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Arpege French Meteorological data
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At n = 259 locations,
- Temperature and Wind
- for 14 years
- hourly sample rate
- d = 122 712 points for raw
data
- Y data matrix (n x d)
- n << d
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Objective and Questions :

Goals

Segmentation of the country into regions using meteorological data

Temperature and/or Wind

Study the Between Year variability



Wind and Temperature spots for 2014
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Segmentation for 2001, 2007, 2014 daily data
Temperature

Kmeans 5 (−)

Temp day 2001 Thres 0.05 (dicoTA)

Kmeans 5 (−)

Temp day 2007 Thres 0.05 (dicoTA)

Kmeans 5 (−)

Temp day 2014 Thres 0.05 (dicoTA)

Wind

Kmeans 4 (−)

Wind day 2001 Thres 0.05 (dicoTA)

Kmeans 4 (−)

Wind day 2007 Thres 0.05 (dicoTA)

Kmeans 5 (−)

Wind day 2014 Thres 0.05 (dicoTA)



3 steps

There are generally 3 important steps (linked in fact) :

1 Representation of the data

2 Smoothing

3 Selection procedure



Representation of the data

Ad-hoc representations

PCA

Functional representation

Kernel clustering

Spectral clustering

...



Natural-time aggregation smoothing
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The data are observed hourly. It is commonly admitted to take

1 the average on a day : daily observed data T = 365 for one year.

2 the average on a week : daily observed data T = 52 for one year.

3 the average on a month : daily observed data T = 12 for one year.



PCA-reduction

Projection of the observations using a data driven orthonormal basis

X centered data matrix (n, d)
n = 259, d >> n large

The Feature matrix (n, T ) is computed by projection, T << d :

Z = XUT

UT is the matrix defined by the first eigenvectors of T , the
Variance-Covariance matrix.

T chosen so that ? λ1+...+λT

Σjλj
= κpca (0.95)

→ Global linear method involving all the n = 259 spots to compute UT

→ Is UT similar between years ?



PCA might no be adapted



Functional smoothing

Data are (in fact) functions of time regularly spaced.

Xi
t = f i(t/d) + ǫit,

f i is unknow, ǫi ∼ N (0, σ2), t = 1, . . . , d.
Nonparametric estimation of f i : f i =

∑T
ℓ=1 β

i
ℓgℓ

with D = {g1, . . . , gp} dictionary of functions.
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How to choose T ? (more to come)
Here
We note X̂i

j0
=

∑j0
j=1 β̂

i
(j)gj

with |β̂i
(1)| ≥ . . . ≥ |β̂i

(n)|, and
||X̂i

(j0)
||2

||Xi||2
≥ TNP (= 0.95).



Selection procedure : Kmeans Clustering

Choose k the number of clusters
Find the Arg min (in C1, . . . , Ck) of :

k
∑

r=1

∑

j 6=j′,∈Cr

‖Yj − Yj′‖
2 = 2

k
∑

r=1

∑

j∈Cr

‖Yj − Ȳr‖
2,

Ȳr =
1

|Cj |

∑

j∈Cr

Yj.

Best prediction



Questions

1 What is better : raw data (d) or smoothing (T ≤ d) ?

2 What conditions ? (sparsity, separation of clusters...)

3 How to smooth ? Does usual adaptation methods work as well to
detect clusters ?

4 On-line (signal by signal smoothing) or off-line smoothing (using a
pre-process involving all the signals) ?

5 What are the rates ?



Simpler framework

1 2 classes only

2 The change occurs on a time scale



Two classes model

We observe Y1, . . . , Yn n independent signals.
Each signal is observed discretely, i.e. Yj = (Y 1

j , . . . , Y
d
j ),

Gaussian clustering :
There exists a setA ⊂ {1, . . . , n}, and two regular vectors of IRd θ− and
θ+ such that

Yj = θj + ηj, 1 ≤ j ≤ n, ηj i.i.d.N(0, σ2Id)

θj = θ−, ∀j ∈ A,

θj = θ+, ∀j ∈ Ac



Two classes K means algorithm

B̂ = ArgMinB⊂{1,...,n},






∑

j∈B

∑

ℓ≤d

(Y ℓ
j −

1

#B

∑

j∈B

Y ℓ
j )

