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Motivation

Research question:

Consider a model that contains

a nonparametric component of interest and

a high-dimensional nonparametric nuissance component.

We give conditions under which the nonparametric component of interest can be
estimated with the same asymptotic accuracy regardless of if the high-dimensional
nuissance component is known or not known.

Then the nonparametric estimator of the nonparametric component of interest has
the same asymptotic distribution as a well studied nonparametric estimator in a
model with only one nonparametric component.

This allows the implementation of methods for statistical inference on the
nonparametric function of interest.
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Motivation

Motivating example:

Y = c+
Pq

j=1fj (Xj )+�; E [fj (Xj )] = 0; � ∼ Normal(0; �2); q large, |{j : fj 6= 0}| smaller

”Sparse high-dimensional additive model”

Much work on estimation: Ingster and Lepski (03), Ravikumar et al. (08), Meier et al. (09),
Koltschinskii and Yuan (10), Huang et al. (10), Raskutti et al. (11), Gayraud and Ingster
(12), Suzuki (12), Dalalyan et al. (12).

Good estimation results under sparsity

Can use group Lasso to select/estimate components

Little work on inference:

Lasso estimators have a complicated distribution.

However, in the parametric setting, where

Y =
Pq

j=1�jXj + �; � ∼ Normal(0; �2); q large, |{j : �j 6= 0}| small;

Zhang and Zhang (2014), van de Geer et al. (2014) and Javanard and Montanari
(2014) propose the “desparsified/debiased Lasso”, which, under sparsity conditions,

produces asymptotically normal estimators �̂1; : : : ; �̂q .

We propose a nonparametric “debiased” Lasso to enable inference in the additive model.
We describe a two-step procedure based on resmoothing the “debiased” Lasso for optimal
estimation.
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Debiasing: general setting General model

Debiasing: general model

General setting: Y = f1 + f−1 + "

with

" ∼N(0; �2In),

f1 (random) element of Rn, component of interest
(e.g. f1 =

(
f1(X i

1)
)n
i=1

in the additive model),

f−1 (random) element of Rn, high-dimensional nonparametric nuissance
component
(e.g. f−1 = f2 + :::+ fd in the additive model with fj =

(
fj(X

i
j )
)n
i=1

),

V1;V−1 ⊂ Rn approximating linear subspaces for f1 or f−1, respectively,

Π̂1 : Rn → V1, Π̂−1 : Rn → V−1 linear maps (e.g. in additive model: Π̂1

projection onto V1, Π̂−1 ”LASSO”-projection onto V−1)

Aim: do asymptotically/approximately as well as

f̂
(oracle)

1 = Π̂T
1 Y

(oracle); where Y (oracle) = Y − f−1 = "+ f1:
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Debiasing: general setting General model

Aim:
do asymptotically/approximately as well as

f̂
(oracle)

1 = Π̂T
1 Y

(oracle); where Y (oracle) = Y − f−1 = "+ f1:

Debiased estimator:

f̂1 = A(Y − f̂
(init)
−1 )

with

f̂
(init)
−1 available initial estimator of f−1 (e.g. group LASSO-estimator in

additive model),

A = (I − Π̂T
1 Π̂T
−1)−1Π̂T

1 (I − Π̂T
−1):

Motivation: Because of

f̂1 − f1 = A(Y − f̂
(init)
−1 )− f1 = (A− I )f1 + A(f−1 − f̂

(init)
−1 ) + A";

f̂1 is a bias corrected version of f̃1 = AY . Note that for f̃1 we have

f̃1 − f1 = (A− I )f1 + Af−1 + A":
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Debiasing: general setting Main result: oracle property

We have the following theorem for the comparison of

f̂1 = (I − Π̂T
1 Π̂T
−1)−1Π̂T

1 (I − Π̂T
−1)(Y − f̂

(init)
−1 ) and f̂

(oracle)
1 = Π̂T

1 (Y − f−1):

