Statistical Inference in Sparse High-Dimensional Nonparametric Models

"Meeting in Mathematical Statistics" CIRM, Luminy, Marseille, France December 18-22, 2017

Karl Gregory, Enno Mammen, Martin Wahl

Universität Heidelberg

Humboldt-Universität zu Berlin

・ロト ・回ト ・ヨト

Consider a model that contains

- a nonparametric component of interest and
- a high-dimensional nonparametric nuissance component.

Consider a model that contains

- a nonparametric component of interest and
- a high-dimensional nonparametric nuissance component.

We give conditions under which the nonparametric component of interest can be estimated with the same asymptotic accuracy regardless of if the high-dimensional nuissance component is known or not known.

イロト 不得下 イヨト イヨト

Consider a model that contains

- a nonparametric component of interest and
- a high-dimensional nonparametric nuissance component.

We give conditions under which the nonparametric component of interest can be estimated with the same asymptotic accuracy regardless of if the high-dimensional nuissance component is known or not known.

Then the nonparametric estimator of the nonparametric component of interest has the same asymptotic distribution as a well studied nonparametric estimator in a model with only one nonparametric component.

イロト 不得下 イヨト イヨト

Consider a model that contains

- a nonparametric component of interest and
- a high-dimensional nonparametric nuissance component.

We give conditions under which the nonparametric component of interest can be estimated with the same asymptotic accuracy regardless of if the high-dimensional nuissance component is known or not known.

Then the nonparametric estimator of the nonparametric component of interest has the same asymptotic distribution as a well studied nonparametric estimator in a model with only one nonparametric component.

This allows the implementation of methods for statistical inference on the nonparametric function of interest.

Motivatio

Motivating example:

$$Y = c + \frac{\mathsf{P}_{j=1}^{q} f_j(X_j) + ; \quad E[f_j(X_j)] = 0; \quad \sim \mathsf{Normal}(0; \ ^2); \quad q \text{ large, } |\{j : f_j \neq 0\}| \text{ smaller}$$

"Sparse high-dimensional additive model"

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

Motivation

Motivating example:

$$Y = c + \frac{\mathsf{P}_{j=1}^{q} f_j(X_j) + \quad \mathcal{E}[f_j(X_j)] = 0; \quad \sim \mathsf{Normal}(0; \ ^2); \quad q \text{ large, } |\{j : f_j \neq 0\}| \text{ smaller}$$

"Sparse high-dimensional additive model"

Much work on estimation: Ingster and Lepski (03), Ravikumar et al. (08), Meier et al. (09), Koltschinskii and Yuan (10), Huang et al. (10), Raskutti et al. (11), Gayraud and Ingster (12), Suzuki (12), Dalalyan et al. (12).

- Good estimation results under sparsity
- Can use group Lasso to select/estimate components

Motivation

Motivating example:

$$Y = c + \frac{\mathsf{P}_{j=1}^{q} f_j(X_j) + \quad \mathcal{E}[f_j(X_j)] = 0; \quad \sim \mathsf{Normal}(0; \ ^2); \quad q \text{ large, } |\{j : f_j \neq 0\}| \text{ smaller}$$

"Sparse high-dimensional additive model"

Much work on estimation: Ingster and Lepski (03), Ravikumar et al. (08), Meier et al. (09), Koltschinskii and Yuan (10), Huang et al. (10), Raskutti et al. (11), Gayraud and Ingster (12), Suzuki (12), Dalalyan et al. (12).

- Good estimation results under sparsity
- Can use group Lasso to select/estimate components

Little work on inference:

- Lasso estimators have a complicated distribution.
- However, in the *parametric setting*, where

 $Y = \frac{\mathsf{P}_{q}}{j=1} |_{j}X_{j} + ; \quad \sim \operatorname{Normal}(0; {}^{2}); \quad q \text{ large,} \quad |\{j: j \neq 0\}| \text{ small};$

Zhang and Zhang (2014), van de Geer et al. (2014) and Javanard and Montanari (2014) propose the "desparsified/debiased Lasso", which, under sparsity conditions, produces asymptotically normal estimators \hat{a}_1 .

イロン イロン イヨン イヨン 三日

Motivation

Motivating example:

$$Y = c + \frac{\mathsf{P}_{j=1}^{q} f_j(X_j) + \ ; \quad E[f_j(X_j)] = 0; \qquad \sim \mathsf{Normal}(0; \ ^2); \quad q \text{ large, } |\{j : f_j \neq 0\}| \text{ smaller}$$

"Sparse high-dimensional additive model"

Much work on estimation: Ingster and Lepski (03), Ravikumar et al. (08), Meier et al. (09), Koltschinskii and Yuan (10), Huang et al. (10), Raskutti et al. (11), Gayraud and Ingster (12), Suzuki (12), Dalalyan et al. (12).

- Good estimation results under sparsity
- Can use group Lasso to select/estimate components

Little work on inference:

- Lasso estimators have a complicated distribution.
- However, in the *parametric setting*, where

 $Y = \frac{\mathsf{P}_{q}}{j=1} \left[{}_{j}X_{j} + {}_{j} \right] \sim \mathsf{Normal}(0; {}^{2}); \quad q \text{ large,} \quad |\{j: j \neq 0\}| \mathsf{ small};$

Zhang and Zhang (2014), van de Geer et al. (2014) and Javanard and Montanari (2014) propose the "desparsified/debiased Lasso", which, under sparsity conditions, produces asymptotically normal estimators \hat{a}_1 , \hat{a}_2 .

We propose a nonparametric "debiased" Lasso to enable inference in the additive model. We describe a two-step procedure based on resmoothing the "debiased" Lasso for optimal estimation.

