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One of the challenges in contemporary statistics is noisy and corrupted data.

@ Presence of outliers of unknown nature:
= requires algorithms that are robust and do not
rely on preprocessing or outlier detection.

@ While ad-hoc techniques exist for some problems, we
would like to develop general methods.

@ A natural way to model outliers is via heavy-tailed
distributions.
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Simple question: how to estimate the mean?

o Assume that X, ..., Xp are i.id. N(u,o2).
Problem: construct Clyorm () for o with coverage probability > 1 — 2a.

n
@ Solution: compute fip := 1 >~ X}, take
=

Chn(e) = [ 002\ L, 7+ 500

Coverage is guaranteed since

Pr <|ﬂn — > ao\/z"’gf;/”‘)) < 2a.
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but which was, as far as | know, only raised a few years ago (notably by Tukey): what
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No additional assumptions on I are imposed.

n
@ Remark: guarantees for the sample mean fin, =

1 ; ; .
Ej X; is unsatisfactory:

Pr(lﬂn—uzoo W(”) <a

n



Example: how to estimate the mean?

@ Existing methods:
A. Nemirovski, D. Yudin ‘83; N. Alon, Y. Matias, M. Szegedy ‘96;
R. Oliveira, M. Lerasle ‘11, G. Lecué, M. Lerasle ’17 (median-of-means),
O. Catoni ‘12, G. Lugosi et al. ‘15,16 (M-estimation), etc.



Catoni’s estimator

O. Catoni’'s M-estimator (2012): set
¥(x) = (Ix] A 1)sign(x)

XEr2, x| <1,

1(x) = derivative of Huber's loss H(-) = {

x| — =, x| > 1.
2




Catoni’s estimator
O. Catoni’s M-estimator (2012): set

¥(x) = (Ix] A1)sign(x)

Equivalent to minimizing Huber’s loss

1 n
(i = argmin — H(6(X; —
o EER 02; ( ( j H))



Catoni’s estimator

Theoretical guarantees: set 6. = 4/ Mi Then, as shown by O. Catoni

og”

=l < (V2 + 0n(1)) 0/ 20/

n

with probability > 1 — 2a.
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Extensions to higher dimensions

@ Motivation: PCA
@ Mathematical framework:

Yi,...,Ya €RY, iid. EY; = p, E(Y; —u)(V;— )" = £,

E||Yj|[3 < co. No additional assumptions.

@ Goal: construct 3, an estimator of ¥, such that

P ZH
——
operator norm

is small with high probability.

@ In the Gaussian case, performance of the sample covariance estimator and associated
projectors has been recently studied by K. Lounici and V. Koltchinskii.

@ However, the sample covariance

:n_1ZY Yo) (Y — Yo)T

is sensitive to outliers/heavy tails.
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Extensions to higher dimensions

@ Naive approach: apply Catoni’s estimator coordinatewise.
Makes the bound

» dimension-dependent
> not invariant with respect to a change of coordinates.

@ Alternatives: Tyler's M-estimator, Maronna’s M-estimator, Kendall’s tau:
> Guarantees are limited to special classes of distributions (e.g., elliptically symmetric).



Matrix functions

f:R—R, A= AT = UAUT, then

A (M)
f(A) = UFA)UT, f(A)—f(( ))_( )
Ad f(Ad)
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Construction of the estimator

@ YeRY Yy, ..., Yy e RY—iid. copies of Y, . is the mean, X is the covariance matrix,
E||Y||* < oo, No additional assumptions.
1/2, x> 1,
—x2/2 1
@ SetV'(x) = ¢(x) = §+ 142: i E {(1’1 ’](’))’ [Iike Huber’s loss + operator Lipschitz]
—1/2,  x<-1.

