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Let X, Xy, ..., X, be i.i.d. Gaussian vectors with values in R9, with
EX = 0 and with covariance operator ¥ = E(X ® X) € C¢.

@ Given a smooth function f : R — R and a linear operator
B:RY — RY with ||B||; < 1, estimate (f(X), B) based on
X1 g eeey Xn.

@ More precisely, we are interested in finding asymptotically efficient
estimators of (f(X), B) with \/n-convergence rate in the case
when d = d, — .

@ Suppose d, < n® for some « > 0. Is there s(«) such that for all
s > s(«) and for all functions f of smoothness s, asymptotically
efficient estimation is possible?
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Some Related Results

@ Efficient estimation of smooth functionals in nonparametric
models: Levit (1975, 1978), Ibragimov and Khasminskii (1981);

@ In particular, in Gaussian shift model: lbragimov, Nemirovski and
Khasminskii (1987), Nemirovski (1990, 2000)

@ Girko (1987-): asymptotically normal estimators of a number of
special functionals (such as log det(X) = tr(log X), Stieltjes
transform of spectral function of ¥ : tr((/ + t£)~ ")), ... Based on
martingale CLT

@ Asymptotic normality of log-determinant log det(3-) has been

studied by many authors (see, e.g., Cai, Liang and Zhou (2015)
for a recent result)
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Some Related Results

@ Asymptotic normality of tr(f(%)) for a smooth function f : R +— R :
(linear spectral statistic). Common topic in random matrix theory
(both for Wigner and for Wishart matrices): Bai and Silverstein
(2004), Lytova and Pastur (2009), Sosoe and Wong (2015)

@ Estimation of functionals of covariance matrices under sparsity:
Fan, Rigollet and Wang (2015)

@ Bernstein—von Mises theorems for functionals of covariance: Gao
and Zhou (2016)

@ Efficient estimation of linear functionals of principal components:
Koltchinskii, Loffler and Nickl (2017)
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Sample Covariance Operator

o Let .
Si=n") XX
j=1
be the sample covariance based on (X, ..., Xp).
@ Let

Sad = {ZeCi:a‘1/dejald},a>1.

@ If X € Sa4,then

. dy,d
w15~ =1 <o 1211/ 9/ )

and, for all t > 1 with probability at least 1 — e,

-z mn( 2V EV YV L),
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Operator Differentiability

@ Let f e C'(R) and let fl'I()\, 1) be the Loewner kernel:

) o= TOZID s a0y = )
—
® A f(A) is Fréchet differentiable at A =}, ;4 APx with
derivative
Df(AH) = Y (X p)PyHP,.
A peo(A)
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Bounds on the Remainder of Differentiation

Lemma

Let S¢(A; H) = f(A+ H) — f(A) — (Df)(A; H) be the remainder of
differentiation. If, for some s € [1,2], f € BS_,(R), then the following
bounds hold:

I1SH(A H)Il < 2°°||fllge,  IIHII®

and

1S¢(A; H) — Se(A H)| < 27°Ifllgs_, (IHI v IIH' 1) IIH — HII.

The proof is based on Littlewood-Paley decomposition of f and on
operator versions of Bernstein inequalities for entire functions of
exponential type (as in the work by Peller (1985, 2006), Aleksandrov
and Peller (2016) on operator Lipschitz and operator differentiable
functions).
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Assumptions and Notations

o Let
o2(X; B) := 2|='/2Df(x; B)£'/?|2.

@ Loss functions. Let £ be the class of functions ¢ : R — R, such
that
e (/(0)=0
o /(—t)=((t),teR
e (is convex and nondecreasing on R
e Forsome ¢ >0, /(t) = O(e‘") as t —

@ Suppose that

o A1.d,>3logn
e A2 forsome a € (0,1), d, < n®
o A3. Forsome s > 1, f € BS (R).
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Efficient Estimation of (f(X), B)

Under assumptions A.1-A.3, there exists an estimator h(3) such that
for all oy > 0

n'/2((h($), B) - (f(Z), B))
su sup|P <Xx;—%(x)|—0
ZGSa’dn,Uf(pZ;B)ZO'O xeﬂg Z{ O-f(z’ B) } ( )
and, forallt € L,
n'/2((h(£), B) - ((X), B))
su Es? — E¢(2)| — 0.
ZGSaﬂn,Gf(p):;B)Zcro > ( Uf(z7 B) > ( )‘
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Efficient Estimation of (f(X), B) : A Lower Bound

Letf e B;Q1 (R). Suppose d, > 1,a > 1,00 > 0 are such that, for some
1 < d < aanday > oq and for all large enough n,

{z € Sag, 0f(Z: B) > ao} £ 0.

