Robust modifications of U-statistics and estimation of the covariance structure of heavy-tailed distributions

(based on a joint work with Xiaohan Wei)

Stas Minsker
Department of Mathematics, University of Southern California

December 21, 2017

MMS 2017, CIRM - Luminy

Happy Birthday Oleg and Sasha!

One of the challenges in contemporary statistics is noisy and corrupted data.

One of the challenges in contemporary statistics is noisy and corrupted data.

- Presence of outliers of unknown nature:
\Longrightarrow requires algorithms that are robust and do not rely on preprocessing or outlier detection.

One of the challenges in contemporary statistics is noisy and corrupted data.

- Presence of outliers of unknown nature:
\Longrightarrow requires algorithms that are robust and do not rely on preprocessing or outlier detection.
- While ad-hoc techniques exist for some problems, we would like to develop general methods.

One of the challenges in contemporary statistics is noisy and corrupted data.

- Presence of outliers of unknown nature:
\Longrightarrow requires algorithms that are robust and do not rely on preprocessing or outlier detection.
- While ad-hoc techniques exist for some problems, we would like to develop general methods.
- A natural way to model outliers is via heavy-tailed distributions.

Simple question: how to estimate the mean?

- Assume that X_{1}, \ldots, X_{n} are i.i.d. $\mathcal{N}\left(\mu, \sigma_{0}^{2}\right)$.

Problem: construct $\mathrm{CI}_{\text {norm }}(\alpha)$ for μ with coverage probability $\geq 1-2 \alpha$.

Simple question: how to estimate the mean?

- Assume that X_{1}, \ldots, X_{n} are i.i.d. $\mathcal{N}\left(\mu, \sigma_{0}^{2}\right)$.

Problem: construct $\mathrm{CI}_{\text {norm }}(\alpha)$ for μ with coverage probability $\geq 1-2 \alpha$.

- Solution: compute $\hat{\mu}_{n}:=\frac{1}{n} \sum_{j=1}^{n} X_{j}$, take

$$
\mathrm{CI}_{\text {norm }}(\alpha)=\left[\hat{\mu}_{n}-\sigma_{0} \sqrt{2} \sqrt{\frac{\log (1 / \alpha)}{n}}, \hat{\mu}_{n}+\sigma_{0} \sqrt{2} \sqrt{\frac{\log (1 / \alpha)}{n}}\right]
$$

Simple question: how to estimate the mean?

- Assume that X_{1}, \ldots, X_{n} are i.i.d. $\mathcal{N}\left(\mu, \sigma_{0}^{2}\right)$.

Problem: construct $\mathrm{CI}_{\text {norm }}(\alpha)$ for μ with coverage probability $\geq 1-2 \alpha$.

- Solution: compute $\hat{\mu}_{n}:=\frac{1}{n} \sum_{j=1}^{n} X_{j}$, take

$$
\mathrm{CI}_{\text {norm }}(\alpha)=\left[\hat{\mu}_{n}-\sigma_{0} \sqrt{2} \sqrt{\frac{\log (1 / \alpha)}{n}}, \hat{\mu}_{n}+\sigma_{0} \sqrt{2} \sqrt{\frac{\log (1 / \alpha)}{n}}\right]
$$

Coverage is guaranteed since

$$
\operatorname{Pr}\left(\left|\hat{\mu}_{n}-\mu\right| \geq \sigma_{0} \sqrt{\frac{2 \log (1 / \alpha)}{n}}\right) \leq 2 \alpha
$$

Example: how to estimate the mean?

- P. J. Huber (1964): "...This raises a question which could have been asked already by Gauss, but which was, as far as I know, only raised a few years ago (notably by Tukey): what happens if the true distribution deviates slightly from the assumed normal one?"

Going back to our question: what if X_{1}, \ldots, X_{n} are i.i.d. copies of $X \sim \Pi$ such that

$$
\mathbb{E} X=\mu, \operatorname{Var}(X) \leq \sigma_{0}^{2} ?
$$

Example: how to estimate the mean?

- P. J. Huber (1964): "...This raises a question which could have been asked already by Gauss, but which was, as far as I know, only raised a few years ago (notably by Tukey): what happens if the true distribution deviates slightly from the assumed normal one?"

Going back to our question: what if X_{1}, \ldots, X_{n} are i.i.d. copies of $X \sim \Pi$ such that

$$
\mathbb{E} X=\mu, \operatorname{Var}(X) \leq \sigma_{0}^{2} ?
$$

- Problem: construct CI for μ with coverage probability $\geq 1-\alpha$ such that for any α

$$
\text { length }(\mathrm{CI}(\alpha)) \leq(\text { Absolute constant }) \cdot \text { length }\left(\mathrm{CI}_{\text {norm }}(\alpha)\right)
$$

No additional assumptions on Π are imposed.

Example: how to estimate the mean?

- P. J. Huber (1964): "...This raises a question which could have been asked already by Gauss, but which was, as far as I know, only raised a few years ago (notably by Tukey): what happens if the true distribution deviates slightly from the assumed normal one?"

Going back to our question: what if X_{1}, \ldots, X_{n} are i.i.d. copies of $X \sim \Pi$ such that

$$
\mathbb{E} X=\mu, \operatorname{Var}(X) \leq \sigma_{0}^{2} ?
$$

- Problem: construct CI for μ with coverage probability $\geq 1-\alpha$ such that for any α

$$
\text { length }(\mathrm{CI}(\alpha)) \leq(\text { Absolute constant }) \cdot \text { length }\left(\mathrm{CI}_{\text {norm }}(\alpha)\right)
$$

No additional assumptions on Π are imposed.

- Remark: guarantees for the sample mean $\hat{\mu}_{n}=\frac{1}{n} \sum_{j=1}^{n} X_{j}$ is unsatisfactory:

$$
\operatorname{Pr}\left(\left|\hat{\mu}_{n}-\mu\right| \geq \sigma_{0} \sqrt{\frac{(1 / \alpha)}{n}}\right) \leq \alpha
$$

Example: how to estimate the mean?

- Existing methods:
A. Nemirovski, D. Yudin '83; N. Alon, Y. Matias, M. Szegedy '96;
R. Oliveira, M. Lerasle '11, G. Lecué, M. Lerasle '17 (median-of-means),
O. Catoni '12, G. Lugosi et al. '15,'16 (M-estimation), etc.