@ Unlike the case of bounded/sub-Gaussian vectors, can not assume that the mean p is known.
@ Observe that |
_1 B YT
L=3E [(Y1 Y2)(Yi = Y2) ]
@ The sample covariance is then
(Vi = v)©

< 1 Yi-v
Y =
n(n—1)§j 2

1 & c c
m7 2o = Y)Y = Vo)
j=1
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@ The sample covariance is
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@ The sample covariance is

@ Equivalently,

)(Yi = Y)T

1 Yi—Y j i
= argmin

(Yi-i-v)’
2

-S

2

F



Construction of the estimator

@ The sample covariance is

@ Equivalently,

)i =)'

1 Yi-Y .
E = argmin E
n(n— 1) i7 2 ScRrdxd i

n
= argmin Trace | »
Scrdxd i#]

(Yi—Ypi—v)’
2

2

-8

2

F

(Yi =YY=y’

s>]



Construction of the estimator

@ The sample covariance is

so 1 Z(Yf—v,-)(zn—w
nin—1)
@ Equivalently,
Y. — Y)Y = YT Y. — Y)Y = YT 2
1 Z( i Y 7) :argminz (Yi (Y 7) _s

n(n—1) i7 2 SeRrdxd 7 2 -
" Y= Y)Y — YT 2
= argmin Trace[z (('/)('1) - S) ]

ScRrdxd i#j 2

@ Replace quadratic loss by (rescaled) loss W(x): let & > 0 [small constant] , and define

Y = argmin {Tracezw <9 <(Y'Y’)(2Y'Y’)T - S>> }

dxd T
SeRIX i#j




Construction of the estimator
@ The sample covariance is

_ S =0 = )T
nf1 poy 2
@ Equivalently,
Y- Y)(Yi—Y)T Yi-v)i-vT |
S U0 i o [ G100 =T

n—1 )% SeRIXI i) 2 F
" (Y= Y)Y - Y)T 2
= argmin Trace[z (( ==Y S)

Scrdxd i#j 2

@ Replace quadratic loss by (rescaled) loss W(x): let 8 > 0 [small constant] , and define

= argmin {Tracezw < <(Y'Y’)(2Y'Y’)T - S)) }

dxd
SeRaX i

Equivalent to

V== T o
B L )




Approach is easily extended to arbitrary matrix-valued U-statistics
n—m)!
Un = % > HXG, e Xy
(it S im) €I
via

> w(0(HOG X)) = Un) ) =0.

(it im) €I



$ = argmin [Tracezw (0 <(Y'Y/)(2Y'Y’)T - S>> }

Scrdxd i#j



$ = argmin [Tracezw <0 <(Y'_Y/)(2Y'_Y’)T - S>) }

SeRrdxd i#j

Theorem (S. M., X. Wei (2017))

Fix o > 0. Assume that o2 > |[E ((Y — p)(Y — u)T)2
dlog(d/e) < 1 then
U

,and let 6 = \/M:/O‘)Jlo. If
o -] < s/ 2

with probability > 1 — 2.

Remark (1)
The quantity ag is known as the "matrix variance". It is related to the effective rank
H(E) = Trace(X)
1=l

Under the additional assumption that the kurtosis of the coordinates YU) := <Y, e,-) is uniformly
bounded by K,
of < Kx(Z) [|IZ|.




= argmin [Tracez\v ( <(Y'_Y/)(Y'_Y’)T - S>) }
SeRrdxd i 2

Theorem (S. M., X. Wei (2017))

Fix a > 0. Assume that o2 > ||E ((Y — p)(Y — 1) )

7‘“%(‘1/‘1) < {5. then
-] ﬁﬂ

4log(d/a) 1
=/ Hosld/e) 1

with probability > 1 — 2.

Finally, compare to:
Theorem (Matrix Bernstein inequality, Ahlswede-Winter/Tropp)

Yi,..., Yo € RI%9 _jid. copiesof Y, o2 = |E ((Y — u)(Y — w)T)? ||, | ¥ — ull < M as. Then

forall0 < a < 1,
8 2
Hl Z Y/Y/T — ZH < max | 209 |Og(d/a)’ ﬂ M= log(d /)
n/’=1 n 3 n

with probability > 1 — 2.
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@ Data-dependent version of the estimator & can be obtained via Lepski's method.
o Letoj = omin, j > 0, and and for each j € J set

b= 00, 1) = || LI L

£, = argmin [Tracezw <0j <(Y'_Y/)(2Y'_YJ)T - S)) }

dxd .
SeRIX i#j

@ Define



Usually, 02 = ||E ((Y — p)(Y — ,u)T)Z || is unknown.