2 +
∑

j∈Bc

∑

ℓ≤d

(Y ℓ
j −

1

#Bc

∑

j∈Bc

Y ℓ
j )

2









Simplified two classes model : time change

classification

Clustering with time scale :
There exits 0 < τ < 1 (change-point), and two regular vectors of IRd : θ−
and θ+ such that ,

θj = θ−, ∀j ≤ nτ

θj = θ+, ∀j > nτ

A = {1, . . . , nτ}



Two classes K means clustering algorithm in

this context

τ̂ = ArgMint∈(0,1)






∑

j≤nt

∑

ℓ≤d

(Y ℓ
j −

1

nt

∑

j≤nt

Y ℓ
j )

2 +
∑

j≥nt+1

∑

ℓ≤d

(Y ℓ
j −

1

n(1− t)

∑

j≥nt+1

Y ℓ
j )

2









Change point : Questions

Find the rate of convergence for τ using k-means.

Does smoothing help ? How ?

Sparsity conditions ?

What are the different rates of convergence ?

How to smooth optimally ?



Smoothing : simplified sparsity assumptions

For s > 0, we define

Θ(s, L) := {θ ∈ IRd, sup
K∈N∗

K2s
∑

k≥K

(θk)2 ≤ L2}.

We will suppose that θ− and θ+ are in Θ(s, L).
→ Again, this kind of sparsity reflects an ordering in the importance of the
coefficients : the first ones are supposedly more important than the last
ones. (PCA, functional representations)
→ Possible extensions to other kind of sparsity like for q < 1,

Θ(q, L) := {θ ∈ IRd,
∑

k

|θk|q ≤ L}.



Clustering algorithm : MLE - Kmeans

For 1 ≤ T ≤ d, let us consider
→ T smooth data : Yj(T ) = (Y 1

j , . . . , Y
T
j ) instead of

Yj = Yj(d) = (Y 1
j , . . . , Y

d
j ),

τ̂(T ) = arg mink∈{2,...,n−2}

k
∑

i=1

T
∑

j=1

(

Y j
i −

1

k

k
∑

i=1

Y j
i

)2
+

n
∑

i=k+1

T
∑

j=1

(

Y j
i −

1

n− k

n
∑

i=k+1

Y j
i

)2
.



Misclassification rate

1 How big is |τ̂(T )− τ | ?
In a general context : Max{#{Âc ∩A},#{Â ∩Ac}} ?

2 How does this depend on T , s, ∆2 = ‖θ− − θ+‖
2 ?



Change point classification rate

∆2 :=
d

∑

j=1

(θj− − θj+)
2 = ‖θ+ − θ−‖

2.

We also define, for T ≤ d,

∆2
T :=

T
∑

j=1

(θj− − θj+)
2, Ψn(T,∆T ) = [

σ2

n∆2
T

∨
σ4T

(n∆2
T )

2
].

Proposition

Let us assume conditions [edge-out] and [Gaussian errors]. For any γ > 0
there exists constants κ(γ, ǫ), and c(γ, ǫ) such that,

n∆2
T

σ2
≥ c(γ, ǫ) log n, λ ≥ κ(γ, ǫ) log n, then

P
(

|τ̂(T )− τ | ≥ λΨn(T,∆T )
)

≤ n−γ .



Change point framework rate for τ

∆2
T :=

T
∑

j=1

(θj− − θj+)
2, Ψn(T,∆T ) = [

σ2

n∆2
T

∨
σ4T

(n∆2
T )

2
].

Note that for this result, no sparsity conditions on θ+ and θ− are
needed.

Using Korostelev and Lepski (MMS 2008), Ψn(T,∆T ) is the minimax
rate in this framework. Compared to their result, we are apparently
loosing a logarithmic factor (contained in λ).

But it is important to stress that in the paper above, the bound ǫ was
supposed to be known, whereas our estimator τ̂(T ) is adaptive in ǫ.



Comments : Taking T = d

∆2 :=

d
∑

j=1

(θj− − θj+)
2 = ‖θ+ − θ−‖

2. Ψn(d,∆d) = [
σ2

n∆2
∨

σ4d

(n∆2)2
].