Catoni's estimator

O. Catoni's M-estimator (2012): set

$$
\begin{gathered}
\psi(x)=(|x| \wedge 1) \operatorname{sign}(x) \\
{\left[\psi(x)=\text { derivative of Huber's loss } H(\cdot)=\left\{\begin{array}{ll}
x^{2} / 2, & |x| \leq 1, \\
|x|-\frac{1}{2}, & |x|>1 .
\end{array}\right]\right.}
\end{gathered}
$$

Let $\theta>0$, and define $\hat{\mu}$ via

$$
\frac{1}{\theta} \sum_{j=1}^{n} \psi\left(\theta\left(X_{j}-\hat{\mu}\right)\right)=0
$$

Catoni's estimator

O. Catoni's M-estimator (2012): set

$$
\psi(x)=(|x| \wedge 1) \operatorname{sign}(x)
$$

Let $\theta>0$, and define $\hat{\mu}$ via

$$
\frac{1}{\theta} \sum_{j=1}^{n} \psi\left(\theta\left(X_{j}-\hat{\mu}\right)\right)=0
$$

Equivalent to minimizing Huber's loss

$$
\hat{\mu}=\underset{\mu \in \mathbb{R}}{\operatorname{argmin}} \frac{1}{\theta^{2}} \sum_{j=1}^{n} H\left(\theta\left(X_{j}-\mu\right)\right)
$$

Catoni's estimator

Theoretical guarantees: set $\theta_{*}=\sqrt{\frac{2 \log (1 / \alpha)}{n}} \frac{1}{\sigma_{0}}$. Then, as shown by O . Catoni

$$
|\hat{\mu}-\mu| \leq\left(\sqrt{2}+o_{n}(1)\right) \sigma_{0} \sqrt{\frac{\log (1 / \alpha)}{n}}
$$

with probability $\geq 1-2 \alpha$.

Extensions to higher dimensions

- A natural question: is it possible to extend the methods beyond the univariate case?

Extensions to higher dimensions

- A natural question: is it possible to extend the methods beyond the univariate case?
- Motivation: PCA

Extensions to higher dimensions

- Motivation: PCA
- Mathematical framework:

$$
\begin{aligned}
& Y_{1}, \ldots, Y_{n} \in \mathbb{R}^{d}, \text { i.i.d. } \mathbb{E} Y_{j}=\mu, \mathbb{E}\left(Y_{j}-\mu\right)\left(Y_{j}-\mu\right)^{T}=\Sigma, \\
& \mathbb{E}\left\|Y_{j}\right\|_{2}^{4}<\infty . \underline{\text { No additional assumptions. }}
\end{aligned}
$$

Extensions to higher dimensions

- Motivation: PCA
- Mathematical framework:

$$
\begin{aligned}
& Y_{1}, \ldots, Y_{n} \in \mathbb{R}^{d}, \text { i.i.d. } \mathbb{E} Y_{j}=\mu, \mathbb{E}\left(Y_{j}-\mu\right)\left(Y_{j}-\mu\right)^{T}=\Sigma, \\
& \mathbb{E}\left\|Y_{j}\right\|_{2}^{4}<\infty . \text { No additional assumptions. }
\end{aligned}
$$

- Goal: construct $\hat{\Sigma}$, an estimator of Σ, such that

$$
\underbrace{\|\hat{\Sigma}-\Sigma\|}_{\text {operator norm }}
$$

is small with high probability.

Extensions to higher dimensions

- Motivation: PCA
- Mathematical framework:

$$
\begin{aligned}
& Y_{1}, \ldots, Y_{n} \in \mathbb{R}^{d}, \text { i.i.d. } \mathbb{E} Y_{j}=\mu, \mathbb{E}\left(Y_{j}-\mu\right)\left(Y_{j}-\mu\right)^{T}=\Sigma, \\
& \mathbb{E}\left\|Y_{j}\right\|_{2}^{4}<\infty . \underline{\text { No additional assumptions. }}
\end{aligned}
$$

- Goal: construct $\hat{\Sigma}$, an estimator of Σ, such that

$$
\underbrace{\|\hat{\Sigma}-\Sigma\|}_{\text {operator norm }}
$$

is small with high probability.

- In the Gaussian case, performance of the sample covariance estimator and associated projectors has been recently studied by K. Lounici and V. Koltchinskii.

Extensions to higher dimensions

- Motivation: PCA
- Mathematical framework:

$$
\begin{aligned}
& Y_{1}, \ldots, Y_{n} \in \mathbb{R}^{d}, \text { i.i.d. } \mathbb{E} Y_{j}=\mu, \mathbb{E}\left(Y_{j}-\mu\right)\left(Y_{j}-\mu\right)^{T}=\Sigma, \\
& \mathbb{E}\left\|Y_{j}\right\|_{2}^{4}<\infty . \text { No additional assumptions. }
\end{aligned}
$$

- Goal: construct $\hat{\Sigma}$, an estimator of Σ, such that

$$
\underbrace{\|\hat{\Sigma}-\Sigma\|}_{\text {operator norm }}
$$

is small with high probability.

- In the Gaussian case, performance of the sample covariance estimator and associated projectors has been recently studied by K. Lounici and V. Koltchinskii.
- However, the sample covariance

$$
\tilde{\Sigma}_{n}=\frac{1}{n-1} \sum_{j=1}^{n}\left(Y_{j}-\bar{Y}_{n}\right)\left(Y_{j}-\bar{Y}_{n}\right)^{T}
$$

is sensitive to outliers/heavy tails.

Extensions to higher dimensions

- Naive approach: apply Catoni's estimator coordinatewise. Makes the bound
- dimension-dependent
- not invariant with respect to a change of coordinates.

Extensions to higher dimensions

- Naive approach: apply Catoni's estimator coordinatewise.

Makes the bound

- dimension-dependent
- not invariant with respect to a change of coordinates.
- Alternatives: Tyler's M-estimator, Maronna's M-estimator, Kendall's tau:
- Guarantees are limited to special classes of distributions (e.g., elliptically symmetric).