Theorem 1.
Make the Assumptions (A1)–(A6) (will be introduced in a second). Then it holds with
probability ≥ 1− 6�

‖f̂1 − f̂
(oracle)

1 ‖n;∞ ≤
�
1 + C2(1− �1)−1

�
×
 r

2(log(2n) + 2 log(1=�)

n
+ (C1 + C2)�2 + �1 + �1�2

!
:

Here

‖z‖n;∞= max1≤i≤n|zi | empirical sup norm,

C1;C2 slowly growing constant (in additive regression: polynomials in log terms and
sparsity of additive components and dependence structure of X2; :::;Xd ),

�1; �2 small constants (in additive regression: slowly growing constant times
nonparametric rate),

�1; �2 bias terms, approximation error of V1 or V−1 , respectively,

0 < �1 < 1 constant.
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Debiasing: general setting Application of main result

Interpretation of the bound of the Theorem 1:

‖f̂1 − f̂
(oracle)

1 ‖n;∞ ≤
(
1 + C2(1− �1)−1

)
×

(√
2(log(2n) + 2 log(1=�)

n
+ (C1 + C2)�2 + �1 + �1�2

)
:

Up to small terms, ‖f̂1 − f̂
(oracle)

1 ‖n;∞ is only bounded by bias terms.

Two applications of Theorem 1:

1. In case of undersmoothing, the same asymptotic theory applies for f̂1 as

for f̂
(oracle)

1 . E.g. one gets the same asymptotic distributions for pointwise

inference and for uniform bounds of f̂1 as for f̂
(oracle)

1 .
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Debiasing: general setting Application of main result

Second application of Theorem 1: Resmoothing.

Consider application of a second smoothing step S after a first step with
undersmoothed f̂1.

Resmoothig estimator f̂
(resmooth)

1 = S f̂1 with smoothing operator
S : Rn → C[I ].

E.g. Nadaraya-Watson smoothing in the additive model:

Sg(·) =

∑n
i=1 Kh(X i

1 − ·)gi∑n
i=1 Kh(X i

1 − ·)
=

∑n
i=1 Kh(X i

1 − ·)g(X i
1)∑n

i=1 Kh(X i
1 − ·)
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Debiasing: general setting Application of main result

For the smoothing operator S we make the following two assumptions:

‖Sg‖∞≤ C‖g‖n;∞

for some C > 0

and

∆ = ‖SY (oracle) − S f̂ (oracle)
1 ‖∞ small

with Y (oracle) = Y − f−1, i.e. SY (oracle) smoothing estimator with smoothing
S in oracle model.

Then
‖S f̂1 − SY (oracle)‖∞≤ C‖f̂1 − f̂

(oracle)
1 ‖∞+∆;

where the first term can be bounded with the help of Theorem 1.
∆ is typically small if the amount of smoothing in f̂1 is small compared to the
smoothing in S:

Smoothing ◦ Undersmoothing ≈ Smoothing:
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Debiasing: general setting Application of main result

This can be used

for the construction of estimators of f1 with good performance,

for the development of an optimality theory:

For a smoothing estimator in the oracle model (where one knows f−1)
one can construct an estimator in the full model (where one does not
know f−1) with nearly the same operation characteristics.

Using this argument one can show (under mild conditions) that (sharp)
asymptotic minimax theorems valid in the oracle model carry over to be
valid in the full model (e.g. in the additive model one has the same
minimax results for the first component regardless of whether the
nuissance components f2; :::; fd are known or not known.

Karl Gregory, Enno Mammen, Martin Wahl Optimal inference in SpAM December 19, 2017 11 / 32



Debiasing: general setting Application of main result
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Debiasing: general setting Assumptions

The assumptions of Theorem 1
For some constants C1;C2; �1; �2; �1; �2 > 0 and 0 < �; �1 < 1 we make the
following assumptions.

