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ARPEGE FRENCH METEOROLOGICAL DATA

At n = 259 locations,

- Temperature and Wind

- for 14 years

- hourly sample rate

- d = 122 712 points for raw
data

- Y data matrix (n x d)
-n<<d

Temperature 2001-2014 Wind 2001-2014
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OBJECTIVE AND QUESTIONS :

Goals
o Segmentation of the country into regions using meteorological data
o Temperature and/or Wind

o Study the Between Year variability



WIND AND TEMPERATURE SPOTS FOR 2014




SEGMENTATION

Temperature

FOR 2001, 2007, 2014 DAILY DATA

Wind day 20

Wind

“Thros 6.06 (dicoTA)

Kmeans 4 ()
Wind day 2067 Thres 0.05 (dicoTA)

<,

Q>



3 STEPS

There are generally 3 important steps (linked in fact) :
@ Representation of the data
@ Smoothing

@ Selection procedure



REPRESENTATION OF THE DATA

Ad-hoc representations
PCA

Functional representation
Kernel clustering

Spectral clustering
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NATURAL-TIME AGGREGATION SMOOTHING

The data are observed hourly. It is commonly admitted to take
@ the average on a day : daily observed data T" = 365 for one year.
@ the average on a week : daily observed data T' = 52 for one year.

@ the average on a month : daily observed data 1" = 12 for one year.



PCA-REDUCTION

Projection of the observations using a data driven orthonormal basis

X centered data matrix (n,d)
n =259, d >> n large

The Feature matrix (n,T) is computed by projection, T' << d :
Ur is the matrix defined by the first eigenvectors of T', the
Variance-Covariance matrix.

T chosen so that? % = Kpca (0.95)

— Global linear method involving all the n = 259 spots to compute Ur
— Is Up similar between years ?



PCA MIGHT NO BE ADAPTED
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FUNCTIONAL SMOOTHING

Data are (in fact) functions of time regularly spaced.
Xi = fi(t/d) + e,

f%is unknow, € ~ N(0,02), t=1,...,d.
Nonparametric estimation of f* : f* = EgT:1 Bia
with D = {g1,...,gp} dictionary of functions.

How to choose 7'? (more to come)
Here
i _ \~Jo o Qi .
We note X; = > 7, ,B(j)gj
g 2
Xyl
X2

with [B{})| > ... > |8, and > T p(= 0.95).



SELECTION PROCEDURE : KMEANS CLUSTERING

Choose k the number of clusters
Find the Arg min (in Ci,...,Cy) of :

k k
D> IG-vir=2) > IG-YI?

r=1 j#£5',€Cy r=1jeCr

Best prediction



QUESTIONS

@ What is better : raw data (d) or smoothing (7' < d)?
@ What conditions ? (sparsity, separation of clusters...)

® How to smooth ? Does usual adaptation methods work as well to
detect clusters?

@ On-line (signal by signal smoothing) or off-line smoothing (using a
pre-process involving all the signals) ?
® What are the rates?



SIMPLER FRAMEWORK

@ 2 classes only

@ The change occurs on a time scale



TWO CLASSES MODEL

We observe Y1, ...,Y, n independent signals.
Each signal is observed discretely, i.e. Y; = (le, .. ,de),
Gaussian clustering :

There exists a setA C {1,...,n}, and two regular vectors of IR? §_ and
0. such that

Yj=60;+mn;, 1<j<n, n;iidN(0,0%I)
9j =0_, VjeA,
93 = 9+, Vj € A°



TWO CLASSES K MEANS ALGORITHM

B= ArgMinBC{l,m,n},

S0 - T T 0 -

jEB €<d geB jeBe (<d

> vy

jeB*°



SIMPLIFIED TWO CLASSES MODEL : TIME CHANGE
CLASSIFICATION

Clustering with time scale :

There exits 0 < 7 < 1 (change-point), and two regular vectors of IR? : §_
and 6 such that ,

0;=0_,Vj <nt
0; =04, Vj>nt



TWO CLASSES K MEANS CLUSTERING ALGORITHM IN
THIS CONTEXT

7= ArgMinco,1)

IPRCEEDRARID DU I DR s

j<nt £<d j<nt j>nt+1 £<d j>nt+1



CHANGE POINT : QUESTIONS

Find the rate of convergence for 7 using k-means.
Does smoothing help ? How ?
Sparsity conditions ?

What are the different rates of convergence ?
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How to smooth optimally ?



SMOOTHING : SIMPLIFIED SPARSITY ASSUMPTIONS

For s > 0, we define

O(s,L) :== {0 € R?, sup K% Z(Gl")Q < L%}.
KeN* K

We will suppose that 6_ and 6, are in O(s, L).