Matrix functions

$f: \mathbb{R} \mapsto \mathbb{R}, A=A^{T}=U \wedge U^{T}$, then

$$
f(A)=U f(\Lambda) U^{T}, \quad f(\Lambda)=f\left(\left(\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{d}
\end{array}\right)\right)=\left(\begin{array}{lll}
f\left(\lambda_{1}\right) & & \\
& \ddots & \\
& & f\left(\lambda_{d}\right)
\end{array}\right)
$$

Construction of the estimator

- $Y \in \mathbb{R}^{d}, Y_{1}, \ldots, Y_{n} \in \mathbb{R}^{d}$ - i.i.d. copies of Y, μ is the mean, Σ is the covariance matrix,

$$
\mathbb{E}\|Y\|^{4}<\infty, \quad \text { No additional assumptions. }
$$

Construction of the estimator

- $Y \in \mathbb{R}^{d}, Y_{1}, \ldots, Y_{n} \in \mathbb{R}^{d}$ - i.i.d. copies of Y, μ is the mean, Σ is the covariance matrix, $\mathbb{E}\|Y\|^{4}<\infty, \quad$ No additional assumptions.
- Set $\Psi^{\prime}(x)=\psi(x)=\left\{\begin{array}{ll}1 / 2, & x>1, \\ x-x^{2} / 2, & x \in[0,1], \\ x+x^{2} / 2, & x \in[-1,0), \\ -1 / 2, & x<-1 .\end{array} \quad[\right.$ like Huber's loss + operator Lipschitz $]$

Construction of the estimator

- $Y \in \mathbb{R}^{d}, Y_{1}, \ldots, Y_{n} \in \mathbb{R}^{d}$ - i.i.d. copies of Y, μ is the mean, Σ is the covariance matrix, $\mathbb{E}\|Y\|^{4}<\infty, \quad$ No additional assumptions.
- Set $\Psi^{\prime}(x)=\psi(x)=\left\{\begin{array}{ll}1 / 2, & x>1, \\ x-x^{2} / 2, & x \in[0,1], \\ x+x^{2} / 2, & x \in[-1,0), \\ -1 / 2, & x<-1 .\end{array} \quad[\right.$ like Huber's loss + operator Lipschitz $]$
- Unlike the case of bounded/sub-Gaussian vectors, can not assume that the mean μ is known.

Construction of the estimator

- $Y \in \mathbb{R}^{d}, Y_{1}, \ldots, Y_{n} \in \mathbb{R}^{d}$ - i.i.d. copies of Y, μ is the mean, Σ is the covariance matrix,

$$
\mathbb{E}\|Y\|^{4}<\infty, \quad \text { No additional assumptions. }
$$

- Set $\Psi^{\prime}(x)=\psi(x)=\left\{\begin{array}{ll}1 / 2, & x>1, \\ x-x^{2} / 2, & x \in[0,1], \\ x+x^{2} / 2, & x \in[-1,0), \\ -1 / 2, & x<-1 .\end{array} \quad[\right.$ like Huber's loss + operator Lipschitz $]$
- Unlike the case of bounded/sub-Gaussian vectors, can not assume that the mean μ is known.
- Observe that

$$
\Sigma=\frac{1}{2} \mathbb{E}\left[\left(Y_{1}-Y_{2}\right)\left(Y_{1}-Y_{2}\right)^{T}\right]
$$

Construction of the estimator

- $Y \in \mathbb{R}^{d}, Y_{1}, \ldots, Y_{n} \in \mathbb{R}^{d}$ - i.i.d. copies of Y, μ is the mean, Σ is the covariance matrix, $\mathbb{E}\|Y\|^{4}<\infty, \quad$ No additional assumptions.
- Set $\Psi^{\prime}(x)=\psi(x)=\left\{\begin{array}{ll}1 / 2, & x>1, \\ x-x^{2} / 2, & x \in[0,1], \\ x+x^{2} / 2, & x \in[-1,0), \\ -1 / 2, & x<-1 .\end{array} \quad[\right.$ like Huber's loss + operator Lipschitz $]$
- Unlike the case of bounded/sub-Gaussian vectors, can not assume that the mean μ is known.
- Observe that

$$
\Sigma=\frac{1}{2} \mathbb{E}\left[\left(Y_{1}-Y_{2}\right)\left(Y_{1}-Y_{2}\right)^{T}\right]
$$

- The sample covariance is then

$$
\begin{aligned}
\widetilde{\Sigma} & =\frac{1}{n(n-1)} \sum_{i \neq j} \frac{\left(Y_{i}-Y_{j}\right)\left(Y_{i}-Y_{j}\right)^{T}}{2} \\
& =\frac{1}{n-1} \sum_{j=1}^{n}\left(Y_{j}-\bar{Y}_{n}\right)\left(Y_{j}-\bar{Y}_{n}\right)^{T}
\end{aligned}
$$

Construction of the estimator

- The sample covariance is

$$
\widetilde{\Sigma}=\frac{1}{n(n-1)} \sum_{i \neq j} \frac{\left(Y_{i}-Y_{j}\right)\left(Y_{i}-Y_{j}\right)^{T}}{2}
$$

Construction of the estimator

- The sample covariance is

$$
\widetilde{\Sigma}=\frac{1}{n(n-1)} \sum_{i \neq j} \frac{\left(Y_{i}-Y_{j}\right)\left(Y_{i}-Y_{j}\right)^{T}}{2}
$$

- Equivalently,

$$
\frac{1}{n(n-1)} \sum_{i \neq j} \frac{\left(Y_{i}-Y_{j}\right)\left(Y_{i}-Y_{j}\right)^{T}}{2}=\underset{S \in \mathbb{R}^{d \times d}}{\operatorname{argmin}} \sum_{i \neq j}\left\|\frac{\left(Y_{i}-Y_{j}\right)\left(Y_{i}-Y_{j}\right)^{T}}{2}-S\right\|_{F}^{2}
$$

Construction of the estimator

- The sample covariance is

$$
\widetilde{\Sigma}=\frac{1}{n(n-1)} \sum_{i \neq j} \frac{\left(Y_{i}-Y_{j}\right)\left(Y_{i}-Y_{j}\right)^{T}}{2}
$$

- Equivalently,

$$
\begin{aligned}
\frac{1}{n(n-1)} \sum_{i \neq j} \frac{\left(Y_{i}-Y_{j}\right)\left(Y_{i}-Y_{j}\right)^{T}}{2} & =\underset{S \in \mathbb{R}^{d \times d}}{\operatorname{argmin}} \sum_{i \neq j}\left\|\frac{\left(Y_{i}-Y_{j}\right)\left(Y_{i}-Y_{j}\right)^{T}}{2}-S\right\|_{\mathrm{F}}^{2} \\
& =\underset{S \in \mathbb{R}^{d \times d}}{\operatorname{argmin}} \operatorname{Trace}\left[\sum_{i \neq j}^{n}\left(\frac{\left(Y_{i}-Y_{j}\right)\left(Y_{i}-Y_{j}\right)^{T}}{2}-S\right)^{2}\right]
\end{aligned}
$$

Construction of the estimator

- The sample covariance is

$$
\widetilde{\Sigma}=\frac{1}{n(n-1)} \sum_{i \neq j} \frac{\left(Y_{i}-Y_{j}\right)\left(Y_{i}-Y_{j}\right)^{T}}{2}
$$

