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Research question:

Consider a model that contains
@ a nonparametric component of interest and

@ a high-dimensional nonparametric nuissance component.
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Research question:

Consider a model that contains
@ a nonparametric component of interest and

@ a high-dimensional nonparametric nuissance component.

We give conditions under which the nonparametric component of interest can be
estimated with the same asymptotic accuracy regardless of if the high-dimensional
nuissance component is known or not known.

Then the nonparametric estimator of the nonparametric component of interest has
the same asymptotic distribution as a well studied nonparametric estimator in a

model with only one nonparametric component.

This allows the implementation of methods for statistical inference on the
nonparametric function of interest.
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Motivating example:
Pq . .
Y=ct LX)+ Ef(X)] =0
" Sparse high-dimensional additive model”

~ Normal(0; 2),

q large, |[{j : fj # 0}| smaller

o = S = 9ac
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Motivating example:

P
Y =c+ ;7:115-()(_,-)—1— i Elf(X)l=0; ~ Normal(0; 2); q large, |{j: f; # 0}| smaller

" Sparse high-dimensional additive model”

Much work on estimation: Ingster and Lepski (03), Ravikumar et al. (08), Meier et al. (09),
Koltschinskii and Yuan (10), Huang et al. (10), Raskutti et al. (11), Gayraud and Ingster
(12), Suzuki (12), Dalalyan et al. (12).

@ Good estimation results under sparsity

@ Can use group Lasso to select/estimate components

Karl Gregory, Enno Mammen, Martin Wahl December 19, 2017 3/32



Motivating example:

P
Y =c+ ?:lﬁ(Xj)—i— i Elf(X)l=0; ~ Normal(0; 2); g large, |{j: f; # 0} smaller

" Sparse high-dimensional additive model”

Much work on estimation: Ingster and Lepski (03), Ravikumar et al. (08), Meier et al. (09),
Koltschinskii and Yuan (10), Huang et al. (10), Raskutti et al. (11), Gayraud and Ingster
(12), Suzuki (12), Dalalyan et al. (12).

@ Good estimation results under sparsity

@ Can use group Lasso to select/estimate components
Little work on inference:

@ Lasso estimators have a complicated distribution.

@ However, in the parametric setting, where
P
Y = 7:1 X+ ~ Normal(0; 2); q large, |{j: j # 0} small;

Zhang and Zhang (2014), van de Geer et al. (2014) and Javanard and Montanari
(2014) propose the “desparsified/debiased Lasso”, which, under sparsity conditions,

produces asymptotically normal estimators 1;:::; 4.
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" Sparse high-dimensional additive model”

Much work on estimation: Ingster and Lepski (03), Ravikumar et al. (08), Meier et al. (09),
Koltschinskii and Yuan (10), Huang et al. (10), Raskutti et al. (11), Gayraud and Ingster
(12), Suzuki (12), Dalalyan et al. (12).

@ Good estimation results under sparsity

@ Can use group Lasso to select/estimate components
Little work on inference:

@ Lasso estimators have a complicated distribution.

@ However, in the parametric setting, where
P
Y = 7:1 X+ ~ Normal(0; 2); q large, |{j: j # 0} small;

Zhang and Zhang (2014), van de Geer et al. (2014) and Javanard and Montanari
(2014) propose the “desparsified/debiased Lasso”, which, under sparsity conditions,

produces asymptotically normal estimators P q-
We propose a nonparametric “debiased” Lasso to enable inference in the additive model.
We describe a two-step procedure based on resmoothing the “debiased” Lasso for optimal
estimation.
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Debiasing: general model

General setting: Y =f +f1+" J

with
e "~N(0; 21,),
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Debiasing: general model

