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Recipe for success (Lepski and Tsybakov)

If your estimator sucks,
You need to do the minimax.
First, you chhose unknown theta
Using Oleg Lepski method
If your upper bounds are tight
You have a reason for delight.
For lower bounds
You need to look
With no doubts
Into Sasha’s book.
Matching the bounds more or less
Will ensure your success.

Happy birthday!!
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Stochastic Block Model (SBM)

Network = undirected graph with n nodes

Observations:
Bi,j ∼ Bernoulli(Θi,j), 1 ≤ i < j ≤ n
Bi,j = Bj,i , Bi,i = 0, Bi,j are independent for 1 ≤ i < j ≤ n

Nodes are grouped into m classes Ω1, · · · ,Ωm

Probability of a connection Θi,j is entirely determined
to which groups the nodes i and j belong:
Θi,j = Gk,k′ if i ∈ Ωk , j ∈ Ωk′

Problems:
a) estimate matrix Θ
b) cluster the nodes into classes Ω1, · · · ,Ωm

Vast literature in the last 10-15 years
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Stochastic Block Model

Figure: Stochastic Block Model with 3 blocks. Left panel: matrix G. Right panel:
undirected graph with 15 nodes
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Related problem: graphon estimation

Consider a collection of latent random variables ζ1, · · · , ζn ∈ [0, 1]n

Consider a symmetric function f : [0, 1]2 → [0, 1]

f (x , y) = f (y , x), f (x , x) = 0

Model: Θi,j = f (ζi , ζj), i , j = 1, · · · , n

Θi,j is identifiable up to re-labeling of the variables
f is invariable with respect to any Lebesgue measure-preserving bijection
µ : [0, 1]→ [0, 1], so that f (µ(x), µ(y)) = f (x , y)
Consider equivalence classes of graphons

Assumption: f is smooth

Objective: estimate generating function f and matrix Θ

Marianna Pensky ( UCF ) Time-dependent network models December 2017 6 / 42



However, everything in the world exists in time
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Dynamic Stochastic Block Model (DSBM)

Network = undirected graph with n nodes

Network is observed at L time instances t1, t2, · · · , tL ∈ [0,T ]
For simplicity: T = 1, tl = l/L, l = 1, · · · , L

Observations:
Ai,j,l ∼ Bernoulli(Θi,j,l), 1 ≤ i < j ≤ n, l = 1, · · · , L
Ai,j,l = Aj,i,l , Ai,i,l = 0
Ai,j,l are independent for 1 ≤ i < j ≤ n, l = 1, · · · , L

Nodes are grouped into m classes Ω1, · · · ,Ωm

G is the connectivity tensor:
Gk,k′,l = Gk′,k,l = Θi,j,l if i ∈ Ωk and j ∈ Ωk′
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Estimation problem

Objective: estimate the tensor Θ ∈ Rn×m×L

Assume some continuity:

1 probabilities Gk,k′,l do not change drastically from one time instant to
another

2 only few nodes change their memberships from one time point to another

Do not assume: knowledge of the number of classes m
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Dynamic graphon estimation

Consider a collection of latent random variables ζ1, · · · , ζn ∈ [0, 1]n

Consider a symmetric function f : [0, 1]3 → [0, 1]

f (x , y , t) = f (y , x , t), f (x , x , t) = 0

Model: Θi,j,l = f (ζi , ζj , l/L), i , j = 1, · · · , n, l = 1, · · · , L

Assumptions:
◦ f is smooth in t and piecewise smooth in x and y
◦ enumeration of the nodes does not change in time

Objective: estimate generating function f and tensor of probabilities Θ
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Existing results: estimation in the static SBM model

If m is known, and Θ is not sparse, the minimax rate for estimating Θ is

1

n2
‖Θ̂−Θ‖2

F �
logm

n
+

m2

n2

(Gao, Lu and Zhou (AOS, 2015))

m2/n2 is the parametric error: M = m(m + 1)/2 parameters,
N = n(n − 1)/2 independent observations

n−1 logm is the clustering error: n−1 logm � N−1 log(mn)
where mn is the cardinality of the set of clustering matrices