— Again, this kind of sparsity reflects an ordering in the importance of the
coefficients : the first ones are supposedly more important than the last
ones. (PCA, functional representations)

— Possible extensions to other kind of sparsity like for ¢ < 1,

O(q, L) :={0 € R?, > |6*]“ < L}.
k



CLUSTERING ALGORITHM : MLE - KMEANS

For 1 < T < d, let us consider
— T smooth data : Yj(T) = (Y}!,...,Y}) instead of
Y = Y;(d) = (Y1,..., Y1),

E T o1k
7(T) = arg minke{2,...,n—2} Z Z (YZJ Tk Z Yf) +

i=1 j=

H

.
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MISCLASSIFICATION RATE

@ How bigis [7(T) — 7|7 A A
In a general context : Max{#{A°N A}, #{AN A°}}?

@ How does this depend on T, 5, A% = ||0_ — 6, |]*?



CHANGE POINT CLASSIFICATION RATE
d

AZ = SO0 - 0002 = |04 — 0|12
7=1
We also define, for T' < d,

T

AZ =30 - 02, U, (T.A P Vi
T - e nAZ * (nAZ)2”

J=1

Proposition

Let us assume conditions [edge-out] and [Gaussian errors]. For any v > 0
there exists constants r(v,¢€), and c(v, €) such that,

nA%
= > c(y,€)logn, X > k(y,€)logn, then

P(IH(T) = 7| > \Uu(T, A7)} <0,




CHANGE POINT FRAMEWORK RATE FOR T

T 2

AZ =300~ 61)2, Uu(T,Ar) =g V 2l ).
T : B v e nA% (nA%V
7=1

o Note that for this result, no sparsity conditions on 4 and 6_ are
needed.

o Using Korostelev and Lepski (MMS 2008), ¥, (7, Ar) is the minimax
rate in this framework. Compared to their result, we are apparently
loosing a logarithmic factor (contained in A).

o But it is important to stress that in the paper above, the bound e was
supposed to be known, whereas our estimator 7(7") is adaptive in e.



COMMENTS : TAKING T = d

d 2

4
2 . 2 9 o o*d
A“ = E (07 — Hi) =0+ —0_]|7. V,(d,Ay) = [—nA2 V 7(nA2)2]'

o This rate is "typically’ composed of two different regimes : a

2
a
'dimension-free one’ -7, and a 'dimension-depending’ (,LAz)z

(deteriorating with the dimension).

o If c(y, e)" In(n) < A2 <« o2d ’1 , the rate of convergence is A4;l)2'

o if A2 d \/ 21
o if A 2"7’\/(,(7,6)0 2(”>,|t is AZ
» Taking T = d (so raw data), allows to obtain the best rate n"—:z.

Taking a smaller T' could lead to a reduction of A7 damaging the rate.
» However this condition is quite restrictive when d is large

o Try to replace ¥, (T, Ar) by U, (T, A) = [nN v (RNT) ]-

o Possible using regularity assumptions.



COMMENTS

d 2

2 J 7 )2 2 7 o1
A= (0~ 00 = s 0| V(T A7) = [z V o)
j=1 ! !

o Without assumptions on the behavior of the parameters 6, and 6_,
there is not much to hope about the way Ar is increasing in 7.
[©(s,L)] == for T such that A% > 8L*T~2%, then Ar and A are
comparable, in the sense that A2 > A2/2.

o If A7 and A are comparable, then U, (7, Ap) ~ U, (T, A) is
composed of two regimes

nA2

2]
o2

» a good one -7z for T' <

4 ,
» and a slow one % for larger T''s.



CHANGE POINT FRAMEWORK RATE FOR T
Theorem

We assume conditions [edge-out], and [O(s, L)].
For any v > 0, there exist constants (v, €) and c(v, €) such that, if

o2 In(n)

A? > |:2C(’}/,E) Y 8L2T25} , A > k(7€) In(n),

then
P(I#(T) = 1] 2 XU (T, A)) <.

If, now,

n

2 2
A% > [26(7,6)0 12(?7/) V8LAT %y —T] ;A >E(y,€) In(n),

P(|%( ) — 7| > Ana;> <n7.




COROLLARY

1
L2 1+2s
Optimizing in T leads to i, ~ T := (8 n> .

o2
Corollary

Under the conditions above, for any v > 0, there exist constants k(7, €)
and c(v, €) such that, if

A? >

2s
2¢(7, 6)0 ;1(71) \Y <0—> (SLQ) ”2"'] . A > k(7€) In(n),

2 @
p(\%(:r;) 7> A%) <n.