Data-dependent version of the estimator £ can be obtained via Lepski's method.
Let oj = omin, j > 0, and and for each j € 7 set

Define

Finally, set

and

0y =00 1) = | LA L/) -

£, = argmin [Tracezw <0j <(Y'_Y/)(2Y'_YJ)T — S)) }

dxd .
SeRIX i#j

ju := min {j >0:Vk>jst ke, |Sk-5| < sgkﬁ}

£.-%.



Usually,

o8 = |[E((Y = u)(Y — 1)7)? || is unknown.

Data-dependent version of the estimator £ can be obtained via Lepski's method.
Let oj = omin, j > 0, and and for each j € 7 set

Define

Finally, set

and

Then

g [ E 1

£, = argmin [Tracezw < <(Y'_Y/)(2Y'_YJ)T — S)) }

dxd
Serdx iz

ju := min {j >0:Vk>jst ke, |Sk-5| < sgkﬁ}

£.-%.

Hf* — ZH <1209 '°g(d/a) with probability > 1 — Ca.
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Applications: low-rank covariance estimation

@ Assume that d > nbut X has small rank (or small effective rank).
@ Define

- ~2
>7 := argmin {Hsf ZH +T||SH1:|
Serdxd F

@ Equivalently,
d
$T=Y max () () —7/2,0) y(Z)v(T)T,
3 s (y () - /2.0) v

where )\,-()AZ) and v,—(f) are the eigenvalues and corresponding eigenvectors of £.



Applications: low-rank covariance estimation
Zmax (A/ ( ) — /2, o) y(E)v(E)T,

Theorem
For

T = 8004/ w,

(1+v2)?
8

2

with probability > 1 — a.

- )ZHE < inf [us- T2 +

L Tzrank(S):| .

Remark
Ifrank(X) = r, then under bounded Kkurtosis assumption,

log(2d)

$r_y 2 > Kd - rank(X) || |
= ==l s+ ===

with high probability.




Sketch of the proof

@ Proof of the bound is based on the analysis of the gradient descent scheme for the the
optimization problem,

29 =X (true unknown covariance),

ERVAVEVARERVAY SN
Be=Srt o w( (YY);YY);))

i#j



Sketch of the proof

1 1 (Y == v)7
Un(S) = T %,:-5w <9 (12/ _s>>

’
n(n—1) %]: oY, 9)



Sketch of the proof

o
(Yi—Y)(Yi-Y)T
Un(S) := n(n 2#: <<’)(2 i) —s>>
i#]
= ( ZFG(YHY/’S)
:7;/
Lemma

Letg = %\/%. Then
1Un(S) ~ (=~ S)] < 20y /)

SVATVRAY 4 2
with probability > 1 — 2da, where o = ||E (w - s)
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@ Given a permutation = = (ij, ia, .. ., in), let

1
W = 5 (FolYis Yo 8) + Fol Y, Yii §) o oY, Y1 S))

@ Then Up(S) = L >, Wi



Idea of the proof
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Idea of the proof

Pr <Amax (Un(S) — (= - S)) > s)

=Pr <exp <)\max (;I E:QW7T —0(x — S))) > e9s>

< e SEtr exp (;I Z (oW, —0(X — S)))



Idea of the proof

Pr ()\max (Un(s) - (Z - S)) > S>

=Pr <exp <)\max <r1]| z:GW7r —0(x — S))) > e9s>

< e OSEtr exp (;, > (6Wr —6(x - S))>

< e "Etrexp (0W;,_ ,—0(Z - S))

.....



Idea of the proof

Pr ()\max (Un(s) — (Z — S)) > S>

=Pr <exp <,\max (:ﬂ > OW. —0(z - S)>> > ees>
< e OSEtr exp (,1. > (OWr —6( - S))>

.....



Idea of the proof

o Let
(Yaj1 = Yo)(Yoj1 — Vo))

X =
/ 2

S.