If Θ is sparse, so that ‖Θ‖∞ ≤ ρn

1

n2
‖Θ̂−Θ‖2

F � ρn
(

logm

n
+

m2

n2

)
(Klopp, Tsybakov, Verzelen (2016))
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Existing results: clustering in in the static SBM
model

Under the condition that the lowest eigenvalue of matrix G is separated from
zero, Lei and Rinaldo (2015) derived clustering errors for an SBM with an
arbitrary number of classes (sparse and non-sparse cases)

Under assumptions that the SBM is balanced: nmax � nmin � n/m and there
is a community structure, Gao, Ma, Zhang and Zhou (2017) derived optimal
minimax lower and upper bounds the misclassification proportion

Under similar assumptions, Gao, Ma, Zhang and Zhou (2017) extended their
results to the degree-corrected stochastic block model
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Existing results: static graphon estimation

Let matrix Θ be generated by the graphon f

If f is in Holder class with a smoothness parameter α and α is known, then

1

n2
‖Θ̂−Θ‖2

F �
log n

n
+ n−

2α
α+1

(Gao, Lu and Zhou (AOS, 2015))

Extension to the case where Θ is sparse: ‖Θ‖∞ ≤ ρn
f is in Holder class with a smoothness parameter α, α is known
(Klopp, Tsybakov, Verzelen (AOS, 2016))

Non-combinatorial distance-based estimation of the graphon with α = 1

1

n2
‖Θ̂−Θ‖2

F = OP

(
log n

n

)1/2

(Zhang, Levina, Zhu (JNPS, 2016))
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The model

Let M(m, n) be the collection of clustering matrices X ∈ {0, 1}n×m

X ∈M(m, n) have exactly one 1 per row
Xik = 1 iff node i belongs to the class Ωk , Xik = 0 zero otherwise

Data: Ai,j,l ∼ Bernoulli(Θi,j,l), 1 ≤ i < j ≤ n, l = 1, · · · , L
Ai,j,l = Aj,i,l , Ai,i,l = 0
Ai,j,l are independent for 1 ≤ i < j ≤ n, l = 1, · · · , L

Model: Θ∗,∗,l = Z(l)G∗,∗,l(Z(l))T , l = 1, · · · , L
Z(l) ∈M(m, n) is a clustering matrix at the moment tl
G∗,∗,l is a matrix of block connection probabilities at the moment tl
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Assumptions: smoothness of block probabilities

Assume that for each (k1, k2), k1, k2 = 1, · · · ,m, vector
Gk1,k2,l = (Gk1,k2,1, · · · ,Gk1,k2,L) represents values of a smooth function, so
that vectors Gk1,k2,∗ have sparse representation in some orthogonal basis
H ∈ RL×L with HTH = HHT = IL

For example, H is a matrix of the Fourier or a wavelet transform

Assume that vectors HGk1,k2,∗ have only few large elements, so that
HGk1,k2,∗ can be approximated using only few of its elements

Let J be a set of all nonzero elements in HGk1,k2,∗, k1, k2 = 1, · · · ,m
necessary for its representation

Assumption: Cardinality |J| of set J is small
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Collection of clustering matrices

Let Cn,m,L be a set of clustering matrices such that

C(m, n, L) ⊆ (M(m, n), · · · ,M(m, n)).

Assume that C = (X(1), · · · ,X(L)) ∈ C(m, n, L) for some m

No specific assumptions on the set of clustering matrices so far
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The data summary

Data is represented by the order 3 tensor Ai,j,l ∼ Bernoulli(Θi,j,l),
1 ≤ i < j ≤ n, l = 1, · · · , L

The tensor has an underlying structure Θ∗,∗,l = Z(l)G∗,∗,l(Z(l))T ,
l = 1, · · · , L with G∗,∗,l representing values of smooth functions

Data A and tensor Θ are redundant: Ai,j,l = Aj,i,l , Ai,i,l = ∗ and
Gk,k′,l = Gk′,k,l