- Equivalently,

$$
\begin{aligned}
\frac{1}{n(n-1)} \sum_{i \neq j} \frac{\left(Y_{i}-Y_{j}\right)\left(Y_{i}-Y_{j}\right)^{T}}{2} & =\underset{S \in \mathbb{R}^{d \times d}}{\operatorname{argmin}} \sum_{i \neq j}\left\|\frac{\left(Y_{i}-Y_{j}\right)\left(Y_{i}-Y_{j}\right)^{T}}{2}-S\right\|_{\mathrm{F}}^{2} \\
& =\underset{S \in \mathbb{R}^{d \times d}}{\operatorname{argmin}} \operatorname{Trace}\left[\sum_{i \neq j}^{n}\left(\frac{\left(Y_{i}-Y_{j}\right)\left(Y_{i}-Y_{j}\right)^{T}}{2}-S\right)^{2}\right]
\end{aligned}
$$

- Replace quadratic loss by (rescaled) loss $\Psi(x)$: let $\theta>0$ [small constant], and define

$$
\widehat{\Sigma}=\underset{S \in \mathbb{R}^{d \times d}}{\operatorname{argmin}}\left[\operatorname{Trace} \sum_{i \neq j} \Psi\left(\theta\left(\frac{\left(Y_{i}-Y_{j}\right)\left(Y_{i}-Y_{j}\right)^{T}}{2}-S\right)\right)\right]
$$

Construction of the estimator

- The sample covariance is

$$
\widetilde{\Sigma}=\frac{1}{n(n-1)} \sum_{i \neq j} \frac{\left(Y_{i}-Y_{j}\right)\left(Y_{i}-Y_{j}\right)^{T}}{2}
$$

- Equivalently,

$$
\begin{aligned}
\frac{1}{n(n-1)} \sum_{i \neq j} \frac{\left(Y_{i}-Y_{j}\right)\left(Y_{i}-Y_{j}\right)^{T}}{2} & =\underset{S \in \mathbb{R}^{d \times d}}{\operatorname{argmin}} \sum_{i \neq j}\left\|\frac{\left(Y_{i}-Y_{j}\right)\left(Y_{i}-Y_{j}\right)^{T}}{2}-S\right\|_{\mathrm{F}}^{2} \\
& =\underset{S \in \mathbb{R}^{d \times d}}{\operatorname{argmin}} \operatorname{Trace}\left[\sum_{i \neq j}^{n}\left(\frac{\left(Y_{i}-Y_{j}\right)\left(Y_{i}-Y_{j}\right)^{T}}{2}-S\right)^{2}\right]
\end{aligned}
$$

- Replace quadratic loss by (rescaled) loss $\Psi(x)$: let $\theta>0$ [small constant], and define

$$
\widehat{\Sigma}=\underset{S \in \mathbb{R}^{d \times d}}{\operatorname{argmin}}\left[\operatorname{Trace} \sum_{i \neq j} \Psi\left(\theta\left(\frac{\left(Y_{i}-Y_{j}\right)\left(Y_{i}-Y_{j}\right)^{T}}{2}-S\right)\right)\right]
$$

Equivalent to

$$
\frac{1}{n(n-1)} \sum_{i \neq j} \frac{1}{\theta} \psi\left(\theta\left(\frac{\left(Y_{i}-Y_{j}\right)\left(Y_{i}-Y_{j}\right)^{T}}{2}-\widehat{\Sigma}\right)\right)=0_{d \times d}
$$

Approach is easily extended to arbitrary matrix-valued U-statistics

$$
U_{n}:=\frac{(n-m)!}{n!} \sum_{\left(i_{1}, \cdots, i_{m}\right) \in I_{n}^{m}} H\left(X_{i_{1}}, \cdots, X_{i_{m}}\right)
$$

via

$$
\sum_{\left(i_{1}, \cdots, i_{m}\right) \in I_{n}^{m}} \psi\left(\theta\left(H\left(X_{i_{1}}, \cdots, X_{i_{m}}\right)-\widehat{U}_{n}\right)\right)=0 .
$$

$$
\widehat{\Sigma}=\underset{S \in \mathbb{R}^{d \times d}}{\operatorname{argmin}}\left[\operatorname{Trace} \sum_{i \neq j} \Psi\left(\theta\left(\frac{\left(Y_{i}-Y_{j}\right)\left(Y_{i}-Y_{j}\right)^{T}}{2}-S\right)\right)\right]
$$

$$
\widehat{\Sigma}=\underset{S \in \mathbb{R}^{d \times d}}{\operatorname{argmin}}\left[\operatorname{Trace} \sum_{i \neq j} \psi\left(\theta\left(\frac{\left(Y_{i}-Y_{j}\right)\left(Y_{i}-Y_{j}\right)^{T}}{2}-S\right)\right)\right]
$$

Theorem (S. M., X. Wei (2017))

Fix $\alpha>0$. Assume that $\sigma_{0}^{2} \geq\left\|\mathbb{E}\left((Y-\mu)(Y-\mu)^{T}\right)^{2}\right\|$, and let $\theta=\sqrt{\frac{4 \log (d / \alpha)}{n}} \frac{1}{\sigma_{0}}$. If $\frac{d \log (d / \alpha)}{n} \leq \frac{1}{10}$, then

$$
\|\widehat{\Sigma}-\Sigma\| \leq 4 \sigma_{0} \sqrt{\frac{\log (d / \alpha)}{n}}
$$

with probability $\geq 1-2 \alpha$.

Remark (1)

The quantity σ_{0}^{2} is known as the "matrix variance". It is related to the effective rank

$$
\mathrm{r}(\Sigma):=\frac{\operatorname{Trace}(\Sigma)}{\|\Sigma\|} .
$$

Under the additional assumption that the kurtosis of the coordinates $Y^{(j)}:=\left\langle Y, e_{j}\right\rangle$ is uniformly bounded by K,

$$
\sigma_{0}^{2} \leq K \mathrm{r}(\Sigma)\|\Sigma\|^{2} .
$$

$$
\widehat{\Sigma}=\underset{S \in \mathbb{R}^{d \times d}}{\operatorname{argmin}}\left[\operatorname{Trace} \sum_{i \neq j} \psi\left(\theta\left(\frac{\left(Y_{i}-Y_{j}\right)\left(Y_{i}-Y_{j}\right)^{T}}{2}-S\right)\right)\right]
$$

Theorem (S. M., X. Wei (2017))

Fix $\alpha>0$. Assume that $\sigma_{0}^{2} \geq\left\|\mathbb{E}\left((Y-\mu)(Y-\mu)^{T}\right)^{2}\right\|$, and let $\theta=\sqrt{\frac{4 \log (d / \alpha)}{n}} \frac{1}{\sigma_{0}}$. If $\frac{d \log (d / \alpha)}{n} \leq \frac{1}{10}$, then

$$
\|\widehat{\Sigma}-\Sigma\| \leq 4 \sigma_{0} \sqrt{\frac{\log (d / \alpha)}{n}}
$$

with probability $\geq 1-2 \alpha$.

