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Inverse regression problems

We consider a regression-type measurement model

Yi = uf (xi ) + gi , i = 1, . . . , n; gi ∼i.i.d. N(0, 1)

where the xi ’s are a regular grid in the underlying domain O ⊂ Rd .

The appropriate translation of this model to the continuous limit is

Y = uf + εW, with noise level ε =
1√
n
,

where W is a Gaussian white noise process in L2(O).

The regression function uf = K (f ) represents the forward data of some
inverse problem. The goal is to infer f from the observation Y ∼ Puf .
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Partial Differential Equation (PDE) Models

• In many important applications (Stuart (2010)), the forward map uf = u(f )
arises as the solution of a PDE with unknown coefficients f .

• For example u = uf is the solution of an elliptic partial differential equation

f1∆u + f2 · ∇u − f3u = 0 on O, f = (f1, f2, f3),

on some domain O in Rd , subject to suitable boundary conditions. Here

∆ =
d∑

i=1

∂2

∂x2
i

is the standard Laplacian and ∇ is the gradient operator.

• Some non-standard features:

a) f 7→ uf is non-linear, and

b) unless d = 1 the solutions uf do not have closed-form expressions.
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A special case: Schrödinger equation

• Suppose O is a bounded open domain in Rd with a smooth boundary. Let

f : O → [0,∞)

be an unknown potential and consider solutions to the Schrödinger equation

∆

2
u − fu = 0 on O, s.t. u = g on ∂O,

where g : ∂O → (0,∞) is a given function describing Dirichlet boundary
conditions.

• The unknown function f models an attenuation of the solution of the standard
Laplace equation.
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Inverse medium and scattering problems

• Recovering f from observed solutions uf is important in many physical
applications, including photo-acoustics (Bal and Uhlmann, 2010) or
electromagnetic waves (Bao and Li, 2005).

• Physically f models a ‘cooling’ or ‘absorption’ effect in the medium O, where
the local amount of absorption or cooling is described by the values f (x) .
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Understanding the non-linearity

From the famous Feynman-Kac representation we know

uf (x) = E x
[
g(XτO )e−

∫ τO
0 f (Ws )ds

]
, x ∈ O,

where (Ws : s ≥ 0) is a d-dimensional Brownian motion started at x ∈ O,
with almost surely finite exit time τO from O.

From the above representation, and since g > 0, one shows uf ≥ c > 0, so

f =
∆uf
2uf

on O.

One also shows, using standard regularity theory for elliptic PDEs, that uf is
two degrees smoother than f .
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Some first approaches

Things not to do are:

a) Estimate f by ∆Y
2Y , as it makes no pointwise sense.

b) Estimate f by a plug-in regression smoother ∆ûf
2ûf

since nonparametric
regression estimators ûf are not solutions of the Schrödinger equation.

One may be tempted to compute a nonparametric maximum likelihood
estimator to incorporate the non-linear constraints on the parameter space.

This would be closely related to the Tikhonov-regulariser:

min
f

[
−2〈Y , uf 〉L2 + ‖uf ‖2

L2 + λ‖f ‖2
Hs

]
,

which however is not convex in f due to the non-linearity of f 7→ uf .

As is well known, such a ‘penalised least squares’ approach is closely related
to Bayesian inference with Gaussian priors (Kimeldorf and Wahba (1970)).
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Bayes solutions of noisy inverse problems

The Bayesian approach to statistical inverse problems has recently attracted
substantial attention in applied mathematics thanks to the work of Andrew
Stuart, see the surveys by Stuart (2010) and Dashti and Stuart (2016).

Formally we model the function f by some prior distribution Π on function
space and use Bayes’ rule to compute the conditional posterior distribution

f ∼ Π, Y |f ∼ Puf ⇒ f |Y ∼ dPuf (Y )dΠ(f )∫
dPuf (Y )dΠ(f )

where dPf ≡ dPuf is the law of a Gaussian white noise shifted by uf .