Solution: use the Kronecker product and vectorization to reduce the problem
to a structured regression problem
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The model

Figure: The model: Θ∗,∗,1 = Z(1)G∗,∗,1(Z(1))T , n = 4, m = 2
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The model: accounting for the symmetry

Figure: DSBM model with n = 4, L = 3
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The model: accounting for the redundancy in G

Figure: Removing redundancy in G: n = 4, N = n(n − 1)/2 = 6, m = 2,
M = m(m + 1)/2 = 3.The dark green matrix is a clustering matrix for N
elements and M classes
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The model: vectorization summary

Figure: Vectorization of tensor Θ with n = 4, m = 2, N = 6, M = 3, L = 3.
Left panel, top: accounting for redundancy in Θ. Left panel, middle: the
structure Θ. Left panel, bottom: accounting for redundancy in G. Right
panel: the final model θ = Cq.
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The final model

Let N = n(n − 1)/2,M = m(m + 1)/2

Let θ ∈ [0, 1]N be the vectorized version of the tensor Θ with the redundancy
removed

Let a ∈ [0, 1]N be the vectorized version of the tensor A with the redundancy
removed and, hence, independent elements

Let q ∈ [0, 1]M be the vectorized version of the tensor G with the redundancy
removed

Define a block diagonal matrix C ∈ {0, 1}NL×ML with blocks C(l), l = 1, · · · , L,
on the diagonal. Each block C(l) ∈ {0, 1}N×M is a clustering matrix at time tl

Final model:

a = θ + ξ with θ = Cq (1)

ai are independent Bernoulli(θi ), i = 1, · · · ,NL

If the matrix C were known, then (1) would represent the standard regression
model with independent Bernoulli errors
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The final model with a structure

Recall that vectors Gk1,k2,∗ have sparse representation in the orthogonal basis
H ∈ RL×L (e.g., Fourier or wavelet)

Cardinality |J| of set J of all nonzero elements in HGk1,k2,∗, k1, k2 = 1, · · · ,m
that are necessary for its representation, is small

Denote W = (H⊗ IM) and observe that W is an orthogonal matrix:
WTW = WWT = IML

Let d = Wq, d ∈ RML =⇒ a = CWTd + ξ

Let J = {j : dj 6= 0} , dJC = 0 be the set necessary for representing
q : q = WTd

Cardinality |J| of set J is small

Recall that Cn,m,L is a set of clustering matrices such that

C(m, n, L) ⊆ (M(m, n), · · · ,M(m, n)).
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Optimization problem

Find m, J,d and C as a solution of the penalized least squares optimization
problem

(m̂, Ĵ, d̂, Ĉ) = argmin
m,J,d,C

{
‖a− CWTd‖2 + Pen(|J|,m)

}
(2)

s.t. 1 ≤ m ≤ n, J ≡ JM , dJc = 0, C ∈ C(m, n, L) with

Pen(|J|,m) = 11 log(|C(m, n, L)|) +
11

2
|J| log

(
5m2L

|J|

)
.

Here d ∈ RML, W ∈ RML×ML, M = m(m + 1)/2

Algorithm:
1. Solve the optimization problem separately for every m. Obtain d̂M , ĈM and ĴM .
2. Select the value M̂ = m̂(m̂ + 1)/2 that delivers the minimum in (2), so that

d̂ = d̂M̂ , Ĉ = ĈM̂ , Ĵ = ĴM̂ . (3)

3. Set Ŵ = (H⊗ IM̂) and calculate q̂ = ŴT d̂, θ̂ = Ĉq̂

4. Obtain Θ̂ by packing vector θ̂ into the tensor and taking the symmetries into
account.
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An oracle inequality

Consider a DSBM with a true matrix of probabilities Θ∗ and estimator Θ̂
obtained as the tensor version of the vector CWT d̂. Then, for any t > 0, with
probability at least 1− 9e−t

‖Θ̂−Θ∗‖2
F

n2 L
≤ min

m,J,q

C∈C(m,n,L)