Table of Contents

Motivation

- Debiasing: general setting
 - General model
 - Main result: oracle property
 - Application of main result
 - Assumptions
- The debiased estimator in sparse high-dimensional additive models
 - Definition of estimator
 - Main result for additive models
- 4 Simulations for resmoothing estimators

(日) (同) (日) (日)

General setting: $Y = f_1 + f_{-1} + "$

with

• "
$$\sim N(0; {}^{2}I_{n}),$$

・ロト ・回ト ・ヨト ・ヨト

General setting: $Y = f_1 + f_{-1} + "$

with

• "
$$\sim N(0; {}^{2}I_{n}),$$

• f_1 (random) element of \mathbb{R}^n , component of interest (e.g. $f_1 = (f_1(X_1^i))_{i=1}^n$ in the additive model),

• f_{-1} (random) element of \mathbb{R}^n , high-dimensional nonparametric nuissance component

(e.g. $f_{-1} = f_2 + \dots + f_d$ in the additive model with $f_j = (f_j(X_j^i))_{i=1}^n)$,

General setting: $Y = f_1 + f_{-1} + "$

with

- " $\sim N(0; {}^{2}I_{n})$,
- f_1 (random) element of \mathbb{R}^n , component of interest (e.g. $f_1 = (f_1(X_1^i))_{i=1}^n$ in the additive model),
- f_{-1} (random) element of \mathbb{R}^n , high-dimensional nonparametric nuissance component

(e.g. $f_{-1} = f_2 + \dots + f_d$ in the additive model with $f_j = (f_j(X_j^i))_{i=1}^n)$,

- V_1 ; $V_{-1} \subset \mathbb{R}^n$ approximating linear subspaces for f_1 or f_{-1} , respectively,
- $\hat{\Pi}_1 : \mathbb{R}^n \to V_1$, $\hat{\Pi}_{-1} : \mathbb{R}^n \to V_{-1}$ linear maps (e.g. in additive model: $\hat{\Pi}_1$ projection onto V_1 , $\hat{\Pi}_{-1}$ "LASSO"-projection onto V_{-1})

General setting: $Y = f_1 + f_{-1} + "$

with

- " $\sim N(0; {}^{2}I_{n})$,
- f_1 (random) element of \mathbb{R}^n , component of interest (e.g. $f_1 = (f_1(X_1^i))_{i=1}^n$ in the additive model),
- f_{-1} (random) element of \mathbb{R}^n , high-dimensional nonparametric nuissance component

(e.g. $f_{-1} = f_2 + \dots + f_d$ in the additive model with $f_j = (f_j(X_j^i))_{i=1}^n)$,

- V_1 ; $V_{-1} \subset \mathbb{R}^n$ approximating linear subspaces for f_1 or f_{-1} , respectively,
- $\hat{\Pi}_1 : \mathbb{R}^n \to V_1$, $\hat{\Pi}_{-1} : \mathbb{R}^n \to V_{-1}$ linear maps (e.g. in additive model: $\hat{\Pi}_1$ projection onto V_1 , $\hat{\Pi}_{-1}$ "LASSO"-projection onto V_{-1})

Aim: do asymptotically/approximately as well as

$$\hat{f}_1^{(oracle)} = \hat{\Pi}_1^T Y^{(oracle)}$$
; where $Y^{(oracle)} = Y - f_{-1} = " + f_1$:

イロト 不得下 イヨト イヨト 二日

General model

Aim:

do asymptotically/approximately as well as

$$\hat{f}_1^{(oracle)} = \hat{\Pi}_1^T Y^{(oracle)}$$
; where $Y^{(oracle)} = Y - f_{-1} = "+f_1$:

Debiased estimator:

$$\hat{f}_1 = A(Y - \hat{f}_{-1}^{(\textit{init})})$$

with

- $\hat{f}_{-1}^{(init)}$ available initial estimator of f_{-1} (e.g. group LASSO-estimator in additive model),
- $A = (I \hat{\Pi}_{1}^{T} \hat{\Pi}_{-1}^{T})^{-1} \hat{\Pi}_{1}^{T} (I \hat{\Pi}_{-1}^{T})$

<ロ> (日) (日) (日) (日) (日)

General model

Aim:

do asymptotically/approximately as well as

$$\hat{f}_1^{(oracle)} = \hat{\Pi}_1^T Y^{(oracle)}$$
; where $Y^{(oracle)} = Y - f_{-1} = "+f_1$:

Debiased estimator:

$$\hat{f}_1 = A(Y - \hat{f}_{-1}^{(\textit{init})})$$

with

- $\hat{f}_{1}^{(init)}$ available initial estimator of f_{-1} (e.g. group LASSO-estimator in additive model),
- $A = (I \hat{\Pi}_{1}^{T} \hat{\Pi}_{-1}^{T})^{-1} \hat{\Pi}_{1}^{T} (I \hat{\Pi}_{-1}^{T})$

Motivation: Because of

$$\hat{f}_1 - f_1 = A(Y - \hat{f}_{-1}^{(init)}) - f_1 = (A - I)f_1 + A(f_{-1} - \hat{f}_{-1}^{(init)}) + A''$$

 \hat{f}_1 is a bias corrected version of $\tilde{f}_1 = AY$. Note that for \tilde{f}_1 we have

$$ilde{f}_1 - f_1 = (A - I)f_1 + Af_{-1} + A''$$
:

・ロト ・回ト ・ヨト ・ヨト

Theorem 1.

Make the Assumptions (A1)–(A6) (will be introduced in a second). Then it holds with probability $\geq 1-6$

$$\|\hat{f}_{1} - \hat{f}_{1}^{(\text{oracle})}\|_{n,\infty} \leq 1 + C_{2}(1 - 1)^{-1} \\ \times \frac{1}{2(\log(2n) + 2\log(1 - 1))} + (C_{1} + C_{2})_{2} + 1 + 1_{2} = 1$$

Here

• $||z||_{n,\infty} = \max_{1 \le i \le n} |z_i|$ empirical sup norm,

Theorem 1.