(A1) (∞-norm preservation of Π̂1)

‖Π̂1y‖n;∞≤ C1‖y‖n;∞

for all y ∈ Rn with probability ≥ 1− �.

(A2) (Smoothing property)

‖Π̂−1Π̂1ei‖n;2≤
C2

n

for all i = 1; :::; n with probability ≥ 1− �, where ei is the ith standard
basis vector and ‖·‖n;2 is the Euclidean norm of Rn.

(A3) (Empirical minimal angle assumption)

‖Π̂−1Π̂1y‖n;2≤ �1‖y‖n;2

for all y ∈ Rn with probability ≥ 1− �.
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Debiasing: general setting Assumptions

The assumptions of Theorem 1, continued.

(A4) (Bias conditions)

‖f1 − g∗1 ‖n;∞≤ �1 for some g∗1 ∈ V1

and
‖f−1 − g∗−1‖n;∞≤ �2 for some g∗−1 ∈ V−1

with probability ≥ 1− �.

(A5) (Approximate orthogonality assumption)

‖Π̂T
1 (I − Π̂T

−1)g−1‖n;∞≤ �1pen(g−1)

for all g1 ∈ V1 with probability ≥ 1− �. Here pen: V−1 → R+ (e.g. in
additive models we will choose pen(g−1) = ‖g2‖n;2+:::+ ‖gd‖n;2.

(A6) (Condition on the initial estimator) pen (f̂
(init)
−1 − g∗1 ) ≤ �2 with

probability ≥ 1− �.
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The debiased estimator in sparse high-dimensional additive models
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The debiased estimator in sparse high-dimensional additive models Definition of estimator

The debiased estimator in sparse high-dimensional additive
models

We now want to apply Theorem 1 to

The sparse high-dimensional additive model

Y i =
Pq

j=1fj (X
i
j ) + �i ; �i ∼ Normal(0; �2); i = 1; : : : ; n; q large, |{j : fj 6= 0}|� n

Now, f1 function of interest,

f2; :::; fq nuissance components.

We suppose that X i
j take values in [0; 1].
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The debiased estimator in sparse high-dimensional additive models Definition of estimator

Our choice of the function spaces V1; : : : ;Vq

Vj = piecewise polynomials in xj ∈ [0; 1] of maximal degree tj defined on

Interval Ijk =

(
k

mj
;
k + 1

mj

]
; k = 0; : : : ;mj − 1

for j = 1; : : : ; q.

Wlog: m2 = · · · = mq, t2 = · · · = tq.

V2; : : : ;Vq centered so that Egj(Xj) = 0 for all gj ∈ Vj , j = 2; : : : ; q and

V−1 =

q∑
j=2

Vj :

Bases for V1; : : : ;Vq can be constructed from the Legendre polynomials

bj;k(tj+1)+1; : : : ; bj;k(tj+1)+tj+1

as orthonormal basis which are zero outside the interval Ijk
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The debiased estimator in sparse high-dimensional additive models Definition of estimator

To reconstruct the desparsified Lasso estimator in the additive model context,
we will need Lasso estimators of f1; : : : ; fq as well as a Lasso version of the
projection of the V1 basis functions onto V−1.

We first define the nonparametric Lasso estimator of f by

(
f̂ L1 ; : : : ; f̂

L
q

)
= argmin

gj∈Vj

∥∥∥Y −
q∑

j=1

gj

∥∥∥2

n
+ 2�

q∑
j=1

‖gj‖n

 ;

where � > 0 is some tuning parameter.