General setting: Y =Hf +f1+" J

with
e "~N(0; 21,),
@ f; (random) element of R”, component of interest
(e.g. fi = (A(X]))7_, in the additive model),
e f_; (random) element of R", high-dimensional nonparametric nuissance

component

(e.g. fr1=fh+ i+ fg in the additive model with f; = (£(X/))"_,).
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General setting: Y =Hf +f1+" J

with

e "~N(0; 21,),

@ f; (random) element of R”, component of interest
(e.g. fi = (A(X]))7_, in the additive model),

e f_; (random) element of R", high-dimensional nonparametric nuissance
component
(e.g. -1 = + I + fy in the additive model with f; = (fJ(XJ’))Ll)

o Vi; V_; C R” approximating linear subspaces for f; or f_1, respectively,

° ﬁl ‘R — VW, Ial,l :A]R” — V_3 linear maps (e.g. in additive model: ﬁl
projection onto V4, M_; "LASSO"-projection onto V_1)
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Debiasing: general model

General setting: Y =Hf +f1+" J

with
e " ~N(0; 21,),
@ f; (random) element of R”, component of interest
(e.g. fi = (A(X]))7_, in the additive model),
e f_; (random) element of R", high-dimensional nonparametric nuissance

component _
(e.g. fr1=fh+ i+ fg in the additive model with f; = (£(X/))"_,).
o Vi; V_; C R” approximating linear subspaces for f; or f_1, respectively,
o fly: R” — V4, fi_y : R" — V_; linear maps (e.g. in additive model: f;
projection onto V4, M_; "LASSO"-projection onto V_1)

Aim: do asymptotically/approximately as well as

7¢’>1(orac/e) — ﬁil'y(orac/e); where Y(oracle) —Y_f,="4F
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.
i
Aim:

do asymptotically /approximately as well as

'z‘-l(oracle) _ ﬁil'y(orac/e); where Y(oracle) _ vy fio="4f

Debiased estimator:

h = A(Y — £y |

with
° f_(ifit) available initial estimator of f_; (e.g. group LASSO-estimator in
additive model),
o A=(I-NTAT) AT (1 -0AT)):
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- Debising generalseiting  General model
Aim:
do asymptotically /approximately as well as

'?l(oracle) _ ﬂil'y(orac/e); where Y(oracle) _ vy fio="4f

Debiased estimator:

h=A(y — Uy )

with
° )?_(ifit) available initial estimator of f_; (e.g. group LASSO-estimator in
additive model),

o A=(I-NTAT) AT (1 -0AT)):
Motivation: Because of

h—fh=AY -9~ f = (A= )i + A(fr — F57) + A
)?1 is a bias corrected version of f; = AY. Note that for f; we have
h—fh=(A-Df+Af+A™
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We have the following theorem for the comparison of
A= —NATAT)=IAT (= AT )Y — £y and £o7%) — AT (Y — £_,):
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We have the following theorem for the comparison of
A= (= ATAT) AT = AT (Y = F99) and 7% = AT (v - £4);
Theorem 1.

Make the Assumptions (A1)—(A6) (will be introduced in a second). Then it holds with
probability > 1 — 6

I = Ao < 14+ G(1— 1)
r

2(log(2n) + 2log(1= )

+(G+G) 2+ 1+ 12

Here

@ ||z||n;00= maxi<j<n|z;| empirical sup norm,
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We have the following theorem for the comparison of
A= —ATAT)=IAT (1 — AT )(Y — £y and £ — AT (y — £_y):

Theorem 1.

Make the Assumptions (A1)—(A6) (will be introduced in a second). Then it holds with
probability > 1 — 6

I = Ao < 14+ G(1— 1)
<

2(log(2n) + 2log(1= )

+(G+G) 2+ 1+ 12

Here
@ ||z||n;00= maxi<j<n|z;| empirical sup norm,

@ Ci; & slowly growing constant (in additive regression: polynomials in log terms and
sparsity of additive components and dependence structure of Xp; :::; Xy),

@ i; 2 small constants (in additive regression: slowly growing constant times
nonparametric rate),
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We have the following theorem for the comparison of
A= —ATAT)=IAT (1 — AT )(Y — £y and £ — AT (y — £_y):

Theorem 1.