Make the Assumptions (A1)–(A6) (will be introduced in a second). Then it holds with probability $\geq 1-6$

$$\|\hat{f}_{1} - \hat{f}_{1}^{(\text{oracle})}\|_{n,\infty} \leq 1 + C_{2}(1 - 1)^{-1} \\ \times \frac{1}{2(\log(2n) + 2\log(1 - 1))} + (C_{1} + C_{2})_{2} + 1 + 1_{2} + \frac{1}{2}$$

Here

• $||z||_{n,\infty} = \max_{1 \le i \le n} |z_i|$ empirical sup norm,

 C₁: C₂ slowly growing constant (in additive regression: polynomials in log terms and sparsity of additive components and dependence structure of X₂: ...; X_d),

 1/2 small constants (in additive regression: slowly growing constant times nonparametric rate),

<ロ> (日) (日) (日) (日) (日)

Theorem 1.

Make the Assumptions (A1)–(A6) (will be introduced in a second). Then it holds with probability $\geq 1-6$

$$\|\hat{f}_{1} - \hat{f}_{1}^{(\text{oracle})}\|_{n,\infty} \leq 1 + C_{2}(1 - 1)^{-1} \\ \times \frac{\Gamma}{\frac{2(\log(2n) + 2\log(1 - 1))}{n}} + (C_{1} + C_{2})_{2} + 1 + 1_{2} = 0$$

Here

• $||z||_{n,\infty} = \max_{1 \le i \le n} |z_i|$ empirical sup norm,

 C₁: C₂ slowly growing constant (in additive regression: polynomials in log terms and sparsity of additive components and dependence structure of X₂: ...; X_d),

- 1/2 small constants (in additive regression: slowly growing constant times nonparametric rate),
- $_1$; $_2$ bias terms, approximation error of V_1 or V_{-1} , respectively,
- 0 < 1 < 1 constant.

<ロ> (日) (日) (日) (日) (日)

Interpretation of the bound of the Theorem 1:

$$\begin{aligned} \|\hat{f}_1 - \hat{f}_1^{(\text{oracle})}\|_{n,\infty} &\leq \left(1 + C_2(1 - 1)^{-1}\right) \\ &\times \left(\sqrt{\frac{2(\log(2n) + 2\log(1 - 1))}{n}} + (C_1 + C_2)_2 + 1 + 1_2\right) \end{aligned}$$

Up to small terms, $\|\hat{f}_1 - \hat{f}_1^{(\text{oracle})}\|_{n > \infty}$ is only bounded by bias terms.

イロン イロン イヨン イヨン

Interpretation of the bound of the Theorem 1:

$$\|\hat{f}_1 - \hat{f}_1^{(\text{oracle})}\|_{n,\infty} \leq (1 + C_2(1 - 1)^{-1}) \\ \times \left(\sqrt{\frac{2(\log(2n) + 2\log(1 - 1))}{n}} + (C_1 + C_2)_2 + 1 + 1_2\right)$$

Up to small terms, $\|\hat{f}_1 - \hat{f}_1^{(\text{oracle})}\|_{n,\infty}$ is only bounded by bias terms.

Two applications of Theorem 1:

1. In case of undersmoothing, the same asymptotic theory applies for \hat{f}_1 as for $\hat{f}_1^{(\text{oracle})}$. E.g. one gets the same asymptotic distributions for pointwise inference and for uniform bounds of \hat{f}_1 as for $\hat{f}_1^{(\text{oracle})}$.

Second application of Theorem 1: Resmoothing.

Consider application of a second smoothing step S after a first step with undersmoothed \hat{f}_1 .

Resmoothig estimator $\hat{f}_1^{(resmooth)} = S\hat{f}_1$ with smoothing operator $S : \mathbb{R}^n \to C[I]$.

Second application of Theorem 1: Resmoothing.

Consider application of a second smoothing step ${\mathcal S}$ after a first step with undersmoothed $\hat f_1.$

Resmoothig estimator
$$\hat{f}_1^{(resmooth)} = S\hat{f}_1$$
 with smoothing operator $S : \mathbb{R}^n \to C[I]$.

E.g. Nadaraya-Watson smoothing in the additive model:

$$Sg(\cdot) = \frac{\sum_{i=1}^{n} K_h(X_1^i - \cdot)g_i}{\sum_{i=1}^{n} K_h(X_1^i - \cdot)} = \frac{\sum_{i=1}^{n} K_h(X_1^i - \cdot)g(X_1^i)}{\sum_{i=1}^{n} K_h(X_1^i - \cdot)}$$

For the smoothing operator ${\mathcal S}$ we make the following two assumptions:

$$\|\mathcal{S}g\|_{\infty} \leq C \|g\|_{n,\infty}$$

for some C > 0

and

$$\Delta = \|\mathcal{S}Y^{(\mathsf{oracle})} - \mathcal{S}\widehat{f}_1^{(\mathsf{oracle})}\|_\infty$$
 small

with $Y^{(\text{oracle})} = Y - f_{-1}$, i.e. $SY^{(\text{oracle})}$ smoothing estimator with smoothing S in oracle model.

Then

$$\|\mathcal{S}\hat{f}_1 - \mathcal{S}\mathcal{Y}^{(\mathsf{oracle})}\|_{\infty} \leq C \|\hat{f}_1 - \hat{f}_1^{(\mathsf{oracle})}\|_{\infty} + \Delta;$$

where the first term can be bounded with the help of Theorem 1. Δ is typically small if the amount of smoothing in \hat{f}_1 is small compared to the smoothing in S:

Smoothing \circ Undersmoothing \approx Smoothing:

This can be used

- for the construction of estimators of f_1 with good performance,
- for the development of an optimality theory:

For a smoothing estimator in the oracle model (where one knows f_{-1}) one can construct an estimator in the full model (where one does not know f_{-1}) with nearly the same operation characteristics.