This rate is ’typically’ composed of two different regimes : a
’dimension-free one’ σ2

n∆2 , and a ’dimension-depending’ σ4d
(n∆2)2

(deteriorating with the dimension).

If c(γ, ǫ)σ
2 ln(n)
n ≤ ∆2 < σ2d

n , the rate of convergence is σ4d
(n∆2)2

,

if ∆2 ≥ σ2d
n ∨ c(γ, ǫ)σ

2 ln(n)
n , it is σ2

n∆2 .

◮ Taking T = d (so raw data), allows to obtain the best rate σ
2

n∆2 .
Taking a smaller T could lead to a reduction of ∆T damaging the rate.

◮ However this condition is quite restrictive when d is large

Try to replace Ψn(T,∆T ) by Ψn(T,∆) = [ σ2

n∆2 ∨ σ4T
(n∆2)2 ].

Possible using regularity assumptions.



Comments

∆2 :=

d
∑

j=1

(θj− − θj+)
2 = ‖θ+ − θ−‖

2. Ψn(T,∆T ) = [
σ2

n∆2
T

∨
σ4T

(n∆2
T )

2
].

Without assumptions on the behavior of the parameters θ+ and θ−,
there is not much to hope about the way ∆T is increasing in T .
[Θ(s, L)] =⇒ for T such that ∆2 ≥ 8L2T−2s, then ∆T and ∆ are
comparable, in the sense that ∆2

T ≥ ∆2/2.

If ∆T and ∆ are comparable, then Ψn(T,∆T ) ∼ Ψn(T,∆) is
composed of two regimes

◮ a good one σ
2

n∆2 for T ≤ n∆2

σ2 ,

◮ and a slow one σ
4
T

(n∆2)2 for larger T ’s.



Change point framework rate for τ

Theorem

We assume conditions [edge-out], and [Θ(s, L)].
For any γ > 0, there exist constants κ(γ, ǫ) and c(γ, ǫ) such that, if

∆2 ≥

[

2c(γ, ǫ)
σ2 ln(n)

n
∨ 8L2T−2s

]

, λ ≥ κ(γ, ǫ) ln(n),

then
P
(

|τ̂ (T )− τ | ≥ λΨn(T,∆)
)

≤ n−γ .

If, now,

∆2 ≥

[

2c(γ, ǫ)
σ2 ln(n)

n
∨ 8L2T−2s ∨

σ2T

n

]

, λ ≥ κ(γ, ǫ) ln(n), (1)

P
(

|τ̂(T )− τ | ≥ λ
σ2

n∆2

)

≤ n−γ .



Corollary

Optimizing in T leads to Topt ∼ Ts :=

(

8L2n

σ2

)

1
1+2s

.

Corollary

Under the conditions above, for any γ > 0, there exist constants κ(γ, ǫ)
and c(γ, ǫ) such that, if

∆2 ≥

[

2c(γ, ǫ)
σ2 ln(n)

n
∨

(

σ2

n

)

2s
1+2s

(

8L2
)

1
1+2s

]

, λ ≥ κ(γ, ǫ) ln(n),

(2)

P
(

|τ̂(Ts)− τ | ≥ λ
σ2

n∆2

)

≤ n−γ .



Discussion

∆2 & [
n

σ2
]

−2s
1+2s , Rate

σ2

n∆2

Rate and conditions could seem quite poor, but observe that very

often σ2 is of the form
σ2
0
d .



Choice of T : on-line ? off-line ?

In particular case where σ2 is of the form
σ2
0
d the optimal smoothing is

Topt = Ts := [
nd

σ2
0

]
1

1+2s

This proves that any (on-line) adaptive smoothing on each individual
signal Yj (thresholding or whatever) would give a rate -at best- of the
form :

Topt = Ts := [
d

σ2
0

]
1

1+2s

→ loosing the factor n can damage the rate of misclassification.

Meaning that the adaptive smoothing needs to be performed globally
(off-line)



Adaptative choice for T

1 First, using the complete data set (so off-line), we will create
surrogate data, estimating a parameter β of regularity s. These data
will be used to finding an optimal T̂ .

2 Estimating the regularity of a signal is impossible without important
extraneous assumptions

3 But adaptive procedures are producing - Lepski’s procedure- a
smoothing parameter T̂ such that T̂ ≤ Ts, with overwhelming
probability .