Make the Assumptions (A1)—(A6) (will be introduced in a second). Then it holds with
probability > 1 — 6

I = Ao < 14+ G(1— 1)
<

2(log(2n) + 2log(1= )

+(G+G) 2+ 1+ 12

Here

|z|ln;00= maxi<j<n|zi| empirical sup norm,

@ Ci; & slowly growing constant (in additive regression: polynomials in log terms and
sparsity of additive components and dependence structure of Xp; :::; Xy),

@ i; 2 small constants (in additive regression: slowly growing constant times
nonparametric rate),

1; 2 bias terms, approximation error of Vi or V_j , respectively,

0 < ;<1 constant.
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Interpretation of the bound of the Theorem 1:
A= < (14+GA- 1))
2(log(2n) + 2log(1=
><<\/(g( ) g )+(C1+C2)2+ 1+ 12>

n

2(oracle)
l[ o0

Up to small terms, ||7?1 —f is only bounded by bias terms.
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Nl >'c0n of main reslt

Interpretation of the bound of the Theorem 1:
1A= B < (14 G(1— 1))
2(log(2n) + 2 log(1=
><<\/(g( ) &( )+(C1+C2)2+ 1+ 12)

n

Up to small terms, ||f — ﬁ(orade)ﬂn;oo is only bounded by bias terms.

Two applications of Theorem 1:

1. In case of undersmoothing, the same asymptotic theory applies for fi as
for £°*“®) E.g. one gets the same asymptotic distributions for pointwise

inference and for uniform bounds of £ as for ff"rade)_
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Second application of Theorem 1: Resmoothing.
Consider application of a second smoothing step S after a first step with

undersmoothed 7?1

Resmoothig estimator
S:R"—C[l].

)’c‘l(resmooth) _ S,’c‘l with Smoothing operator
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Second application of Theorem 1: Resmoothing.

Consider application of a second smoothing step S after a first step with
undersmoothed f.

7’;‘( resmooth)
1

Resmoothig estimator = Sfl with smoothing operator

S:R" - C[l].

E.g. Nadaraya-Watson smoothing in the additive model:

_ 27=1 Kh(Xli - g _ Z?:l Kh(Xli —")g(X{.)
27:1 Kh(Xll - ) 27:1 Kh(Xll - )

Sg(+)
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For the smoothing operator S we make the following two assumptions:

[S&lloc< Cllgllnioo

for some C >0

and

A = ||Sytrade) _ SFERD)|  small

with Y(oracle) — y £ | je SY(oracle) smoothing estimator with smoothing
S in oracle model.

Then R R R
|Sh — SY(Dracle)HOOS Clh - ,c1(0r36|6)||00+A;

where the first term can be bounded with the help of Theorem 1.
A is typically small if the amount of smoothing in f; is small compared to the
smoothing in S:

Smoothing o Undersmoothing =~ Smoothing:
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This can be used
o for the construction of estimators of f; with good performance,

o for the development of an optimality theory:

For a smoothing estimator in the oracle model (where one knows f_;)
one can construct an estimator in the full model (where one does not
know f_1) with nearly the same operation characteristics.

Using this argument one can show (under mild conditions) that (sharp)
asymptotic minimax theorems valid in the oracle model carry over to be
valid in the full model (e.g. in the additive model one has the same
minimax results for the first component regardless of whether the

nuissance components f,; ::;; fy are known or not known.
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—— Presmoothing estimator —— Resmoothed estimator ~—— True additive functions
<
~
o
°© (=}
N
& )
D
<
)
<
i
-2 -1 0 1 2 -2 -1 o 1 2
~ <
~ ~
° o
S b
N b
-2 -1 0 1 2 -2 -1 0 1 2

Plots 2-4: undersmoothed £, £ £ f,: Plot 1: #, SA, fi.
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The assumptions of Theorem 1
For some constants Ci; G; 1; 2, 1, 2=>0and 0< ; 1 <1 we make the
following assumptions.

(A1) (oo-norm preservation of [1;)

”ﬁl)’”n;oog Gillyllneo

for all y € R"” with probability > 1 —
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The assumptions of Theorem 1
For some constants Ci; G; 1; 2, 1, 2=>0and 0< ; 1 <1 we make the
following assumptions.