Using this argument one can show (under mild conditions) that (sharp) asymptotic minimax theorems valid in the oracle model carry over to be valid in the full model (e.g. in the additive model one has the same minimax results for the first component regardless of whether the nuissance components f_2 ; :::; f_d are known or not known.

The assumptions of Theorem 1

For some constants C_1 ; C_2 ; $_1$; $_2$; $_1$; $_2 > 0$ and 0 < ; $_1 < 1$ we make the following assumptions.

```
(A1) (\infty-norm preservation of \hat{\Pi}_1)
```

```
\|\hat{\Pi}_1 y\|_{n,\infty} \leq C_1 \|y\|_{n,\infty}
```

for all $y \in \mathbb{R}^n$ with probability $\geq 1 - .$

The assumptions of Theorem 1

For some constants C_1 ; C_2 ; $_1$; $_2$; $_1$; $_2 > 0$ and 0 < ; $_1 < 1$ we make the following assumptions.

(A1) (∞ -norm preservation of $\hat{\Pi}_1$)

 $\|\hat{\Pi}_1 y\|_{n,\infty} \leq C_1 \|y\|_{n,\infty}$

for all $y \in \mathbb{R}^n$ with probability $\geq 1 - \;$.

(A2) (Smoothing property)

$$\|\hat{\Pi}_{-1}\hat{\Pi}_{1}e_{i}\|_{n,2} \leq \frac{C_{2}}{n}$$

for all i = 1, ..., n with probability $\geq 1 - \cdot$, where e_i is the *i*th standard basis vector and $\|\cdot\|_{n,2}$ is the Euclidean norm of \mathbb{R}^n .

<ロ> (日) (日) (日) (日) (日)

Assumptions

The assumptions of Theorem 1

For some constants C_1 ; C_2 ; $_1$; $_2$; $_1$; $_2 > 0$ and 0 < ; $_1 < 1$ we make the following assumptions.

(A1) (∞ -norm preservation of $\hat{\Pi}_1$)

 $\|\hat{\Pi}_1 y\|_{n,\infty} \leq C_1 \|y\|_{n,\infty}$

for all $y \in \mathbb{R}^n$ with probability $\geq 1 - \;$.

(A2) (Smoothing property)

$$\|\hat{\Pi}_{-1}\hat{\Pi}_{1}e_{i}\|_{n,2} \leq \frac{C_{2}}{n}$$

for all i = 1, ..., n with probability $\geq 1 - \cdot$, where e_i is the *i*th standard basis vector and $\|\cdot\|_{n,2}$ is the Euclidean norm of \mathbb{R}^n .

(A3) (Empirical minimal angle assumption)

$$\|\hat{\Pi}_{-1}\hat{\Pi}_{1}y\|_{n/2} \leq \|y\|_{n/2}$$

for all $y \in \mathbb{R}^n$ with probability $\geq 1 - .$

イロト 不得 とくき とくき とうき

The assumptions of Theorem 1, continued.

(A4) (Bias conditions)

$$\|f_1-g_1^*\|_{n,\infty} \leq \ _1$$
 for some $g_1^*\in V_1$

and

$$\|f_{-1} - g^*_{-1}\|_{n,\infty} \leq \ _2$$
 for some $g^*_{-1} \in V_{-1}$

with probability $\geq 1 -$.

・ロト ・回ト ・ヨト ・ヨト

The assumptions of Theorem 1, continued.

(A4) (Bias conditions)

$$\|f_1-g_1^*\|_{n,\infty}\leq \ _1$$
 for some $g_1^*\in V_1$

and

$$\|f_{-1}-g^*_{-1}\|_{n,\infty}\leq 2$$
 for some $g^*_{-1}\in V_{-1}$

with probability $\geq 1-$.

(A5) (Approximate orthogonality assumption)

$$\|\hat{\Pi}_{1}^{T}(I - \hat{\Pi}_{-1}^{T})g_{-1}\|_{n,\infty} \leq 1 \operatorname{pen}(g_{-1})$$

for all $g_1 \in V_1$ with probability $\geq 1 - \cdot$. Here pen: $V_{-1} \to \mathbb{R}_+$ (e.g. in additive models we will choose pen $(g_{-1}) = \|g_2\|_{n,2} + \cdots + \|g_d\|_{n,2}$.

The assumptions of Theorem 1, continued.

(A4) (Bias conditions)

$$\|f_1-g_1^*\|_{n,\infty}\leq \ _1$$
 for some $g_1^*\in V_1$

and

$$\|f_{-1}-g^*_{-1}\|_{n,\infty}\leq 2$$
 for some $g^*_{-1}\in V_{-1}$

with probability $\geq 1-$.

(A5) (Approximate orthogonality assumption)

 $\|\hat{\Pi}_{1}^{T}(I - \hat{\Pi}_{-1}^{T})g_{-1}\|_{n,\infty} \leq 1 \operatorname{pen}(g_{-1})$

for all $g_1 \in V_1$ with probability $\geq 1 - \ldots$ Here pen: $V_{-1} \to \mathbb{R}_+$ (e.g. in additive models we will choose pen $(g_{-1}) = \|g_2\|_{n,2} + \ldots + \|g_d\|_{n,2}$.

(A6) (Condition on the initial estimator) pen $(\hat{f}_{-1}^{(init)} - g_1^*) \le 2$ with probability $\ge 1 - 2$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Table of Contents

Motivation

- Debiasing: general setting
 - General model
 - Main result: oracle property
 - Application of main result
 - Assumptions
- 3 The debiased estimator in sparse high-dimensional additive models
 - Definition of estimator
 - Main result for additive models
 - Simulations for resmoothing estimators

5 Summary

< ロ > < 同 > < 三 > < 三

The debiased estimator in sparse high-dimensional additive models

We now want to apply Theorem 1 to

The sparse high-dimensional additive model

$$Y^i = \overset{\mathsf{P}}{\underset{j=1}{\overset{g}{=}}} f_j(X^i_j) + \overset{i}{\underset{j=1}{\overset{i}{=}}} \sim \mathsf{Normal}(0; \ ^2); \ i = 1; :::; n; \ q \ \mathsf{large}, \ |\{j: f_j \neq 0\}| \ll n$$

Now, f_1 function of interest,

 f_2 ; ...; f_q nuissance components.