We set

f̂
(init)
−1 = f̂ L2 + · · ·+ f̂ Lq :
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The debiased estimator in sparse high-dimensional additive models Definition of estimator

For the Lasso version of the projection of the V1 basis functions onto V−1 we
put for k = 1; : : : ; d1

Π̂L
−1b1k =

q∑
j=2

(Π̂L
−1b1k)j ∈ V−1

with

(
(Π̂L
−1b1k)2; : : : ; (Π̂L

−1b1k)q
)

= argmin
gj∈Vj

∥∥∥b1k −
q∑

j=2

gj

∥∥∥2

n
+ 2�

q∑
j=2

‖gj‖n

 ;

where � > 0 is some tuning parameter. Moreover, we define Π̂−1 as the linear
extension of Π̂L

−1 to V1.
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The debiased estimator in sparse high-dimensional additive models Main result for additive models

Some quantities for stating the result for additive models

Dimensions

q = total # of functions, s0 = #{nonzero fj}, s1 = sparsity of projection Π−1

d1 = dim(V1), d2 = dim(V2) = · · · = dim(Vq), d = maxj dj

Geometric quantities

φ, ψ are theoretical compatibility constants

ρ0 the minimal angle between V1 and V−1

δ = C
 

q
s1d(x+log d+log q)

n
, governs diff. betwn empirical ‖·‖n and true norms ‖·‖2

Approximation quantities

r1, r2 are smoothnesses such that there exists g∗j ∈ Vj for which

‖f1 − g∗1 ‖∞≤ C0d
−r1
1 and ‖fj − g∗j ‖∞≤ C0d

−r2
2 , j = 2, . . . , q

Lasso tuning parameters

λ = 2σ
q

d
n

+ 2σ
q

2x+2 log q
n

η = C

�q
d(x+log d1+log q)

n
+
√

s1d(x+log d1+log q)

 n

�
, x > 1
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The debiased estimator in sparse high-dimensional additive models Main result for additive models

Theorem 2
If Assumptions (B1)–(B5) hold and�

s1δ

ψ2
+

s1

√
d1η

ψφ
+

s1d1η
2

φ2

�
≤ (1− ρ0)2 /C

as well as

max(s0, s1)

 
d√
n

+

r
d(x + log q)

n
+

d(x + log q)

n

!
≤ φ2/C ,

then

P
�
‖f̂1 − f̂

(oracle)
1 ‖∞≥ C (∆1 + ∆2 + ∆3)

�
≤ 4 exp(−x) + exp(−y),

where

∆1 =
1

ψ(1− ρ0)

�
s1d
−r1
1 + s1s0d

−r2
2

�
∆2 =

1

ψ(1− ρ0)

�
(η/λ)

√
s1d1

�
d−r1

1 + s0d
−r2
2

�2
+ s0
√
s1

√
d1λη

�
∆3 =

1

ψ(1− ρ0)

r
s1(log d1 + y)

n
.
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The debiased estimator in sparse high-dimensional additive models Main result for additive models

An asymptotic interpretation of Theorem 2
Set x = y = log q and suppose

log log q = o(log n), s0 = O(n0 ), s1 = O(n1 ), n→∞

for 0 ≤ γ0 < 1/2 and 0 ≤ γ1 ≤ 1/4. Then

∆1 + ∆2 + ∆3 = o(n−�)

if �
1 +

1

r2

�
γ0 +

�
1

2
+

1

2r1
+

1
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�
γ1 < 1−

�
1 +

1

2r1
+

1

r2

�
β,

2(γ0 ∨ γ1) +
2

r1
γ1 < 1− 2

r1
β,

2

r2
(γ0 ∧ γ1) +

�
2 +

2

r2

�
(γ0 ∨ γ1) < 1− 2

r2
β.

The optimal rate β = r1/(2r1 + 1) is achievable if

r2 ≥ 2r1/(2r1 + 1) and r1 > 1/2, i.e. RHSs positive,

and when γ0, γ1 ≥ 0 are small enough
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Simulations for resmoothing estimators
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Simulations for resmoothing estimators

Performance on simulated data

Model

Y =

q∑
j=1

(1=j)f (Xj)1(j ≤ s0)︸ ︷︷ ︸
s0 “active” covariates

+"

f : sine, line, expo, quad

Xj ∼ Unif(−2:5; 2:5), correlation 0:9 within s0-size groups

Choose �; � with crossvalidation

n = 100; 500; 1000, p = 50; 200 (s0 = 3; 10).