4 This is not enough in our case. However, fortunately, Lepski’s
procedure, also controls the bias of the procedure, assuring that
∆2 ≤ 2∆2

T̂
with large probability.



Adaptative choice for T

Form the following (off-line) pseudo-data in IRd : Z

Zℓ =
1

n

n
∑

j=1

Y ℓ
j −

2

n

n/2
∑

j=1

Y ℓ
j , ℓ = 1, . . . , d

It has as mean

(1− τ)[θ+ − θ−]I{τ ≥ 1/2} + τ [θ+ − θ−]I{τ < 1/2},



Adaptative choice for T

Consider the Lepski’s smoother (c is a tuning constant)

T̂ := min{k,
l

∑

ℓ=k′

[Zℓ(1)]2 ≤ cl
σ2

n
log[d ∨ n], ∀l ≥ k′ ≥ k},



Adaptative choice for T

Theorem

We assume that θ+ and θ− belong to Θ(s, L). We suppose that there
exists a constant α > 0 such that

n

σ2
≥ α ln d.

T̂ := min

{

k ≥ 1 : ∀d ≥ j ≥ m ≥ k,

j
∑

ℓ=m

(Zℓ)2 ≤ CLj
σ2

n
ln(d ∨ n)

}

.

Then, for any γ > 0, there exist 2 constants R(γ, ǫ) and κ(γ, ǫ) such that

if ∆2 ≥ R
(

σ2 ln(d∨n)
n

)
2s

1+2s
, and λ ≥ κ log n, then,

P

(

|τ̂(T̂ )− τ | ≥ λ
σ2

n∆2

)

≤ n−γ .



To do...

Conditions ellipsoid → usual sparsity

Change point → general clustering

2 classes → k classes

Lower bounds

Combine with dictionary search

...

•



Thank you for your attention



Recipe for proof

τ̂(T ) = arg mint∈{ 2
n
,...,n−2

n
}K

T (t).

KT (t) = min
x−,x+

L(t, x−, x+)− L(τ, 0, 0).

L(t, x−, x+) =
nt
∑

i=1

T
∑

j=1

(Y j
i − θj− − xj−)

2 +
n
∑

i=nt+1

T
∑

j=1

(Y j
i − θj+ − xj+)

2.

KT (t) = −
T
∑

j=1

σ2V 2
j (t)−

T
∑

j=1

σ2W 2
j (t)+∆2

T

(nt− nτ)nτ

nt
+2N1(t)−2N2(t),



How to choose the number of clusters ?

Many methods already in the literature :
Calinsky et al. 1974, Gap Statistic Fried-
man et al. 2000, ... Most of them based
on :

Variance Decomposition :
T = Wk +Bk

Total T = 1
n

∑

i ||Xi − X̄ ||2

Between Bk = 1
n

∑

k nk||X̄k − X̄ ||2

Within Wk = 1
n

∑

k

∑nk

ik
||Xk(ik)− X̄k||

2

Quantification/ modeling indicator ratio :

ρk = Bk

T ∈ [0, 1]

k0 number of clusters :
with ∆k = ρk+1 − ρk
k0 = arg min{k, ∆k <
5%}
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Example of time change classification
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1 Only one spot (Chamonix)

2 The data are separated into different years n = 14

3 Each year has d = 8760 points of observation
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1 We want to detect a change-point occurring at one precise year.



Stability of the number of clusters
over 14 years, for different temporal aggregation levels

Data : 14 x one year of data,
Kmeans algorithm
Temperature :

day (365) week (52) month (12)
PCA 95% 5 (0) 4.9 (0.2 ) 4.7 (0.4)
NP Reg. Trigo 5 (0) 4.8 (0.4) 4.7 (0.4)
NP Reg. Haar 5 (0) 4.8 (0.4) 4.7 (0.4)

Wind :

day (365) week (52) month (12)
Pca 90% 4.15 ( 0.3 ) 4.23 ( 0.4 ) 4.31 ( 0.4 )
NP Reg. Trigo 4.15 ( 0.3 ) 4 ( 0 ) 4.08 ( 0.2 )
NP Reg. Haar 4.23 ( 0.4) 4.31 ( 0.4 ) 4.15 ( 0.3 )