Numerically efficient MCMC algorithms for computing posterior distributions
have been put forward in the past decade; they allow to compute point
estimates (MAP) and ‘credible sets’ for the unknown parameter f from the
posterior distribution Π(·|Y ).
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Implementation for smooth images
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Minimax rates for the inverse Schrödinger problem

• Recall that we are observing Y = uf + εW where uf is the solution of

∆

2
u − fu = 0 on O, s.t. u = g on ∂O

in a smooth domain O and we consider the inverse problem of finding the positive
potential f from the data as the noise level ε→ 0.

• Let C s(O) denote the usual Hölder space over the domain O, and for later use
also define the subspace C s

c (O) of functions compactly supported within O.

Theorem 1

Suppose g ∈ C s+2(∂O) satisfies g ≥ gmin > 0. We have as ε→ 0 that

inf
f̃ =f̃ (Y ,g)

sup
f :‖f ‖Cs (O)≤B,f≥fmin>0

ε−2s/(2s+4+d)EY
f ‖f̃ − f ‖L2(O) ' c(s,B, g) > 0.

• This corresponds to a 2-ill posed problem but also incorporates the 2-smoothing
property of the ‘elliptic forward map’ f 7→ uf .
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A wavelet series prior and contraction theorem

• We model f by a prior Π induced by the random function

log f =
∑
l≤J,r

bl,rΦ
O
l,r , bl,r ∼i.i.d. U(−B2−l(s+d/2), 2−l(s+d/2)B),

where the (ΦOl,r ) form a (boundary corrected) wavelet basis of L2(O).

• We do not consider hyper-priors for B, s, J here, but regard s,B as given and
choose J such that 2J ≈ ε−2s/(2s+4+d) (‘non-adaptive’ case).

Theorem 2

Suppose f0 > 0 satisfies ‖ log f0‖C s
c (O) ≤ B for some s > 2 + d/2. If Π(·|Y ) is the

posterior distribution arising from the above prior Π, then, as ε→ 0 we have

Π
(
f : ‖f − f0‖L2 ≥ Mε−2s/(2s+4+d) logγ(1/ε)|Y

)
→ 0 in PY

f0 -probability.

• The posterior mean f̄ (Y ) attains the same convergence rate in L2(O).
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Towards Bernstein -von Mises theorems: LAN expansion

• We want more precise ‘efficiency’ results, and to justify Bayesian ‘uncertainty
quantification’.

• To do this we first need to understand the ‘information geometry’ of the LAN
expansion. Using perturbation arguments for PDEs one can prove

Theorem 3

Under mild conditions on h ∈ C (O), f0 > 0, g > 0, if Y = uf0 + εW then as ε→ 0

log
dPuf0+εh

dPuf0

(Y ) = 〈Duf0 [h],W〉L2 − 1

2
‖Duf0 [h]‖2

L2 + oPY
f0

(1),

where the score operator Duf0 [·] maps h into the solution v = vh of the
inhomogeneous Schrödinger equation

∆v

2
− fv = huf0 on O s.t. v = 0 on ∂O.

• The forward operator has the strong quadratic approximation

‖uf0+h − uf0 − Duf0 [h]‖L2 = O(‖h‖L2‖h‖H−2 ), h ∈ C (O).
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Semi-parametric Cramer-Rao bound

To find the Cramér-Rao information bound for inference on linear forms
〈f , ψ〉L2 we need to find ψ̃ s.t. for all h ∈ C (O),

〈h, ψ〉L2(O) = 〈Duf0 (h),Duf0
(ψ̃)〉L2(O) = 〈Vf0 (huf0 ),Vf0 (ψ̃uf0 )〉L2(O)

where Vf is the ‘Green operator’ of the inhomogeneous Schrödinger eq.

Using properties of the Feynman-Kac semigroup one shows that Vf has a
symmetric integral kernel and inverse given by the Schrödinger operator,

Sf (u) =
∆

2
u − fu, u ∈ C 2(O).

Theorem 4
For sufficiently regular, compactly supported functions ψ, the information lower
bound for estimating 〈f , ψ〉L2(O) at f = f0 from observations Y = uf0 + εW is

If0 (ψ) = ‖Duf0 [ψ̃]‖2
L2(O) = ‖Sf0 (ψ/uf0 )‖2

L2(O).