We suppose that X_i^i take values in [0, 1].

Our choice of the function spaces V_1 ; :::; V_q

• V_j = piecewise polynomials in $x_j \in [0, 1]$ of maximal degree t_j defined on

Interval
$$I_{jk} = \left(\frac{k}{m_j}; \frac{k+1}{m_j}\right); \quad k = 0; \dots; m_j - 1$$

for j = 1; : : ; q.

• Wlog:
$$m_2 = \cdots = m_q$$
, $t_2 = \cdots = t_q$.

Our choice of the function spaces V_1 ; :::; V_q

• V_j = piecewise polynomials in $x_j \in [0, 1]$ of maximal degree t_j defined on

Interval
$$I_{jk} = \left(\frac{k}{m_j}; \frac{k+1}{m_j}\right); \quad k = 0; \dots; m_j - 1$$

for j = 1; : : : ; q.

- Wlog: $m_2 = \cdots = m_q$, $t_2 = \cdots = t_q$.
- V_2 ;:::; V_q centered so that $\mathbb{E}g_j(X_j) = 0$ for all $g_j \in V_j$, j = 2;:::;q and

$$V_{-1} = \sum_{j=2}^{q} V_j:$$

• Bases for V_1 ;::::: V_q can be constructed from the Legendre polynomials

$$b_{j;k(t_j+1)+1}$$
; ...; $b_{j;k(t_j+1)+t_j+1}$

as orthonormal basis which are zero outside the interval I_{ik}

Karl Gregory, Enno Mammen, Martin Wahl

To reconstruct the desparsified Lasso estimator in the additive model context, we will need Lasso estimators of f_1 ; ...; f_q as well as a Lasso version of the projection of the V_1 basis functions onto V_{-1} .

We first define the nonparametric Lasso estimator of f by

$$\left(\hat{f}_{1}^{L},\ldots,\hat{f}_{q}^{L}\right) = \underset{g_{j}\in V_{j}}{\operatorname{argmin}} \left\{ \left\| Y - \sum_{j=1}^{q} g_{j} \right\|_{n}^{2} + 2 \sum_{j=1}^{q} \left\| g_{j} \right\|_{n} \right\};$$

where > 0 is some tuning parameter.

We set

$$\hat{f}_{-1}^{(init)} = \hat{f}_2^L + \dots + \hat{f}_q^L$$
:

For the Lasso version of the projection of the V_1 basis functions onto V_{-1} we put for k = 1; :::; d_1

$$\hat{\Pi}_{-1}^{L}b_{1k} = \sum_{j=2}^{q} (\hat{\Pi}_{-1}^{L}b_{1k})_{j} \in V_{-1}$$

with

$$\left((\hat{\Pi}_{-1}^{L} b_{1k})_{2}; \dots; (\hat{\Pi}_{-1}^{L} b_{1k})_{q} \right) = \underset{g_{j} \in V_{j}}{\operatorname{argmin}} \left\{ \left\| b_{1k} - \sum_{j=2}^{q} g_{j} \right\|_{n}^{2} + 2 \sum_{j=2}^{q} \left\| g_{j} \right\|_{n} \right\};$$

where > 0 is some tuning parameter. Moreover, we define $\hat{\Pi}_{-1}$ as the linear extension of $\hat{\Pi}_{-1}^{L}$ to V_1 .

Dimensions

• $q = \text{total } \# \text{ of functions}, s_0 = \#\{\text{nonzero } f_j\}, s_1 = \text{sparsity of projection } \Pi_{-1}$

Dimensions

- $q = \text{total } \# \text{ of functions, } s_0 = \#\{\text{nonzero } f_j\}, s_1 = \text{sparsity of projection } \Pi_{-1}$
- $d_1 = \dim(V_1), d_2 = \dim(V_2) = \cdots = \dim(V_q), d = \max_j d_j$

Dimensions

- $q = \text{total } \# \text{ of functions, } s_0 = \#\{\text{nonzero } f_j\}, s_1 = \text{sparsity of projection } \Pi_{-1}$
- $d_1 = \dim(V_1), d_2 = \dim(V_2) = \cdots = \dim(V_q), d = \max_j d_j$

Geometric quantities

- ϕ , ψ are theoretical compatibility constants
- ρ_0 the minimal angle between V_1 and V_{-1} • $\delta = \frac{C}{\frac{s_1 d(x + \log d + \log q)}{n}}$, governs diff. betwn empirical $\|\cdot\|_n$ and true norms $\|\cdot\|_2$

Dimensions

- $q = \text{total } \# \text{ of functions}, s_0 = \#\{\text{nonzero } f_j\}, s_1 = \text{sparsity of projection } \Pi_{-1}$
- $d_1 = \dim(V_1), d_2 = \dim(V_2) = \cdots = \dim(V_q), d = \max_j d_j$

Geometric quantities

• ϕ , ψ are theoretical compatibility constants

Approximation quantities

• r_1, r_2 are smoothnesses such that there exists $g_i^* \in V_j$ for which

$$\|f_1 - g_1^*\|_\infty \le C_0 d_1^{-r_1}$$
 and $\|f_j - g_j^*\|_\infty \le C_0 d_2^{-r_2}, j = 2, \dots, q$

Main result for additive models

Some quantities for stating the result for additive models

Dimensions

- $q = \text{total } \# \text{ of functions}, s_0 = \#\{\text{nonzero } f_j\}, s_1 = \text{sparsity of projection } \Pi_{-1}$
- $d_1 = \dim(V_1), d_2 = \dim(V_2) = \cdots = \dim(V_q), d = \max_j d_j$