DiscussioN

2
. n ., —2s o
A? > [ <]+ Rate —

52! ’ nA?2

o Rate and conditions could seem quite poor, but observe that very

2
often o2 is of the form %0.




CHOICE OF T' : ON-LINE ? OFF-LINE ?

2
o In particular case where o2 is of the form %0 the optimal smoothing is

Topt = Jlg &= [_

)

This proves that any (on-line) adaptive smoothing on each individual
signal Y; (thresholding or whatever) would give a rate -at best- of the

form : :
a 1
Topt =T := [_2] s
70
— loosing the factor n can damage the rate of misclassification.

o Meaning that the adaptive smoothing needs to be performed globally
(off-line)



ADAPTATIVE CHOICE FOR T

@ First, using the complete data set (so off-line), we will create
surrogate data, estimating a parameter (3 of regularity s. These data
will be used to finding an optimal 7.

@ Estimating the regularity of a signal is impossible without important
extraneous assumptions

@ But adaptive procedures are producing - Lepski's procedure- a
smoothing parameter T such that 7' < T, with overwhelming
probability .

@ This is not enough in our case. However, fortunately, Lepski's
procedure, also controls the bias of the procedure, assuring that
A% < 2A% with large probability.



ADAPTATIVE CHOICE FOR T

Form the following (off-line) pseudo-data in IR? : Z

‘—1nyé QH/QY‘e—l d
=2y -2 =1,
j=1 j=1

It has as mean

(1 —7)[04 — 0_|I{r > 1/2} + 1[0 — 6_|I{r < 1/2},



ADAPTATIVE CHOICE FOR T

Consider the Lepski's smoother (c is a tuning constant)

! 2
T := min{k, Xz[Zé(l)}2 <aZ log[d V n], VI > k' > k},
n
(=K'



ADAPTATIVE CHOICE FOR T

Theorem

We assume that 6 and 6_ belong to ©(s, L). We suppose that there
exists a constant « > 0 such that

n
5 = alnd.
o

l=m

J 2
T::min{kz 1:Vd>j>m>k Y (2 SC’gj%ln(d\/n)}.

Then, for any v > 0, there exist 2 constants R(v,¢€) and (v, ¢€) such that
if A2 >R (M) 2 and A >k log n, then,

. o? _
P<|T( )—T|>)\nA2) <n "




TO DO...

Conditions ellipsoid — usual sparsity
Change point — general clustering
2 classes — k classes

Lower bounds

Combine with dictionary search



Thank you for your attention



RECIPE FOR PROOF

7(T) = arg min,ce2 e }KT(t).

n’

KT(t) = min L(t,z_,2,) — L(7,0,0).

T—, T4

Lo o) = 3307 LY Y

=1 j=1 i=nt+1 j=1

9 2 9 9 (nt —n7)nT

—$+)2.

=

+2N;(t)—2N2(t),



How TO CHOOSE THE NUMBER OF CLUSTERS 7
ko number of clusters :

with A = pry1 — p

Many methods already in the literature : ko = arg min{k, A, <
Calinsky et al. 1974, Gap Statistic Fried- 5%}

man et al. 2000, ... Most of them based

on :

Variance Decomposition :
T =W+ By

Bl
%
\\\
\H

Total T==51511X —_XH2 _
Between Bj = %Zk | X — X||? -
Within Wi =3 30 S0 || X (k) — Xil|?

Quantification/ modeling indicator ratio :

—u—%
S
o—"

pr =2k €10,1] 1/




EXAMPLE OF TIME CHANGE CLASSIFICATION

Temperature 2001-2014

@ Only one spot (Chamonix)

N T )

@ The data are separated into different years n = 14
@ Each year has d = 8760 points of observation

nnnnnnnn

@ We want to detect a change-point occurring at one precise year.



STABILITY OF THE NUMBER OF CLUSTERS
over 14 years, for different temporal aggregation levels

Data : 14 x one year of data,
Kmeans algorithm

Temperature :
day (365) week (52) month (12)
PCA 95% 5 (0) 49(0.2) 4.7(04)
NP Reg. Trigo 5 (0) 48 (0.4) 4.7(0.4)
NP Reg. Haar 5 (0) 48(0.4) 4.7(0.4)
Wind :
day (365)  week (52)  month (12)
Pca 90% 415(03) 423(04) 431(04)
NP Reg. Trigo 4.15(0.3) 4(0) 4.08(0.2)
NP Reg. Haar 4.23(0.4) 4.31(04) 4.15(03)