(A1) (oo-norm preservation of [1;)

”ﬁl)’”n;oog Gillyllneo

for all y € R"” with probability > 1 —
(A2) (Smoothing property)

PN C
IM_1M1ei][n;2< 72

for all / = 1;:::; n with probability > 1 — , where ¢; is the ith standard
basis vector and ||||n:2 is the Euclidean norm of R".
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The assumptions of Theorem 1
For some constants Ci; G; 1; 2, 1, 2=>0and 0< ; 1 <1 we make the
following assumptions.

(A1) (oo-norm preservation of [1;)

”ﬁl)’”n;oog Gully o0
for all y € R"” with probability > 1 —
(A2) (Smoothing property)

PN C
[M-1M1e]n2< 72

for all / = 1;:::; n with probability > 1 — , where ¢; is the ith standard
basis vector and ||||n:2 is the Euclidean norm of R".

(A3) (Empirical minimal angle assumption)

\lﬁ_1ﬁ1Y||n;2§ 1||}/Hn;2

for all y € R"” with probability > 1 —
December 19, 2017 13 / 32



The assumptions of Theorem 1, continued.

(A4) (Bias conditions)
i — g1 llneo< 1 for some gy € V4

and
I1f—1 — g% 1llnoo< 2 for some g*; € V_4

with probability > 1 —
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The assumptions of Theorem 1, continued.

(A4) (Bias conditions)
i — g1 llneo< 1 for some gy € V4

and
-1 — g1 |lncc< 2 for some g*; € V_4

with probability > 1 —
(A5) (Approximate orthogonality assumption)

IS (1 = N7 1)g-1llmoe< 1pen(g-1)

for all g3 € V4 with probability > 1 — . Here pen: V_; = R, (e.g. in
additive models we will choose pen(g_1) = |||l n2+::: + || gd | n:2-
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The assumptions of Theorem 1, continued.

(A4) (Bias conditions)
i — & ||nmee< 1 for some gf € V;

and
=1 — g% 1|lnco< 2 for some g*; € V4
with probability > 1 —
(A5) (Approximate orthogonality assumption)

IS (1 = N7 1)g-1llmoe< 1pen(g-1)

for all g1 € V4 with probability > 1 — . Here pen: V_; - R, (e.g. in
additive models we will choose pen(g_1) = |||l n2+::: + || gd | n:2-

. . e . 2(init) % .
(A6) (Condition on the initial estimator) pen (27" —gf) < 2 with
probability > 1 —
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The debiased estimator in sparse high-dimensional additive
models

We now want to apply Theorem 1 to

The sparse high-dimensional additive model

Y' = 7=1f}(Xj’)+ i T~ Normal(0; 2); i=1;:::;m qlarge, |{j:fi #0}<n

Now, f; function of interest,
fp; i1, fy nuissance components.

We suppose that X/ take values in [0;1].
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e V; = piecewise polynomials in x; € [0; 1] of maximal degree t; defined on

k k+1
Intervalljk:<F; ;_ ]; k=0;::m—1
'j 'j

4

17 / 32
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e V; = piecewise polynomials in x; € [0; 1] of maximal degree t; defined on

k k+1
Intervalljk:<F; ;_ ]; k=0;::m—1
'j 'j

o Wlog: my=---=mg, th =--- =t.

q
V=) Vg
=2

J

bjik(t+1)+13 1113 Bjsk(g41) 4441

as orthonormal basis which are zero outside the interval [y
”

Karl Gregory, Enno Mammen, Martin Wahl December 19, 2017

17 / 32



To reconstruct the desparsified Lasso estimator in the additive model context,
projection of the V; basis functions onto V_;.

We first define the nonparametric Lasso estimator of f by

. . q 2 q
(fL;:::;qu) = argmin HY—Zng +2 ZHgJHn 5
&€V =1 " =1

where = 0 is some tuning parameter.
We set

P _ B |

Karl Gregory, Enno Mammen, Martin Wahl December 19, 2017 18 / 32



For the Lasso version of the projection of the V; basis functions onto V_; we
put for k=1;:::;dy

q
|_|L,1b1k = Z(I‘Iﬁlblk)j S V,1
j=2

with

((ﬁL_1b1k)2;""( “1b1k)q ) _argmln Hblk_ZgJH +2 Z||g,|| ;

where > 0 is some tuning parameter. Moreover, we define [1_; as the linear
extension of ML to V4.