Geometric quantities

• $\phi \text{, }\psi$ are theoretical compatibility constants

Approximation quantities

• r_1, r_2 are smoothnesses such that there exists $g_i^* \in V_j$ for which

$$\|f_1 - g_1^*\|_{\infty} \le C_0 d_1^{-r_1}$$
 and $\|f_j - g_j^*\|_{\infty} \le C_0 d_2^{-r_2}, j = 2, \dots, q$

Lasso tuning parameters

•
$$\begin{split} \lambda &= 2\sigma \overset{\mathsf{Q}}{\underset{n}{\overset{d}{=}}} + 2\sigma \overset{\mathsf{Q}}{\underset{n}{\overset{2x+2\log q}{\frac{1}{n}}}} \\ \eta &= C \overset{\mathsf{Q}}{\underset{n}{\overset{d(x+\log d_1+\log q)}{n}}} + \frac{\sqrt{s_1}d(x+\log d_1+\log q)}{n} \quad \text{, } x > 1 \end{split}$$

Theorem 2

If Assumptions (B1)-(B5) hold and

$$\frac{s_1\delta}{\psi^2} + \frac{s_1\sqrt{d_1}\eta}{\psi\phi} + \frac{s_1d_1\eta^2}{\phi^2} \quad \leq \left(1 - \rho_0\right)^2 / C$$

as well as

$$\max(s_0, s_1) \quad \frac{d}{\sqrt{n}} + \frac{\Gamma}{\frac{d(x + \log q)}{n}} + \frac{d(x + \log q)}{n} \leq \frac{d^2}{C},$$

Theorem 2

If Assumptions (B1)-(B5) hold and

$$\frac{s_1\delta}{\psi^2} + \frac{s_1\sqrt{d_1}\eta}{\psi\phi} + \frac{s_1d_1\eta^2}{\phi^2} \quad \leq \left(1 - \rho_0\right)^2 / C$$

as well as

$$\max(s_0, s_1) \quad \frac{d}{\sqrt{n}} + \left\lceil \frac{\overline{d(x + \log q)}}{n} + \frac{d(x + \log q)}{n} \right\rceil \leq \phi^2/C,$$

then

$$\mathbb{P} \quad \|\hat{f}_1 - \hat{f}_1^{(\text{oracle})}\|_{\infty} \geq C \left(\Delta_1 + \Delta_2 + \Delta_3\right) \quad \leq 4 \exp(-x) + \exp(-y)$$

Theorem 2

If Assumptions (B1)-(B5) hold and

$$\frac{s_1\delta}{\psi^2} + \frac{s_1\sqrt{d_1}\eta}{\psi\phi} + \frac{s_1d_1\eta^2}{\phi^2} \le \left(1 - \rho_0\right)^2/C$$

as well as

$$\max(s_0, s_1) \quad \frac{d}{\sqrt{n}} + \left\lceil \frac{\overline{d(x + \log q)}}{n} + \frac{d(x + \log q)}{n} \right\rceil \leq \phi^2/C,$$

then

$$\mathbb{P} \quad \|\widehat{f}_1 - \widehat{f}_1^{(\text{oracle})}\|_{\infty} \ge C \left(\Delta_1 + \Delta_2 + \Delta_3\right) \quad \le 4 \exp(-x) + \exp(-y),$$

where

$$\begin{split} \Delta_1 &= \frac{1}{\psi(1-\rho_0)} \quad s_1 d_1^{-r_1} + s_1 s_0 d_2^{-r_2} \\ \Delta_2 &= \frac{1}{\psi(1-\rho_0)} \left(\eta/\lambda \right) \sqrt{s_1 d_1} \quad d_1^{-r_1} + s_0 d_2^{-r_2-2} + s_0 \sqrt{s_1} \sqrt{d_1} \lambda \eta \\ \Delta_3 &= \frac{1}{\psi(1-\rho_0)} \quad \overline{\frac{s_1(\log d_1 + y)}{n}}. \end{split}$$

Karl Gregory, Enno Mammen, Martin Wahl

An asymptotic interpretation of Theorem 2

Set $x = y = \log q$ and suppose

$$\log \log q = o(\log n), \quad s_0 = O(n^{-0}), \quad s_1 = O(n^{-1}), \quad n \to \infty$$

for $0 \leq \gamma_0 < 1/2$ and $0 \leq \gamma_1 \leq 1/4$. Then

$$\Delta_1 + \Delta_2 + \Delta_3 = o(n^-)$$

イロン イロン イヨン イヨン

The debiased estimator in sparse high-dimensional additive models

An asymptotic interpretation of Theorem 2

Set $x = y = \log q$ and suppose

$$\log \log q = o(\log n), \quad s_0 = O(n^{\circ}), \quad s_1 = O(n^{\circ}), \quad n \to \infty$$

for $0 \leq \gamma_0 < 1/2$ and $0 \leq \gamma_1 \leq 1/4$. Then

$$\Delta_1 + \Delta_2 + \Delta_3 = o(n^-)$$

if

$$\begin{split} 1 + \frac{1}{r_2} \quad \gamma_0 + \quad \frac{1}{2} + \frac{1}{2r_1} + \frac{1}{r_2} \quad \gamma_1 \quad < \quad 1 - \quad 1 + \frac{1}{2r_1} + \frac{1}{r_2} \quad \beta, \\ 2(\gamma_0 \lor \gamma_1) + \frac{2}{r_1}\gamma_1 \quad < \quad 1 - \frac{2}{r_1}\beta, \\ \frac{2}{r_2}(\gamma_0 \land \gamma_1) + \quad 2 + \frac{2}{r_2} \quad (\gamma_0 \lor \gamma_1) \quad < \quad 1 - \frac{2}{r_2}\beta. \end{split}$$