[
6 ‖CWT (Wq)J − θ∗‖2

n2 L
+

4 Pen(|J|,m)

n2 L

]
+

38

n2 L
t,

where

Pen(|J|,m) = 11 log(|C(m, n, L)|) +
11

2
|J| log

(
5m2L

|J|

)
.

and a similar result holds for the expectation.
(n2L)−1 log(|C(m, n, L)|) is the clustering error

(n2L)−1 |J| log
(

5 m2L
|J|

)
is the nonparametric estimation error

So far, we placed no restrictions on the collection of
clustering matrices
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Stability of clustering in time

Consider a collection F(m, n, n0, L) that corresponds to the situation where at
most n0 nodes can change their memberships from one time instant to
another

|F(m, n, n0, L)| = mn

[(
n

n0

)
mn0

]L−1

|F(m, n, 0, L)| = mn

If n0 = 0, then the group memberships of the nodes do not change in time.

Then, for any t > 0, with probability at least 1− 9e−t

‖Θ̂−Θ∗‖2
F

n2 L
≤ Const min

m,J,q

C∈F(m,n,n0,L)

[
‖CWT (Wq)J − θ∗‖2

n2 L

+
|J|
n2L

log

(
25m2L

|J|

)
+

logm

n L
+

n0 log(mne/n0)

n2

]
+

38

n2 L
t
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The lower bounds for the error

inf
Θ̂

sup
Θ∈B

PΘ

{
‖Θ̂−Θ‖2

F

n2L
≥ Cγ

 logm

nL
+

n0 log
(

mne
n0

)
n2

+
|J| log

(
Lmin(1,m2/2|J|

)
n2L

)}
≥ 1

4

The lower bound coincides with the upper bound up to a constant

log m
nL = n log m

n2L is the error due to the initial clustering

n0 log(mne/n0)
n2 is the error due to changes in the memberships

|J| log(L min(1,m2/2|J|))
n2L is the error of non-parametric estimation due to the

need of selecting and estimating |J| unknown parameters
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Discussion of the estimation results for the DSBM

The estimator is adaptive with respect to the unknown number of
classes. It is not adaptive with respect to the complexity of the set of
possible clustering matrices which is due to changes in the memberships

No probabilistic assumptions on the mechanism generating changes in
the memberships. However, various mechanisms can be accommodated
by identifying the cardinality of a collection of clustering matrices that is
likely to occur with high probability.

If L = 1 and H = 1, we automatically obtain an adaptive estimator of a
sparse SBM where probabilities of interactions for some classes are
equal to zero (different kind of sparsity than in Klopp et al. (2016))

Can handle the situation where the number of nodes changes in time. In
this case, denote by n the maximum number of nodes that have been in
the network over time and create a class with no interaction with all other
classes. Place all inactive nodes into this class
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Assumptions for clustering

Assume, as before, that for each (k1, k2), k1, k2 = 1, · · · ,m, the vector
{Gk1,k2,l}l=1,··· ,L represents values of a smooth function:

Gk1,k2,l = G (l/L; k1, k2) where G (t; k1, k2) belongs to a Hölder class
Σ(β,CΣ)

Assume that C ∈ F(m, n, n0, L), so that at most n0 nodes can change
their memberships from one time instant to another

Assume that there exists an absolute constant Cλ, 1 ≤ Cλ <∞,
independent of n, l and L such that

C−1
λ ≤ λmin(G∗,∗,l) ≤ λmax(G∗,∗,l) ≤ Cλ.
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Spectral clustering algorithm

Input: Adjacency matrices Al , l = 1, . . . , L; number of communities m ;
approximation parameter ε .

Output: Membership matrices Zl for any l = 1, . . . , L.
Steps:
1: For each l , l = 1, · · · , L:
2: Estimate Θl by the discrete kernel estimator Θ̂l,r described later.