Idea of the proof

o Let ;
X = (Yoj—1 = Yo))(Yoj1 = Vo)) ' o
2
1/2, x> 1,
x—x2/2, xe[0,1],
o w(n) = /2 xelo

X+X2/2» X € [7170)’
—1/2, x < —1.



Idea of the proof

o Let

° Y(x) =

@ Satisfies

1/2,

X —x2/2,
X+ x2/2,
-1/2,

(Yaj1 = Yo)(Yoj1 — Vo))

X =
/ 2

S.

x> 1,
x € [0,1],
x € [-1,0),
X < —1.

—log(l — X + X?) < ¢(X) < log(/ + X + X?)



Idea of the proof

o Let ;
X = (Yoj—1 = Yo))(Yoj1 = Vo)) ' o
2
1/2, x> 1,
x—x2/2, xe[0,1],
o "L’(X) = 2/ [ ]
X+X/2» XE[*‘I,O),
—1/2, x < —1.
@ Satisfies

—log(l — X + X?) < ¢(X) < log(/ + X + X?)

@ Need to estimate Etr exp (Zj”:/f (v (6X) — 01EX)).






Etr ex S
trexp (Z (v (0X) - em)

=1

—EEn/z 1t exp( /E 0 — 0E — 0E + 0 n/2
J ) X /l/)

=



Etr exp (% (v (0X;) — GEX))

j=1

=EE,/>_1ir exp < [n§:1 (¢ (6X;) — 6EX) — OIEX} + (axn/2)>

j=1

<Recal| that 1(X) < log(/ + X + x2)>



Etr exp (% (v (6X;) — GIEX))

j=1

n/2—1
=EEp/»_tr exp ( [ Z (6X;) — OEX) — HIEX} ¥ (9xn/2)>

n/2—1
< EE,2_1tr exp ( [ Z (6X)) — OEX) — QEX] + log (/+ 02+ 0 xn/2)>



Etr exp (% (1,[; (QXI) - GJEX))

=1

=

=EE;/>_1tr exp < [n§:1 (v (6X)) — 6EX) — HIEX] +¢ (9Xn/2)>

n/2—1
< EE,/p_1tr exp ( [ ST (v (0X) — 6EX) — 9EX:| + log (14 0Xn2 + 92xn2/2)>
=

<Lieb‘s concavity theorem: A — tr exp(H + log(A)) is concave>



Etr exp (% (1,[; (OX/) - GJEX))

=1

M\

=EE,/»_1tr exp < [ (6X;) — 6EX) — 6EX | + (9Xn/2)>

/2—
< EEp/p_11r exp ( [ > (¥ (0%) — 0EX) — 6EX| + log (/ +0X,0+ 0 Xn/2>>

n/2—1
< Etr exp ( > (¥ (6X) — OEX)) + log (/ + 0EX, /2 + 0°EX? /2) - GEX,,/2>
j=1



r ex n/2
Etr exp (Z (v (0X) 0EX))

=1

= ]E]En/g 1tr exp ( I:n/21
(w (QXJ) — GIEX) — 9]EX:| +
P (HX )
n/2)

j=1
< IE]En/2,1tr exp ( |:n/21
(v (6)
() — 6EX) — 6
EX

=1

+ log (/
(14 0X2 + 92X§/2)>

< Etr ex ("/2‘
p Z
2 (¥ (6X) — OEX)) + |
og (l + O0EX, )2 + 0°EX2 )
2/2) — OEX, )
/2

X



n/2
Etr exp (Z (v (6X) — GIEX))

j=1

=EEp/2_11r exp ( |:"/2231
(v (6X) — 05X
) — 9]EXj| +
(9Xn/2))

=

< ]E]En/ 1t ex ( /E 0 — — —+ —+ —+ 0
2 P g 2
€X,,
n/2

=1

< Etr ex ("/2—1 +
p Z
2. (v (6X;) — 6EX)) + |
og (/ + 0EX, )2 + 0°EX3 )
?2) — OEX, )
/2

< e <
tr exp ( log (l + 0EX + 92]EX2> oE )
— —9EX

<tr exp <g92u«:X2) .



Thank you for your attention!