Karl Gregory, Enno Mammen, Martin Wahl December 19, 2017 19 / 32



Some quantities for stating the result for additive models

Dimensions

@ g = total # of functions, sy = #{nonzero f;}, s; = sparsity of projection _;

v
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Some quantities for stating the result for additive models

Dimensions
@ g = total # of functions, sy = #{nonzero f;}, s; = sparsity of projection _;
o di =dim(W1), do =dim(V,) = --- =dim(V;), d = max; d;
Geometric quantities
@ ¢, 1 are theoretical compatibility constants
@ po the minimal angle between V4 and V_;
e =% %ﬂd““’gq), governs diff. betwn empirical ||-||» and true norms ||-||
Approximation quantities

@ r1, r» are smoothnesses such that there exists g* € V; for which
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Some quantities for stating the result for additive models

Dimensions
@ g = total # of functions, sy = #{nonzero f;}, s; = sparsity of projection _;
o di =dim(W1), do =dim(V,) = --- =dim(V;), d = max; d;
Geometric quantities
@ ¢, 1 are theoretical compatibility constants
@ po the minimal angle between V4 and V_;
e =% %’W, governs diff. betwn empirical ||-||» and true norms ||-||
Approximation quantities

@ r1, r» are smoothnesses such that there exists g* € V; for which

||f1 _gl*HooS COd;rl and ||f:/ _gj*”oog COd;rzv _/ = 27"'aq

Lasso tuning parameters
q_

g
e \=20 % + 20 72”2,1'%"

_ d(x+log dq+log q) \/51d(x+log di +log q)
= ; + -

,x>1

v
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Theorem 2
If Assumptions (B1)—(B5) hold and

515+51\/<7177 sichn’

P2 () g

< (1-po)*/C

as well as
]

r 1
d " d(x + log q) . d(x + log q)

2
ﬁ n n §¢/C7

max(so, s1)
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Theorem 2
If Assumptions (B1)—(B5) hold and

515+51\/<7177 sichn’

P2 () g

< (1-po)*/C

as well as
]

|
d " d(x + log q) . d(x + log q)

2
ﬁ n n §¢/C7

max(so, s1)

then

P ||h — o> C (A1 + Ao+ Bs) < dexp(—x) + exp(—y),
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Theorem 2
If Assumptions (B1)—-(B5) hold and

516+51\/<7177 sichn’

P2 () g

<(1-p)/C

as well as
]

|
d " d(x + log q) . d(x + log q)

2
ﬁ n n §¢/C7

max(so, s1)

then

P ||h — o> C (A1 + Ao+ Bs) < dexp(—x) + exp(—y),

where
N = # Suj;r1 + SlSod;rz
¥(1 - po)
1 — — I
Ap = m (n/)\)vsldl d1 T4 Sodz 2 2 +50\/571\/CTIA77
|
As— 1 si(log di + y)
U(1 — po) n
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An asymptotic interpretation of Theorem 2
Set x = y = log g and suppose

loglogg =o(logn), s5s=0(n"°), ss=0(n'), n— o0
for 0 <79 <1/2and 0 <~ <1/4. Then

A1—|—A2—|—A3:o(n_ )

Karl Gregory, Enno Mammen, Martin Wahl December 19, 2017 22 /32



_ The debiased estimator in sparse high-dimensiona additive models | Main res for it ve models

An asymptotic interpretation of Theorem 2

Set x = y = log g and suppose

loglog g = o(logn), so = O(n °),

for 0 <79 <1/2and 0 <~ <1/4. Then

si=0(n'), n— oo

A1—|—A2—|—A3:o(n_ )

Ll 111

rn o 2 2!’1 rn m
2

2y V) +

2 2
—(oAm)+ 2+—= (0Vm)
rn r

1 1
1- 1+—+= B,
2[‘1 rn
1_3137
n
1- 25
rn
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An asymptotic interpretation of Theorem 2
Set x = y = log g and suppose

loglogg =o(logn), s5s=0(n"°), ss=0(n'), n— o0
for 0 <79 <1/2and 0 <~ <1/4. Then

A1—|—A2—|—A3:o(n_ )

if
1 1 1 1 1 1
1+72 Yo + §+27r1+72 Tn < 1- 1+Tﬁ+g B,
2 2
(V) +-—m < 1--—5,
n n
2 2 2
—(wAn)+ 2+— (pVm) < 1-—=F
r rn rn