3: Let Ul ∈ Rn×m be a matrix representing the first m eigenvectors of Θ̂l,r .
4: Apply the (1 + ε)-approximate k-means algorithm to the row vectors of Ul

5: Obtain the solution Ẑl .
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Discrete kernel estimator

Let r < L/2 be the kernel width parameter
Consider three pairs of sets of integers

Tr ,1 = {−r , · · · , r}, Dr ,1 = {1 + r , · · · , L− r};
Tr ,2 = {0, · · · , r}, Dr ,2 = {1, · · · , r};
Tr ,3 = {−r , · · · , 0}, Dr ,3 = {L− r + 1, · · · , L}.

Introduce discrete kernel functions W
(j)
r ,l (i) of an integer argument i such that

|W (j)
r ,l (i)| ≤Wmax, where Wmax is independent of l , j and i , and for j = 1, 2, 3,

1

|Tr ,j |
∑
i∈Tr,j

ik W
(j)
r ,l (i) =

{
1, if k = 0,
0, if k = 1, . . . , l .

If l ∈ Dr ,j , we construct an estimator of Θl on the basis of Al+i , i ∈ Tr ,j ,
j = 1, 2, 3. Here |Tr ,j | is the cardinality of the set Tr ,j .
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Adaptive discrete kernel estimator

The optimal value r∗ of r depends on the unknown values of the number of
membership changes n0, the size of the largest block nmax and the
parameter of Hölder space β

Therefore, in practice, the value r∗ is unavailable.

Use Lepskii method for construction of an adaptive estimator
For any l , set

r̂ ≡ r̂l = max
{

0 ≤ l ≤ L/2 : ‖Θ̂l,r − Θ̂l,r ′‖ ≤ 4C0

√
n/(r ′ ∨ 1) for any r ′ < r

}
Here C0 is a constant specified in the paper
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The clustering error measures

Clustering of the nodes can be recovered only up to column permutations.
Denote the set of m ×m permutation matrices by Em. Assume that the node’s
labels are fixed and do not depend on l .

1. Two local measures of clustering accuracy at time tl = l/L:
a) the highest relative clustering error over the communities

R̃l(Ẑl ,Zl) = min
J∈Em

max
1≤k≤m

n−1
k ‖(ẐlJ− Zl)Ωl,k ,∗‖0,

where Ωl,k is the k-th community at time tl .
b) the overall relative clustering error

Rl(Ẑl ,Zl) = n−1 min
J∈Em
‖ẐlJ− Zl‖0

2. Two global measures of clustering accuracy:
a) the highest relative error over the communities and b) the overall highest
relative error

R̃max = max
1≤l≤L

R̃l(Ẑl ,Zl), Rmax = max
1≤l≤L

Rl(Ẑl ,Zl)
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The clustering accuracy

Let L ≤ nτ1 for some τ1 <∞. Then, for any τ > 0, with probability at least
1− 4 n−τ , one has

R̃l(Ẑl ,Zl) ≤ C1(2 + ε)
mn

n2
min

min

(
1;
( n

L2β

) 1
2β+1

+

√
nmax n0

n

)
.

In addition, with probability at least 1− 4 n−(τ−τ1), one has

R̃max ≤ C2(2 + ε)
mn

n2
min

min

(
1;
( n

L2β

) 1
2β+1

+

√
nmax n0

n

)
.

Moreover,

Rl(Ẑl ,Zl) ≤ R̃l(Ẑl ,Zl)
nmax

n
, Rmax ≤ R̃max

nmax

n

Here, constants C1 and C2 depend on Cλ, the parameters of the kernel W and
the parameters of the Hölder class Σ(β,CΣ)
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Discussion of the clustering results for the DSBM

The estimator is adaptive to the Hölder class parameter β and to the
number of membership changes between two consecutive time points n0

The case when connection probabilities are uniformly small (sparse case) is
studied in the paper (not in the talk).