Finally, compare to:

Theorem (Matrix Bernstein inequality, Ahlswede-Winter/Tropp)

$Y_{1}, \ldots, Y_{n} \in \mathbb{R}^{d \times d}$ - i.i.d. copies of $Y, \sigma_{0}^{2}=\left\|\mathbb{E}\left((Y-\mu)(Y-\mu)^{T}\right)^{2}\right\|,\|Y-\mu\| \leq M$ a.s. Then for all $0<\alpha<1$,

$$
\left\|\frac{1}{n} \sum_{j=1}^{n} Y_{j} Y_{j}^{T}-\Sigma\right\| \leq \max \left(2 \sigma_{0} \sqrt{\frac{\log (d / \alpha)}{n}}, \frac{4}{3} \frac{M^{2} \log (d / \alpha)}{n}\right)
$$

with probability $\geq 1-2 \alpha$.

- Usually, $\sigma_{0}^{2}=\left\|\mathbb{E}\left((Y-\mu)(Y-\mu)^{T}\right)^{2}\right\|$ is unknown.
- Usually, $\sigma_{0}^{2}=\left\|\mathbb{E}\left((Y-\mu)(Y-\mu)^{T}\right)^{2}\right\|$ is unknown.
- Data-dependent version of the estimator $\widehat{\Sigma}$ can be obtained via Lepski's method.
- Usually, $\sigma_{0}^{2}=\left\|\mathbb{E}\left((Y-\mu)(Y-\mu)^{T}\right)^{2}\right\|$ is unknown.
- Data-dependent version of the estimator $\widehat{\Sigma}$ can be obtained via Lepski's method.
- Let $\sigma_{j}=\sigma_{\min } 2^{j}, j \geq 0$, and and for each $j \in \mathcal{J}$ set

$$
\theta_{j}=\theta(j, t)=\sqrt{\frac{4 \log \left(d \cdot j^{2} / \alpha\right)}{n}} \frac{1}{\sigma_{j}} .
$$

- Usually, $\sigma_{0}^{2}=\left\|\mathbb{E}\left((Y-\mu)(Y-\mu)^{T}\right)^{2}\right\|$ is unknown.
- Data-dependent version of the estimator $\widehat{\Sigma}$ can be obtained via Lepski's method.
- Let $\sigma_{j}=\sigma_{\text {min }}{ }^{j}, j \geq 0$, and and for each $j \in \mathcal{J}$ set

$$
\theta_{j}=\theta(j, t)=\sqrt{\frac{4 \log \left(d \cdot j^{2} / \alpha\right)}{n}} \frac{1}{\sigma_{j}} .
$$

- Define

$$
\widehat{\Sigma}_{j}=\underset{S \in \mathbb{R}^{d \times d}}{\operatorname{argmin}}\left[\operatorname{Trace} \sum_{i \neq j} \Psi\left(\theta_{j}\left(\frac{\left(Y_{i}-Y_{j}\right)\left(Y_{i}-Y_{j}\right)^{T}}{2}-S\right)\right)\right]
$$

- Usually, $\sigma_{0}^{2}=\left\|\mathbb{E}\left((Y-\mu)(Y-\mu)^{T}\right)^{2}\right\|$ is unknown.
- Data-dependent version of the estimator $\widehat{\Sigma}$ can be obtained via Lepski's method.
- Let $\sigma_{j}=\sigma_{\text {min }}{ }^{j}, j \geq 0$, and and for each $j \in \mathcal{J}$ set

$$
\theta_{j}=\theta(j, t)=\sqrt{\frac{4 \log \left(d \cdot j^{2} / \alpha\right)}{n}} \frac{1}{\sigma_{j}} .
$$

- Define

$$
\widehat{\Sigma}_{j}=\underset{S \in \mathbb{R}^{d \times d}}{\operatorname{argmin}}\left[\operatorname{Trace} \sum_{i \neq j} \Psi\left(\theta_{j}\left(\frac{\left(Y_{i}-Y_{j}\right)\left(Y_{i}-Y_{j}\right)^{T}}{2}-S\right)\right)\right]
$$

- Finally, set

$$
j_{*}:=\min \left\{j \geq 0: \forall k>j \text { s.t. } k \in \mathcal{J},\left\|\widehat{\Sigma}_{k}-\widehat{\Sigma}_{j}\right\| \leq 8 \sigma_{k} \sqrt{\frac{2 t}{n}}\right\}
$$

and

$$
\widehat{\Sigma}_{*}=\widehat{\Sigma}_{j_{*}} .
$$

- Usually, $\sigma_{0}^{2}=\left\|\mathbb{E}\left((Y-\mu)(Y-\mu)^{T}\right)^{2}\right\|$ is unknown.
- Data-dependent version of the estimator $\widehat{\Sigma}$ can be obtained via Lepski's method.
- Let $\sigma_{j}=\sigma_{\text {min }}{ }^{j}, j \geq 0$, and and for each $j \in \mathcal{J}$ set

$$
\theta_{j}=\theta(j, t)=\sqrt{\frac{4 \log \left(d \cdot j^{2} / \alpha\right)}{n}} \frac{1}{\sigma_{j}}
$$

- Define

$$
\widehat{\Sigma}_{j}=\underset{S \in \mathbb{R}^{d \times d}}{\operatorname{argmin}}\left[\operatorname{Trace} \sum_{i \neq j} \Psi\left(\theta_{j}\left(\frac{\left(Y_{i}-Y_{j}\right)\left(Y_{i}-Y_{j}\right)^{T}}{2}-S\right)\right)\right]
$$

- Finally, set

$$
j_{*}:=\min \left\{j \geq 0: \forall k>j \text { s.t. } k \in \mathcal{J},\left\|\widehat{\Sigma}_{k}-\widehat{\Sigma}_{j}\right\| \leq 8 \sigma_{k} \sqrt{\frac{2 t}{n}}\right\}
$$

and

$$
\widehat{\Sigma}_{*}=\widehat{\Sigma}_{j_{*}} .
$$

- Then $\quad\left\|\hat{\Sigma}_{*}-\Sigma\right\| \leq 12 \sigma_{0} \sqrt{\frac{\log (d / \alpha)}{n}}$ with probability $\geq 1-C \alpha$.