The optimal rate 8 = r1/(2r + 1) is achievable if
@ rn>2n/(2n+1)and n > 1/2, i.e. RHSs positive,
@ and when vp,y1 > 0 are small enough
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Performance on simulated data

Model
q

Y = (I=)F(X)1( < s) +"
j=1

sp “active” covariates

@ f: sine, line, expo, quad

@ X; ~ Unif(—2:5;2:5), correlation 0:9 within sp-size groups
@ Choose ; with crossvalidation

e n = 100;500; 1000, p = 50;200 (s = 3;10).

Evaluate empirical coverage of 95% pointwise Cls
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- Presmoothing Oracle - Resmoothing

0 5 10

Cl limits (single run)
-10

6-15

4

2

-2

Avg CI limits (500 runs)
-4 0

—— oracle coverage —— presmoother coverage —— resmoothed coverage

Ptwise emp coverage
0.75 0.80 0.85 0.90 0.95 1.00-6

-15 -1.0 -0.5 0.0 0.5 1.0 15
n =100, q =50, sO = 3, (d_pre,d_re/orcl) = (75,40), deg =(3,3), q*d_pre = 3750, S = 500 sim runs
[m] = =

DA




sine line expo quad
x=|-1:5 0 1 |-1:5 0 1 |-1:5 0 1 |-1:5 0 1
n=100 p=250 s=3 orcl [0.95 0.95 0.94]| 0.94 0.95 0.95][0.93 0.91 0.93| 0.94 0.94 0.94
(dore = 75) pre-s| 0.92 0.94 0.95| 0.97 0.97 0.98| 0.83 0.94 0.95| 0.94 0.97 0.96
(drejorcl = 40) re-s | 0.92 0.92 0.92| 0.93 0.98 0.97|0.78 0.93 0.88| 0.93 0.93 0.92
p =200, sp = 10 orcl [0.94 0.95 0.95|0.95 0.96 0.96| 0.93 0.93 0.93| 0.94 0.94 0.93
(dpre = 75) pre-s| 0.92 0.88 0.92| 0.97 0.98 0.98| 0.70 0.88 0.85| 0.88 0.92 0.90
(drejorel = 57)  re-s | 0.90 0.90 0.89|0.93 0.98 0.97|0.67 0.88 0.79|0.87 0.87 0.87
n=500 p=250 s =3 orcl 097 094 0.95/0.93 0.94 0.93/0.94 0.94 0.95|0.93 0.95 0.95
(dpre = 200) pre-s| 0.94 0.94 0.91| 0.97 0.97 0.97|0.92 0.96 0.97| 0.94 0.95 0.93
(drejores = 100)  re-s | 0.94 0.92 0.92| 0.96 0.97 0.96|0.90 0.94 0.94|0.92 0.93 0.94
p =200, sp =10 orcl [ 0.95 0.96 0.94| 0.95 0.95 0.93|0.94 0.94 0.95|0.94 0.94 0.93
(dpre = 200) pre-s| 0.90 0.89 0.94| 0.98 1.00 0.99|0.80 0.97 0.99| 0.93 0.99 0.96
(drefore = 129) re-s | 0.88 0.90 0.94| 0.98 0.99 0.99|0.75 0.97 0.94| 0.93 0.99 0.97
n=1000 p=50, s =3 orcl [0.96 0.94 0.96| 0.96 0.94 0.95[0.94 0.94 0.94| 0.95 0.95 0.94
(dpre = 300) pre-s| 0.93 0.92 0.93| 0.97 0.96 0.96| 0.90 0.94 0.93| 0.91 0.94 0.94
(drejorel = 147) re-s | 0.94 0.90 0.93| 0.95 0.94 0.96| 0.90 0.93 0.93| 0.94 0.92 0.94
p =200, sp = 10 orcl [0.95 0.95 0.93]| 0.93 0.96 0.93]0.94 0.95 0.93| 0.94 0.94 0.93
(dpre = 300) pre-s| 0.88 0.89 0.93| 0.99 0.98 0.99|0.78 0.97 0.99| 0.92 0.97 0.94
(drejorel = 162)  re-s | 0.88 0.90 0.93| 0.97 0.99 0.98|0.76 0.98 0.96| 0.92 0.93 0.92
Table: Coverage of confidence intervals based on oracle, presmoothing, and
resmoothed estimators at points x = —1.5,0, 1 for the sine, line, expo and quad