Although the procedure requires knowledge of the number of clusters
m, one can run the procedure for a set of values of m and then choose m by
using penalty in the estimation model
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Time-dependent graphon

Consider a collection of latent random variables ζ1, · · · , ζn and a symmetric
function f : [0, 1]3 → [0, 1] such that f (x , y , t) = f (y , x , t)

The model: Θi,j,l = f (ζi , ζj , l/L), i , j = 1, · · · , n, l = 1, · · · , L
f (x , y , t) is the dynamic graphon

The identifiability: for any f and any measure-preserving bijection
µ : [0, 1]→ [0, 1], the functions f (x , y , t) and f (µ(x), µ(y), t) define the same
probability distribution on random graphs

1. consider equivalence classes of graphons
2. no label switching in time: µ is independent of t

Let H be an orthogonal transform. Denote by v(ζi , ζj , ·) = HΘi,j,∗ the
transformation of vector Θi,j,∗ along the time dimension

Since ζ1, · · · , ζn are independent of l , the estimation algorithm can be
simplified
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Assumptions

Assumption: f is smooth in t and piecewise smooth in x and y

Assumptions

There exist an integer κ, some ν1, ν2,C01,C02 > 0, and
0 = x0 < x1 < · · · < xκ = 1 such that for any x , x ′ ∈ [0, 1] and y , y ′ ∈ [0, 1] and
any i , j = 1, · · ·κ

[v(x , y , l)− v(x ′, y ′, l)]2 ≤ C01[|x − x ′|+ |y − y ′|]2ν1

L∑
l=1

l2ν2 v2(x , y , l) ≤ C02

Two regimes

1 κ = κn is arbitrary, ν1 =∞. Corresponds to the piecewise constant
graphon that forms a dynamic SBM with κn blocks

2 κ is a fixed finite constant independent of n. Corresponds to the
piecewise smooth graphon
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Piecewise constant graphon

Regime 1

Denote a class of functions f satisfying assumptions on the previous slide with
κ = κn and ν1 =∞ by W ≡W(κ,∞, ν2)

Then the upper and the lower bounds for the mean squared risk coincide
up to a constant

sup
f∈W

E‖Θ̂−Θ‖2
F � min

1

L

(
κ2
n log(n/κ)

n2

) 2ν2
2ν2+1

,
κ2
n

n2

+
log κn
nL

Similar results hold in probability
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Smooth graphon

Regime 2

Denote a class of functions f satisfying assumptions on the previous slide with a
constant κ independent of n and ν1 <∞ by W ≡W(κ, ν1, ν2)

Then the upper and the lower bounds for the mean squared risk coincide
up to a logarithmic factor of L

sup
f∈W

E‖Θ̂−Θ‖2
F ≤ C

{
min

[
1

L

(
log L

n2

) 2ν1ν2
(2ν2+1)(ν1+1)

,

(
log L

n2

) ν1
ν1+1

]
+

log n

nL

}

inf
Θ̂

sup
f∈W

E‖Θ̂−Θ‖2
F ≥ C

{
min

[
1

L

(
1

n2

) 2ν1ν2
(2ν2+1)(ν1+1)

,

(
1

n2

) ν1
ν1+1

]
+

log n

nL

}
Similar results hold in probability
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Discussion

Our contributions:

Penalized least squares optimization algorithm

No assumptions on the mechanism generating changes in the
memberships of the nodes

No knowledge of the number of classes

Oracle inequalities for the mean squared risk of an estimator of Θ (for the
dynamic SBM and graphon)

Non-asymptotic minimax study of the DSBM model and the dynamic
graphon

Allows a variety of extensions

Vectorization of the model leads to more intuitive much simpler
mathematics and faster computations
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Discussion

The shortcomings:

The maximum likelihood estimation is NP-hard and is not
computationally viable

⇒ in practice one has to use a convex relation of the algorithm

The dynamic graphon defines Θi,j,l = f (ζi , ζj , l/L), i , j = 1, · · · , n,
l = 1, · · · , L, where ζ1, · · · , ζn are random variables independent of time

It corresponds to a DSBM where nodes do not change membershops in
time

Need to generalize the model to the case when ζ1(t), · · · , ζn(t) are
stochastic processes

The notion of a dynamic graphon has not been developed yet by a
probability community
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