improve the error bounds by optimizing over the choice the
estimator §?

» Add further constraints on the problem (e.g. low rankness)

» What if C is not known a-priori? Can we estimate it?
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