Applications: low-rank covariance estimation

- Assume that $d \gg n$ but Σ has small rank (or small effective rank).

Applications: low-rank covariance estimation

- Assume that $d \gg n$ but Σ has small rank (or small effective rank).
- Define

$$
\widehat{\Sigma}^{\tau}:=\underset{S \in \mathbb{R}^{d \times d}}{\operatorname{argmin}}\left[\|S-\widehat{\Sigma}\|_{F}^{2}+\tau\|S\|_{1}\right]
$$

Applications: low-rank covariance estimation

- Assume that $d \gg n$ but Σ has small rank (or small effective rank).
- Define

$$
\widehat{\Sigma}^{\tau}:=\underset{S \in \mathbb{R}^{d \times d}}{\operatorname{argmin}}\left[\|S-\widehat{\Sigma}\|_{\mathrm{F}}^{2}+\tau\|S\|_{1}\right]
$$

- Equivalently,

$$
\widehat{\Sigma}^{\tau}=\sum_{j=1}^{d} \max \left(\lambda_{j}(\widehat{\Sigma})-\tau / 2,0\right) v_{j}(\widehat{\Sigma}) v_{j}(\widehat{\Sigma})^{T}
$$

where $\lambda_{j}(\widehat{\Sigma})$ and $v_{j}(\widehat{\Sigma})$ are the eigenvalues and corresponding eigenvectors of $\widehat{\Sigma}$.

Applications: low-rank covariance estimation

$$
\widehat{\Sigma}^{\tau}=\sum_{j=1}^{d} \max \left(\lambda_{j}(\widehat{\Sigma})-\tau / 2,0\right) v_{j}(\widehat{\Sigma}) v_{j}(\widehat{\Sigma})^{T}
$$

Theorem

For

$$
\begin{gathered}
\tau=8 \sigma_{0} \sqrt{\frac{\log (2 d / \alpha)}{n}}, \\
\left\|\widehat{\Sigma}^{\tau}-\Sigma\right\|_{\mathrm{F}}^{2} \leq \inf _{S \in \mathbb{R}^{d \times d}}\left[\|S-\Sigma\|_{\mathrm{F}}^{2}+\frac{(1+\sqrt{2})^{2}}{8} \tau^{2} \operatorname{rank}(S)\right] .
\end{gathered}
$$

with probability $\geq 1-\alpha$.

Remark

If $\operatorname{rank}(\Sigma)=r$, then under bounded kurtosis assumption,

$$
\left\|\widehat{\Sigma}^{\tau}-\Sigma\right\|_{F}^{2} \leq K \frac{d \cdot \operatorname{rank}(\Sigma)\|\Sigma\|}{n} \log (2 d)
$$

with high probability.

Sketch of the proof

- Proof of the bound is based on the analysis of the gradient descent scheme for the the optimization problem,

$$
\begin{aligned}
& \widehat{\Sigma}_{0}=\Sigma \quad \text { (true unknown covariance), } \\
& \widehat{\Sigma}_{k}=\widehat{\Sigma}_{k-1}+\frac{1}{n(n-1)} \sum_{i \neq j} \frac{1}{\theta} \psi\left(\theta\left(\frac{\left(Y_{i}-Y_{j}\right)\left(Y_{i}-Y_{j}\right)^{T}}{2}-\widehat{\Sigma}_{k-1}\right)\right)
\end{aligned}
$$

Sketch of the proof

$$
\begin{aligned}
U_{n}(S) & :=\frac{1}{n(n-1)} \sum_{i \neq j} \frac{1}{\theta} \psi\left(\theta\left(\frac{\left(Y_{i}-Y_{j}\right)\left(Y_{i}-Y_{j}\right)^{T}}{2}-S\right)\right) \\
& =\frac{1}{n(n-1)} \sum_{i \neq j} F_{\theta}\left(Y_{i}, Y_{j} ; S\right)
\end{aligned}
$$

Sketch of the proof

$$
\begin{aligned}
U_{n}(S) & :=\frac{1}{n(n-1)} \sum_{i \neq j} \frac{1}{\theta} \psi\left(\theta\left(\frac{\left(Y_{i}-Y_{j}\right)\left(Y_{i}-Y_{j}\right)^{T}}{2}-S\right)\right) \\
& =\frac{1}{n(n-1)} \sum_{i \neq j} F_{\theta}\left(Y_{i}, Y_{j} ; S\right)
\end{aligned}
$$

Lemma

Let $\theta=\frac{1}{\sigma_{0}} \sqrt{\frac{4 \log 1 / \alpha}{n}}$. Then

$$
\left\|U_{n}(S)-(\Sigma-S)\right\| \leq 2 \sigma_{S} \sqrt{\frac{\log (1 / \alpha)}{n}}
$$

with probability $\geq 1-2 d \alpha$, where $\sigma_{S}^{2}=\left\|\mathbb{E}\left(\frac{\left(Y_{i}-Y_{j}\right)\left(Y_{i}-Y_{j}\right)^{T}}{2}-S\right)^{2}\right\|$

- Given a permutation $\pi=\left(i_{1}, i_{2}, \ldots, i_{n}\right)$, let

$$
W_{\pi}=\frac{1}{n / 2}\left(F_{\theta}\left(Y_{i_{1}}, Y_{i_{2}} ; S\right)+F_{\theta}\left(Y_{i_{3}}, Y_{i_{4}} ; S\right)+\ldots+F_{\theta}\left(Y_{i_{n-1}}, Y_{i_{n} ;} ; S\right)\right)
$$

- Given a permutation $\pi=\left(i_{1}, i_{2}, \ldots, i_{n}\right)$, let

$$
W_{\pi}=\frac{1}{n / 2}\left(F_{\theta}\left(Y_{i_{1}}, Y_{i_{2}} ; S\right)+F_{\theta}\left(Y_{i_{3}}, Y_{i_{4}} ; S\right)+\ldots+F_{\theta}\left(Y_{i_{n-1}}, Y_{i_{n} ;} ; S\right)\right)
$$

- Then $U_{n}(S)=\frac{1}{n!} \sum_{\pi} W_{\pi}$.