PDE techniques are key to derive an explicit Cramer-Rao lower bound.
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Formulation of the Bernstein-von Mises theorem

For a fixed function ψ we can now ask whether the ‘semi-parametric’
Bernstein von Mises theorem holds true:

Let f ∼ Π(·|Y ) and f̄ the posterior mean. As ε→ 0 do we have

ε−1

∫
O

(f − f̄ )ψ|Y →d N(0, If0 (ψ))

in PY
f0

-probability?

In fact we want more: following a multi-scale approach, we wish to prove
simultaneous convergence of the stochastic processes(

ε−1

∫
O

(f − f̄ )ψ : ψ ∈ Ψa|Y
)
→d (X (ψ) : ψ ∈ Ψa),

where Ψa is a maximal class of test functions and X (ψ) ∼ N(0, If0 (ψ)).
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A canonical limiting Gaussian distribution

• The Gaussian process

X = (X (ψ)), EX (ψ)X (ψ′) = 〈Sf0 (ψ/uf0 ),Sf0 (ψ′/uf0 )〉L2(O), ψ, ψ
′ ∈ Cαc (O),

is the image of a standard Gaussian white noise W under the Schrödinger-type
operator ψ 7→ Sf0 (ψ/uf0 ).

• If a sequence of stochastic processes (Xn(ψ)) is to converge uniformly in ψ ∈ Ψ
towards X, then the law Nf0 of X needs to be tight for the supremum norm on Ψ.

• If Ψ = Ψa consists of the unit ball of an α-Hölder space Cαc (O), then the
maximal spaces where this is possible are characterised in the following

Theorem 5
The Gaussian measure Nf0 induces a tight Gaussian probability measure on the
topological dual space (Cαc (O))∗ when α > 2 + d/2 but not when α ≤ 2 + d/2.
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The ‘non-parametric’ Bernstein-von Mises theorem

• The last theorem identifies the ‘minimal’ spaces (Cαc (O))∗, α > 2 + d/2, in
which we can converge weakly towards Nf0 .

Theorem 6

Let s > max(2 + d/2, d) and α > 2 + d/2. Assume ‖ log f0‖C s
c (O) < B.

Let f ∼ Π(·|Y ) with posterior mean f̄ , and denote by β any metric for weak
convergence of probability distributions on (Cαc (O))∗. Then

β
(
L(ε−1(f − f̄ )|Y ),Nf0

)
→ 0

as ε→ 0 in PY
f0

-probability. Moreover f̄ is an efficient estimator of f .

• The proof is quite involved, based on uniform perturbation expansions of the
Laplace transform of the posterior distribution.
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Optimal credible sets I

• As a first application, posterior inference for linear functionals 〈f , ψ〉L2 , ψ ∈ Cαc
is asymptotically valid and optimal, without requiring estimation of the inverse
Fisher information.

• For a fixed ‘credibility level’ 1− β, β > 0 and test function ψ, let

Cε = {x ∈ R : |x − 〈f̄ , ψ〉L2 | ≤ Rε}

with posterior quantile constants Rε chosen such that Π(Cε|Y ) = 1− β.

Theorem 7

Let ψ ∈ Cαc (O) with α > 2 + d/2. Then as ε→ 0 we have

PY
f0 (〈f0, ψ〉L2 ∈ Cε)→ 1− β,

as ε→ 0 and the diameter Rε of Cε satisfies

ε−1Rε →PY
f0 Φ−1(1− β)

where Φ−1 is the inverse of the map t 7→ N(0, ‖Sf0 (ψ/uf0 )‖2
L2(O))([−t, t]).
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Optimal credible sets II

• Let Cε ⊂ supp(Π(·|Y )) be the smallest (Cαc (O))∗-ball centred at the posterior
mean f̄ for which Π(Cε|Y ) = 1− β, with fixed credibility 1− β, β > 0.

Theorem 8
Under the conditions of Theorem 6 the above credible set satisfies

PY
f0 (f0 ∈ Cε)→ 1− β,

as ε→ 0. Its diameter in L1(K )-norm, for K any compact subset of O, is of
(near) minimax-optimal order: for any κ > 0,

|Cε|L1(K) = OPY
f0

(
ε2s/(2s+4+d)ε−κ

)
.

• See Ray (2017, AoS) for more discussion of ‘geometric aspects’ of such
‘multiscale’ credible sets in infinite dimensions.
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