functions for n = 100, 500, 1000 and g = 50, 200 over 500 simulation runs.
Dimension dyre used in presmoothing and die/ori for the oracle and the resmoothed

estimator shown.
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Summary

@ We consider models that contain a nonparametric component of interest and
a high-dimensional nonparamtric nuissance component.

@ We discuss debiased LASSO-estimation for such models.

@ We give conditions under which the nonparametric component of interest can
be estimated with the same asymptotic accuracy regardless of if the
high-dimensional nuissance component is known or not known.

@ This holds for undersmoothed orthogonal series estimators and, under weak
conditions, it can be achieved for a large class of other nonparametric
estimators.
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Summary

@ We consider models that contain a nonparametric component of interest and
a high-dimensional nonparamtric nuissance component.

@ We discuss debiased LASSO-estimation for such models.

@ We give conditions under which the nonparametric component of interest can
be estimated with the same asymptotic accuracy regardless of if the
high-dimensional nuissance component is known or not known.

@ This holds for undersmoothed orthogonal series estimators and, under weak
conditions, it can be achieved for a large class of other nonparametric
estimators.

@ This allows an optimality theory for such models.

@ We verified the assumptions for additive nonparametric models. In particular,
for additive models this implies that an additive function can be estimated
with the same asymptotic accuracy regardless of if the other functions are
known or not known.
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Assumption (B1)

with respect to the Lebesgue measure on [0; 1] which satisfies ¢; < p; < 1=¢;
for some constant ¢; > 0. Moreover, suppose that for j =2:::;q, (Xi; XJ)
has a density p;; with respect to the Lebesgue measure on [0; 1]? which is
bounded from above by 1=¢;.
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Assumption (B2) introduces a geometric quantity o which governs the degree
of collinearity between the spaces V; and V_;. The closer ¢ is to 1, the

Assumption (B2). [Minimal angle assumption]
Suppose that there is a constant 0 < ¢ <1 such that for all g € V4,

IM_1g1l|< ollglls

where M_; : L?(PX) — V_; is the orthogonal projection from L?(PX) to V_;
given by
N_if = argmin||f — g||*:
geEV 1

Note that ¢ can also be defined as the minimal angle between V; and V_;.
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Assumption (B3). [Bias conditions]

1 € Jo and |J|< sp such that for each j € Jy there is a g/ € V; satisfying
|fi — &1 lloo< Cody ™

if j =1 and
Ifi — &/ lloo< Cody "

otherwise for some constant Cy > 0. Moreover, setting
&= g
J€JD

suppose that

If — g"lloo< Co (d " +s0dy ) :
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Assumption (B4) states that the projection of each basis function of V4 onto
the space V_; may be approximated sufficiently well by its projection onto a
subspace of V_; of s; or fewer additive components.

Assumption (B4)

|Jk|< s1, such that there is a decomposition
q
My b1 —MN_1by = Z vj
=2

with v; € V; satisfying
q
d
Sllvli< Gvay S
j=2

for some constant C; > 0. Finally, suppose that d < n and

d
>4/ =
n

v
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Assumption (B5) [Theoretical compatibility conditions]

Suppose that there is a real number 0 < < 1 such that

2
&< g =2
Jj€h Jj=1
for all (g1;:::;8q) € (Va;:::; Vq) satisfying
> <
lgll<8v3 gl
Jj=1 Jj€h
Moreover, for k = 1;:::; di, suppose that
. X 2 g
llgill“< g =

jedk =2

> <
lgll<8v3 gl

Jj=2 J€Jk
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