Evaluate empirical coverage of 95% pointwise CIs
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Simulations for resmoothing estimators
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n = 100, q = 50, s0 = 3, (d_pre,d_re/orcl) = (75,40), deg =(3,3), q*d_pre = 3750, S = 500 sim runs
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Simulations for resmoothing estimators

sine line expo quad
x = −1:5 0 1 −1:5 0 1 −1:5 0 1 −1:5 0 1

n = 100 p = 50, s0 = 3 orcl 0.95 0.95 0.94 0.94 0.95 0.95 0.93 0.91 0.93 0.94 0.94 0.94
(dpre = 75) pre-s 0.92 0.94 0.95 0.97 0.97 0.98 0.83 0.94 0.95 0.94 0.97 0.96
(dre/orcl = 40) re-s 0.92 0.92 0.92 0.93 0.98 0.97 0.78 0.93 0.88 0.93 0.93 0.92
p = 200, s0 = 10 orcl 0.94 0.95 0.95 0.95 0.96 0.96 0.93 0.93 0.93 0.94 0.94 0.93
(dpre = 75) pre-s 0.92 0.88 0.92 0.97 0.98 0.98 0.70 0.88 0.85 0.88 0.92 0.90
(dre/orcl = 57) re-s 0.90 0.90 0.89 0.93 0.98 0.97 0.67 0.88 0.79 0.87 0.87 0.87

n = 500 p = 50, s0 = 3 orcl 0.97 0.94 0.95 0.93 0.94 0.93 0.94 0.94 0.95 0.93 0.95 0.95
(dpre = 200) pre-s 0.94 0.94 0.91 0.97 0.97 0.97 0.92 0.96 0.97 0.94 0.95 0.93
(dre/orcl = 100) re-s 0.94 0.92 0.92 0.96 0.97 0.96 0.90 0.94 0.94 0.92 0.93 0.94
p = 200, s0 = 10 orcl 0.95 0.96 0.94 0.95 0.95 0.93 0.94 0.94 0.95 0.94 0.94 0.93
(dpre = 200) pre-s 0.90 0.89 0.94 0.98 1.00 0.99 0.80 0.97 0.99 0.93 0.99 0.96
(dre/orcl = 129) re-s 0.88 0.90 0.94 0.98 0.99 0.99 0.75 0.97 0.94 0.93 0.99 0.97

n = 1000 p = 50, s0 = 3 orcl 0.96 0.94 0.96 0.96 0.94 0.95 0.94 0.94 0.94 0.95 0.95 0.94
(dpre = 300) pre-s 0.93 0.92 0.93 0.97 0.96 0.96 0.90 0.94 0.93 0.91 0.94 0.94
(dre/orcl = 147) re-s 0.94 0.90 0.93 0.95 0.94 0.96 0.90 0.93 0.93 0.94 0.92 0.94
p = 200, s0 = 10 orcl 0.95 0.95 0.93 0.93 0.96 0.93 0.94 0.95 0.93 0.94 0.94 0.93
(dpre = 300) pre-s 0.88 0.89 0.93 0.99 0.98 0.99 0.78 0.97 0.99 0.92 0.97 0.94
(dre/orcl = 162) re-s 0.88 0.90 0.93 0.97 0.99 0.98 0.76 0.98 0.96 0.92 0.93 0.92

Table: Coverage of confidence intervals based on oracle, presmoothing, and
resmoothed estimators at points x = −1.5, 0, 1 for the sine, line, expo and quad
functions for n = 100, 500, 1000 and q = 50, 200 over 500 simulation runs.
Dimension dpre used in presmoothing and dre/orcl for the oracle and the resmoothed
estimator shown.
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Summary

Summary

We consider models that contain a nonparametric component of interest and
a high-dimensional nonparamtric nuissance component.