Idea of the proof

$$
\operatorname{Pr}\left(\lambda_{\max }\left(U_{n}(S)-(\Sigma-S)\right) \geq s\right)
$$

Idea of the proof

$$
\begin{aligned}
\operatorname{Pr}\left(\lambda_{\max }\right. & \left.\left(U_{n}(S)-(\Sigma-S)\right) \geq s\right) \\
& =\operatorname{Pr}\left(\exp \left(\lambda_{\max }\left(\frac{1}{n!} \sum_{\pi} \theta W_{\pi}-\theta(\Sigma-S)\right)\right) \geq e^{\theta s}\right)
\end{aligned}
$$

Idea of the proof

$$
\begin{aligned}
\operatorname{Pr}\left(\lambda_{\max }\right. & \left.\left(U_{n}(S)-(\Sigma-S)\right) \geq s\right) \\
& =\operatorname{Pr}\left(\exp \left(\lambda_{\max }\left(\frac{1}{n!} \sum_{\pi} \theta W_{\pi}-\theta(\Sigma-S)\right)\right) \geq e^{\theta s}\right) \\
& \leq e^{-\theta s} \mathbb{E} \operatorname{tr} \exp \left(\frac{1}{n!} \sum_{\pi}\left(\theta W_{\pi}-\theta(\Sigma-S)\right)\right)
\end{aligned}
$$

Idea of the proof

$$
\begin{aligned}
\operatorname{Pr}\left(\lambda_{\max }\right. & \left.\left(U_{n}(S)-(\Sigma-S)\right) \geq s\right) \\
& =\operatorname{Pr}\left(\exp \left(\lambda_{\max }\left(\frac{1}{n!} \sum_{\pi} \theta W_{\pi}-\theta(\Sigma-S)\right)\right) \geq e^{\theta s}\right) \\
& \leq e^{-\theta s} \mathbb{E} \operatorname{tr} \exp \left(\frac{1}{n!} \sum_{\pi}\left(\theta W_{\pi}-\theta(\Sigma-S)\right)\right) \\
& \leq e^{-\theta s} \mathbb{E} \operatorname{tr} \exp \left(\theta W_{1, \ldots, n}-\theta(\Sigma-S)\right)
\end{aligned}
$$

Idea of the proof

$$
\begin{aligned}
\operatorname{Pr}\left(\lambda_{\max }\right. & \left.\left(U_{n}(S)-(\Sigma-S)\right) \geq s\right) \\
& =\operatorname{Pr}\left(\exp \left(\lambda_{\max }\left(\frac{1}{n!} \sum_{\pi} \theta W_{\pi}-\theta(\Sigma-S)\right)\right) \geq e^{\theta s}\right) \\
& \leq e^{-\theta s} \mathbb{E} \operatorname{tr} \exp \left(\frac{1}{n!} \sum_{\pi}\left(\theta W_{\pi}-\theta(\Sigma-S)\right)\right) \\
& \leq e^{-\theta s} \mathbb{E} \operatorname{tr} \exp \left(\theta W_{1, \ldots, n}-\theta(\Sigma-S)\right) \\
? & \leq e^{-\theta s} \operatorname{tr} \exp \left(\frac{1}{2} \theta^{2} n \sigma_{S}^{2}\right)
\end{aligned}
$$

Idea of the proof

- Let

$$
x_{j}:=\frac{\left(Y_{2 j-1}-Y_{2 j}\right)\left(Y_{2 j-1}-Y_{2 j}\right)^{T}}{2}-S
$$

Idea of the proof

- Let

$$
x_{j}:=\frac{\left(Y_{2 j-1}-Y_{2 j}\right)\left(Y_{2 j-1}-Y_{2 j}\right)^{T}}{2}-S
$$

$\psi(x)= \begin{cases}1 / 2, & x>1, \\ x-x^{2} / 2, & x \in[0,1], \\ x+x^{2} / 2, & x \in[-1,0), \\ -1 / 2, & x<-1 .\end{cases}$

Idea of the proof

- Let

$$
x_{j}:=\frac{\left(Y_{2 j-1}-Y_{2 j}\right)\left(Y_{2 j-1}-Y_{2 j}\right)^{T}}{2}-S
$$

$\psi(x)= \begin{cases}1 / 2, & x>1, \\ x-x^{2} / 2, & x \in[0,1], \\ x+x^{2} / 2, & x \in[-1,0), \\ -1 / 2, & x<-1 .\end{cases}$

- Satisfies

$$
-\log \left(I-X+X^{2}\right) \preceq \psi(X) \preceq \log \left(I+X+X^{2}\right)
$$

Idea of the proof

- Let

$$
x_{j}:=\frac{\left(Y_{2 j-1}-Y_{2 j}\right)\left(Y_{2 j-1}-Y_{2 j}\right)^{T}}{2}-S
$$

$\psi(x)= \begin{cases}1 / 2, & x>1, \\ x-x^{2} / 2, & x \in[0,1], \\ x+x^{2} / 2, & x \in[-1,0), \\ -1 / 2, & x<-1 .\end{cases}$

- Satisfies

$$
-\log \left(I-X+X^{2}\right) \preceq \psi(X) \preceq \log \left(I+X+X^{2}\right)
$$

- Need to estimate $\mathbb{E} \operatorname{tr} \exp \left(\sum_{j=1}^{n / 2}\left(\psi\left(\theta X_{j}\right)-\theta \mathbb{E} X\right)\right)$.

$$
\mathbb{E} \operatorname{tr} \exp \left(\sum_{j=1}^{n / 2}\left(\psi\left(\theta X_{j}\right)-\theta \mathbb{E} X\right)\right)
$$

$$
\begin{aligned}
& \mathbb{E} \operatorname{tr} \exp \left(\sum_{j=1}^{n / 2}\left(\psi\left(\theta X_{j}\right)-\theta \mathbb{E} X\right)\right) \\
& \quad=\mathbb{E}_{n / 2-1} \operatorname{tr} \exp \left(\left[\sum_{j=1}^{n / 2-1}\left(\psi\left(\theta X_{j}\right)-\theta \mathbb{E} X\right)-\theta \mathbb{E} X\right]+\psi\left(\theta X_{n / 2}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{E} \operatorname{tr} & \exp \left(\sum_{j=1}^{n / 2}\left(\psi\left(\theta X_{j}\right)-\theta \mathbb{E} X\right)\right) \\
= & \mathbb{E}_{n / 2-1} \operatorname{tr} \exp \left(\left[\sum_{j=1}^{n / 2-1}\left(\psi\left(\theta X_{j}\right)-\theta \mathbb{E} X\right)-\theta \mathbb{E} X\right]+\psi\left(\theta X_{n / 2}\right)\right) \\
& \quad\left\langle\text { Recall that } \psi(X) \preceq \log \left(I+X+X^{2}\right)\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{E} \operatorname{tr} \exp \left(\sum_{j=1}^{n / 2}\left(\psi\left(\theta X_{j}\right)-\theta \mathbb{E} X\right)\right) \\
& \quad=\mathbb{E}_{n / 2-1} \operatorname{tr} \exp \left(\left[\sum_{j=1}^{n / 2-1}\left(\psi\left(\theta X_{j}\right)-\theta \mathbb{E} X\right)-\theta \mathbb{E} X\right]+\psi\left(\theta X_{n / 2}\right)\right) \\
& \quad \leq \mathbb{E}_{n / 2-1} \operatorname{tr} \exp \left(\left[\sum_{j=1}^{n / 2-1}\left(\psi\left(\theta X_{j}\right)-\theta \mathbb{E} X\right)-\theta \mathbb{E} X\right]+\log \left(I+\theta X_{n / 2}+\theta^{2} X_{n / 2}^{2}\right)\right)
\end{aligned}
$$