The debiased estimator in sparse high-dimensional additive models

An asymptotic interpretation of Theorem 2

Set $x = y = \log q$ and suppose

$$\log \log q = o(\log n), \quad s_0 = O(n^{-0}), \quad s_1 = O(n^{-1}), \quad n \to \infty$$

for $0 \leq \gamma_0 < 1/2$ and $0 \leq \gamma_1 \leq 1/4$. Then

$$\Delta_1 + \Delta_2 + \Delta_3 = o(n^-)$$

if

$$\begin{aligned} 1 + \frac{1}{r_2} \quad \gamma_0 + \quad \frac{1}{2} + \frac{1}{2r_1} + \frac{1}{r_2} \quad \gamma_1 \quad < \quad 1 - \quad 1 + \frac{1}{2r_1} + \frac{1}{r_2} \quad \beta, \\ 2(\gamma_0 \lor \gamma_1) + \frac{2}{r_1}\gamma_1 \quad < \quad 1 - \frac{2}{r_1}\beta, \\ \frac{2}{r_2}(\gamma_0 \land \gamma_1) + \quad 2 + \frac{2}{r_2} \quad (\gamma_0 \lor \gamma_1) \quad < \quad 1 - \frac{2}{r_2}\beta. \end{aligned}$$

The optimal rate $\beta = r_1/(2r_1+1)$ is achievable if

- $r_2 \geq 2r_1/(2r_1+1)$ and $r_1 > 1/2$, i.e. RHSs positive,
- and when $\gamma_0, \gamma_1 \ge 0$ are small enough

Table of Contents

1 Motivation

- Debiasing: general setting
 - General model
 - Main result: oracle property
 - Application of main result
 - Assumptions
- 3 The debiased estimator in sparse high-dimensional additive models
 - Definition of estimator
 - Main result for additive models

4 Simulations for resmoothing estimators

5 Summary

Performance on simulated data

Model

$$Y = \sum_{j=1}^{q} \underbrace{(1=j)f(X_j)\mathbf{1}(j \leq s_0)}_{s_0} + "$$

- f: sine, line, expo, quad
- $X_j \sim \text{Unif}(-2.5;2.5)$, correlation 0.9 within s_0 -size groups
- Choose ; with crossvalidation
- $n = 100;500;1000, p = 50;200 (s_0 = 3;10).$

Evaluate empirical coverage of 95% pointwise CIs

イロト 不得下 イヨト イヨト

Simulations for resmoothing estimators

			sine			line			expo			quad		
		x =	-1:5	0	1	-1:5	0	1	-1:5	0	1	-1:5	0	1
n = 100	$p = 50, s_0 = 3$	orcl	0.95	0.95	0.94	0.94	0.95	0.95	0.93	0.91	0.93	0.94	0.94	0.94
	$(d_{\rm pre}=75)$	pre-s	0.92	0.94	0.95	0.97	0.97	0.98	0.83	0.94	0.95	0.94	0.97	0.96
	$(d_{\rm re/orcl} = 40)$	re-s	0.92	0.92	0.92	0.93	0.98	0.97	0.78	0.93	0.88	0.93	0.93	0.92
	$p = 200, s_0 = 10$	orcl	0.94	0.95	0.95	0.95	0.96	0.96	0.93	0.93	0.93	0.94	0.94	0.93
	$(d_{\rm pre}=75)$	pre-s	0.92	0.88	0.92	0.97	0.98	0.98	0.70	0.88	0.85	0.88	0.92	0.90
	$(d_{\rm re/orcl} = 57)$	re-s	0.90	0.90	0.89	0.93	0.98	0.97	0.67	0.88	0.79	0.87	0.87	0.87
<i>n</i> = 500	$p = 50, s_0 = 3$	orcl	0.97	0.94	0.95	0.93	0.94	0.93	0.94	0.94	0.95	0.93	0.95	0.95
	$(d_{\rm pre} = 200)$	pre-s	0.94	0.94	0.91	0.97	0.97	0.97	0.92	0.96	0.97	0.94	0.95	0.93
	$(d_{\rm re/orcl} = 100)$	re-s	0.94	0.92	0.92	0.96	0.97	0.96	0.90	0.94	0.94	0.92	0.93	0.94
	$p = 200, s_0 = 10$	orcl	0.95	0.96	0.94	0.95	0.95	0.93	0.94	0.94	0.95	0.94	0.94	0.93
	$(d_{\rm pre} = 200)$	pre-s	0.90	0.89	0.94	0.98	1.00	0.99	0.80	0.97	0.99	0.93	0.99	0.96
	$(d_{ m re/orcl}=129)$	re-s	0.88	0.90	0.94	0.98	0.99	0.99	0.75	0.97	0.94	0.93	0.99	0.97
n = 1000	$p = 50, s_0 = 3$	orcl	0.96	0.94	0.96	0.96	0.94	0.95	0.94	0.94	0.94	0.95	0.95	0.94
	$(d_{\rm pre} = 300)$	pre-s	0.93	0.92	0.93	0.97	0.96	0.96	0.90	0.94	0.93	0.91	0.94	0.94
	$(d_{\rm re/orcl} = 147)$	re-s	0.94	0.90	0.93	0.95	0.94	0.96	0.90	0.93	0.93	0.94	0.92	0.94
	$p = 200, s_0 = 10$	orcl	0.95	0.95	0.93	0.93	0.96	0.93	0.94	0.95	0.93	0.94	0.94	0.93
	$(d_{\rm pre} = 300)$	pre-s	0.88	0.89	0.93	0.99	0.98	0.99	0.78	0.97	0.99	0.92	0.97	0.94
	$(d_{ m re/orcl}=162)$	re-s	0.88	0.90	0.93	0.97	0.99	0.98	0.76	0.98	0.96	0.92	0.93	0.92

Table: Coverage of confidence intervals based on oracle, presmoothing, and resmoothed estimators at points x = -1.5, 0, 1 for the sine, line, expo and quad functions for n = 100, 500, 1000 and q = 50, 200 over 500 simulation runs. Dimension d_{pre} used in presmoothing and $d_{\text{re/orcl}}$ for the oracle and the resmoothed estimator shown.