We discuss debiased LASSO-estimation for such models.

We give conditions under which the nonparametric component of interest can
be estimated with the same asymptotic accuracy regardless of if the
high-dimensional nuissance component is known or not known.

This holds for undersmoothed orthogonal series estimators and, under weak
conditions, it can be achieved for a large class of other nonparametric
estimators.

This allows an optimality theory for such models.

We verified the assumptions for additive nonparametric models. In particular,
for additive models this implies that an additive function can be estimated
with the same asymptotic accuracy regardless of if the other functions are
known or not known.
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Summary

Assumption (B1)

Suppose that for j = 1; : : : ; q, Xj takes values in [0; 1] and has a density pj
with respect to the Lebesgue measure on [0; 1] which satisfies c1 ≤ pj ≤ 1=c1

for some constant c1 > 0. Moreover, suppose that for j = 2 : : : ; q, (X1;Xj)
has a density p1j with respect to the Lebesgue measure on [0; 1]2 which is
bounded from above by 1=c1.
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Summary

Assumption (B2) introduces a geometric quantity �0 which governs the degree
of collinearity between the spaces V1 and V−1. The closer �0 is to 1, the
harder it is to distinguish the effects of X1 from those of X2; : : : ;Xq.

Assumption (B2). [Minimal angle assumption]

Suppose that there is a constant 0 ≤ �0 < 1 such that for all g1 ∈ V1,

‖Π−1g1‖≤ �0‖g1‖;

where Π−1 : L2(PX )→ V−1 is the orthogonal projection from L2(PX ) to V−1

given by
Π−1f = argmin

g∈V−1

‖f − g‖2:

Note that �0 can also be defined as the minimal angle between V1 and V−1.
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Summary

Assumption (B3). [Bias conditions]

Suppose that there exist some r1; r2 > 0 and a subset J0 ⊆ {1; : : : ; q} with
1 ∈ J0 and |J0|≤ s0 such that for each j ∈ J0 there is a g∗j ∈ Vj satisfying

‖f1 − g∗1 ‖∞≤ C0d
−r1
1

if j = 1 and
‖fj − g∗j ‖∞≤ C0d

−r2
2

otherwise for some constant C0 > 0. Moreover, setting

g∗ =
∑
j∈J0

g∗j ;

suppose that
‖f − g∗‖∞≤ C0

(
d−r1

1 + s0d
−r2
2

)
:
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Summary

Assumption (B4) states that the projection of each basis function of V1 onto
the space V−1 may be approximated sufficiently well by its projection onto a
subspace of V−1 of s1 or fewer additive components.

Assumption (B4)

For each k = 1; : : : ; d1, suppose that there is a subset Jk ⊆ {2; : : : ; q} with
|Jk |≤ s1, such that there is a decomposition

ΠJkb1k − Π−1b1k =

q∑
j=2

vj

with vj ∈ Vj satisfying
q∑

j=2

‖vj‖≤ C1
√
s1

√
d

n

for some constant C1 > 0. Finally, suppose that d ≤ n and

� ≥
√

d

n
:
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Summary

Assumption (B5) [Theoretical compatibility conditions]
Suppose that there is a real number 0 < � ≤ 1 such that

X
j∈J0

‖gj‖2≤
 qX

j=1

gj

2
=�2

for all (g1; : : : ; gq) ∈ (V1; : : : ;Vq) satisfying

qX
j=1

‖gj‖≤ 8
√

3
X
j∈J0

‖gj‖:

Moreover, for k = 1; : : : ; d1, suppose that

X
j∈Jk

‖gj‖2≤
 qX

j=2

gj

2
=�2

for all (g2; : : : ; gq) ∈ (V2; : : : ;Vq) satisfying

qX
j=2

‖gj‖≤ 8
√

3
X
j∈Jk

‖gj‖:
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