$$
\mathbb{E} \operatorname{tr} \exp \left(\sum_{j=1}^{n / 2}\left(\psi\left(\theta X_{j}\right)-\theta \mathbb{E} X\right)\right)
$$

$$
=\mathbb{E}_{n / 2-1} \operatorname{tr} \exp \left(\left[\sum_{j=1}^{n / 2-1}\left(\psi\left(\theta X_{j}\right)-\theta \mathbb{E} X\right)-\theta \mathbb{E} X\right]+\psi\left(\theta X_{n / 2}\right)\right)
$$

$$
\leq \mathbb{E}_{n / 2-1} \operatorname{tr} \exp \left(\left[\sum_{j=1}^{n / 2-1}\left(\psi\left(\theta X_{j}\right)-\theta \mathbb{E} X\right)-\theta \mathbb{E} X\right]+\log \left(I+\theta X_{n / 2}+\theta^{2} X_{n / 2}^{2}\right)\right)
$$

〈Lieb's concavity theorem: $A \mapsto \operatorname{tr} \exp (H+\log (A))$ is concave 〉

$$
\begin{aligned}
& \mathbb{E} \operatorname{tr} \exp \left(\sum_{j=1}^{n / 2}\left(\psi\left(\theta X_{j}\right)-\theta \mathbb{E} X\right)\right) \\
& \quad=\mathbb{E}_{n / 2-1} \operatorname{tr} \exp \left(\left[\sum_{j=1}^{n / 2-1}\left(\psi\left(\theta X_{j}\right)-\theta \mathbb{E} X\right)-\theta \mathbb{E} X\right]+\psi\left(\theta X_{n / 2}\right)\right) \\
& \quad \leq \mathbb{E}_{n / 2-1} \operatorname{tr} \exp \left(\left[\sum_{j=1}^{n / 2-1}\left(\psi\left(\theta X_{j}\right)-\theta \mathbb{E} X\right)-\theta \mathbb{E} X\right]+\log \left(I+\theta X_{n / 2}+\theta^{2} X_{n / 2}^{2}\right)\right) \\
& \quad \leq \mathbb{E} \operatorname{tr} \exp \left(\sum_{j=1}^{n / 2-1}\left(\psi\left(\theta X_{j}\right)-\theta \mathbb{E} X j\right)+\log \left(I+\theta \mathbb{E} X_{n / 2}+\theta^{2} \mathbb{E} X_{n / 2}^{2}\right)-\theta \mathbb{E} X_{n / 2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{E} \operatorname{tr} \exp \left(\sum_{j=1}^{n / 2}\left(\psi\left(\theta X_{j}\right)-\theta \mathbb{E} X\right)\right) \\
& \quad=\mathbb{E}_{n / 2-1} \operatorname{tr} \exp \left(\left[\sum_{j=1}^{n / 2-1}\left(\psi\left(\theta X_{j}\right)-\theta \mathbb{E} X\right)-\theta \mathbb{E} X\right]+\psi\left(\theta X_{n / 2}\right)\right) \\
& \quad \leq \mathbb{E}_{n / 2-1} \operatorname{tr} \exp \left(\left[\sum_{j=1}^{n / 2-1}\left(\psi\left(\theta X_{j}\right)-\theta \mathbb{E} X\right)-\theta \mathbb{E} X\right]+\log \left(I+\theta X_{n / 2}+\theta^{2} X_{n / 2}^{2}\right)\right) \\
& \quad \leq \mathbb{E} \operatorname{tr} \exp \left(\sum_{j=1}^{n / 2-1}\left(\psi\left(\theta X_{j}\right)-\theta \mathbb{E} X j\right)+\log \left(I+\theta \mathbb{E} X_{n / 2}+\theta^{2} \mathbb{E} X_{n / 2}^{2}\right)-\theta \mathbb{E} X_{n / 2}\right) \\
& \quad \leq \ldots \leq \operatorname{tr} \exp \left(\frac{n}{2} \log \left(I+\theta \mathbb{E} X+\theta^{2} \mathbb{E} X^{2}\right)-\frac{n}{2} \theta \mathbb{E} X\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{E} \operatorname{tr} \exp \left(\sum_{j=1}^{n / 2}\left(\psi\left(\theta X_{j}\right)-\theta \mathbb{E} X\right)\right) \\
& \quad=\mathbb{E}_{n / 2-1} \operatorname{tr} \exp \left(\left[\sum_{j=1}^{n / 2-1}\left(\psi\left(\theta X_{j}\right)-\theta \mathbb{E} X\right)-\theta \mathbb{E} X\right]+\psi\left(\theta X_{n / 2}\right)\right) \\
& \quad \leq \mathbb{E}_{n / 2-1} \operatorname{tr} \exp \left(\left[\sum_{j=1}^{n / 2-1}\left(\psi\left(\theta X_{j}\right)-\theta \mathbb{E} X\right)-\theta \mathbb{E} X\right]+\log \left(I+\theta X_{n / 2}+\theta^{2} X_{n / 2}^{2}\right)\right) \\
& \quad \leq \mathbb{E} \operatorname{tr} \exp \left(\sum_{j=1}^{n / 2-1}\left(\psi\left(\theta X_{j}\right)-\theta \mathbb{E} X j\right)+\log \left(I+\theta \mathbb{E} X_{n / 2}+\theta^{2} \mathbb{E}_{n}^{2} X_{n / 2}^{2}\right)-\theta \mathbb{E} X_{n / 2}\right) \\
& \quad \leq \ldots \leq \operatorname{tr} \exp \left(\frac{n}{2} \log \left(I+\theta \mathbb{E} X+\theta^{2} \mathbb{E} X^{2}\right)-\frac{n}{2} \theta \mathbb{E} X\right) \\
& \quad \leq \operatorname{tr} \exp \left(\frac{n}{2} \theta^{2} \mathbb{E} X^{2}\right)
\end{aligned}
$$

Thank you for your attention!