- We consider models that contain a nonparametric component of interest and a high-dimensional nonparamtric nuissance component.
- We discuss debiased LASSO-estimation for such models.
- We give conditions under which the nonparametric component of interest can be estimated with the same asymptotic accuracy regardless of if the high-dimensional nuissance component is known or not known.
- This holds for **undersmoothed orthogonal series estimators** and, under weak conditions, it can be achieved **for a large class of other nonparametric estimators**.

イロト 不得下 イヨト イヨト

- We consider models that contain a nonparametric component of interest and a high-dimensional nonparamtric nuissance component.
- We discuss debiased LASSO-estimation for such models.
- We give conditions under which the nonparametric component of interest can be estimated with the same asymptotic accuracy regardless of if the high-dimensional nuissance component is known or not known.
- This holds for **undersmoothed orthogonal series estimators** and, under weak conditions, it can be achieved for a large class of other nonparametric estimators.
- This allows an **optimality theory** for such models.
- We verified the assumptions for additive nonparametric models. In particular, for **additive models** this implies that an additive function can be estimated with the same asymptotic accuracy regardless of if the other functions are known or not known.

イロト 不得下 イヨト イヨト

Assumption (B1)

Suppose that for j = 1, ...; q, X_j takes values in [0,1] and has a density p_j with respect to the Lebesgue measure on [0,1] which satisfies $c_1 \leq p_j \leq 1 = c_1$ for some constant $c_1 > 0$. Moreover, suppose that for j = 2, ..., q, (X_1, X_j) has a density p_{1j} with respect to the Lebesgue measure on $[0,1]^2$ which is bounded from above by $1 = c_1$.

Assumption (B2) introduces a geometric quantity $_0$ which governs the degree of collinearity between the spaces V_1 and V_{-1} . The closer $_0$ is to 1, the harder it is to distinguish the effects of X_1 from those of X_2 ; ..., X_q .

Assumption (B2). [Minimal angle assumption]

Suppose that there is a constant $0 \leq _0 < 1$ such that for all $g_1 \in V_1$,

 $\|\Pi_{-1}g_1\| \le \|g_1\|$;

where $\Pi_{-1}: L^2(\mathbb{P}^X) \to V_{-1}$ is the orthogonal projection from $L^2(\mathbb{P}^X)$ to V_{-1} given by

 $\Pi_{-1}f = \underset{g \in V_{-1}}{\operatorname{argmin}} \|f - g\|^2:$

Note that $_0$ can also be defined as the minimal angle between V_1 and V_{-1} .

イロト 不得 とくまと くまとう ほ

Assumption (B3). [Bias conditions]

Suppose that there exist some r_1 ; $r_2 > 0$ and a subset $J_0 \subseteq \{1; \ldots; q\}$ with $1 \in J_0$ and $|J_0| \le s_0$ such that for each $j \in J_0$ there is a $g_i^* \in V_j$ satisfying

$$\|f_1 - g_1^*\|_{\infty} \le C_0 d_1^{-r_1}$$

if j = 1 and

$$\|f_j - g_j^*\|_{\infty} \le C_0 d_2^{-r_2}$$

otherwise for some constant $C_0 > 0$. Moreover, setting

$$g^* = \sum_{j \in J_0} g_j^*;$$

suppose that

$$\|f-g^*\|_{\infty} \leq C_0 \left(d_1^{-r_1}+s_0 d_2^{-r_2}\right)$$
:

Assumption (B4) states that the projection of each basis function of V_1 onto the space V_{-1} may be approximated sufficiently well by its projection onto a subspace of V_{-1} of s_1 or fewer additive components.

Assumption (B4)

For each k = 1;:::: d_1 , suppose that there is a subset $J_k \subseteq \{2$;:::: $q\}$ with $|J_k| \leq s_1$, such that there is a decomposition

$$\prod_{J_k} b_{1k} - \prod_{-1} b_{1k} = \sum_{j=2}^{q} v_j$$

with $v_j \in V_j$ satisfying

$$\sum_{j=2}^{q} \|v_j\| \le C_1 \sqrt{s_1} \sqrt{\frac{d}{n}}$$

for some constant $C_1 > 0$. Finally, suppose that $d \le n$ and

$$\geq \sqrt{\frac{d}{n}}$$

(日) (同) (日) (日)

Assumption (B5) [Theoretical compatibility conditions]

Suppose that there is a real number 0 $< - \leq 1$ such that

$$\sum_{\substack{\{i,j\} \\ i \in J_0}} \|g_j\|^2 \le \sum_{\substack{j=1 \\ j=1}}^{N_0} \|g_j\|^2 = 2$$

for all $(g_1; \ldots; g_q) \in (V_1; \ldots; V_q)$ satisfying

$$\underset{j=1}{\overset{\mathsf{M}}{\parallel}} \|g_j\| \leq 8\sqrt{3} \underset{j \in J_0}{\overset{\mathsf{M}}{\parallel}} \|g_j\| :$$

Moreover, for k = 1; :::; d_1 , suppose that

$$\sum_{\substack{j \in J_k}} \|g_j\|^2 \leq \sum_{\substack{j=2}}^{\mathcal{M}} g_j^2 = 2^{-2}$$

for all $(g_2; \ldots; g_q) \in (V_2; \ldots; V_q)$ satisfying

$$\underset{j=2}{\overset{\mathsf{N}}{\parallel}} \|g_j\| \leq 8\sqrt{3} \underset{j\in J_k}{\overset{\mathsf{X}}{\parallel}} \|g_j\|:$$

<ロ> (日) (日) (日) (日) (日)