Then, the following bound holds:

2

- nEs (Ta(Xi, ., Xa) = ((), B))
liminf inf sup

, > 1
" Th £€Ss4p0r(EiB)200 o7 (% B)

— )

where the infimum is taken over all sequences of estimators
Tn = 7-/'7()(17 oo ,Xn).
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Perturbation Theory: Application to Functions of

Sample Covariance (The Delta Method)

o
(F(X) — f(X), B) = (DF(Z; 5 — X), B) + (S¢(L; % — ¥), B)

© The linear term (Df(%; % — ¥), B) is of the order O(n~'/?) and
n'/2(Df(L; ¥ — ), B) is close in distribution to N(0; 02(%; B)).
@ Forse (1,2, |S¢(%: % - X)|| < [Ifllgs_IIE — X||°, implying that

(SHEE ~ %), B)| < [IB1]ISH(E: &~ D)

— O((%>s/2> — O(n(1=)s/2) — o(n=1/2)
and, similarly,
(EA(E) ~ £(£). B)| = |(ES(%: £ — X). B)| = o(n"?)

provided that s > -, a € (0,1/2). In this case, h(%) = f(%).
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Perturbation Theory: Application to Functions of

Sample Covariance (The Delta Method)

@ The bounds are sharp, for instance, for
f(x)=x>B=u®u,s=2,d=n"

sup [(Ef(%) — f(X),u® u)| = sup [(ES(%% ~X),u® u)| =
lu<1 lul<1
_ e(X)T + 22

d
2 2 ha—1
L e b

sup [(Ef(X) — £(X),u® u)| = o(n~1/?)

[Jull<1

iff o < 1/2.
@ Whatif d, > n'/2, d, = o(n)?
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Normal Approximation for Smooth Functions of
Sample Covariance

Letf e BS (R) for some s € (1,2] and let B be a linear operator with
|B||y < 1. Suppose a> 0,0, > 0 and

dn = o0(n) as n— .

Then

sup sup
YE8a,0y,01(XiB)>00 XER

— 0.

1/2 S\ S
(T )

Vladimir Koltchinskii (Georgia Tech)

Functionals of Covariance

Luminy, December 2017 14/31



Normal Approximation Bounds for Smooth Functions

of Sample Covariance

o Let := ZA@(:) AP, be the spectral decomposition of X
o fc B2 (R)
@ |Blls <oo
@ 04(%;B) = \@HZVZDf(Z; B)ZVZHZ
o uy(X; B) := |Z'/2Df(Z; B)T'/?|5
fllgs_ IBIII=I1®
o ’Ys(f; Z) = W
© 1r(T) = tos(f:T) = |~ logs(f Z)+521Iog(3>] Vi,
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Normal Approximation Bounds for Smooth Functions
of Sample Covariance

Letf e BS (R) for some s € (1,2]. Then

sup
XeR

n'/2{f(£) —Ef(%), B B)\?
(T e o] (D)

trm(3) V(D) V() v

S
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Perturbation Theory for Functions of Sample

Covariance

(F(£) — f(X), B) = (DF(Z; 5 — X), B) + (S¢(Z; 5 — ¥), B)

implies that
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Perturbation Theory for Functions of Sample

Covariance

@ The linear term
(DF(X)B,x — %)

=n! Zn:wf(z; B)X;, X;) — E(Df(Z, B)X, X)
j=1

is of the order O(n~"/2) and it is approximated by a normal
distribution using Berry-Esseen bound.

@ The centered remainder
(ST £ - X) -ESH(X; £ - X),B)

is of the order o(n~"/?) when d, = o(n) and it is controlled using
Gaussian concentration inequalities.
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Concentration of the Remainder

Suppose that f € BS  |(R) and also that d < n. Then, there exists a

constant C = Cs > 0 such that, for all t > 1 with probability at least
1—et

‘<s,(z; Y —Y)-ESKL; ¥ -Y), B>‘

<airta etz () V)T V)T
- Bgo,1 1 n n n n

Note: the centered remainder is op(n~'/2) provided that

d=d,=o(n).
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Wishart Operators and Bias Reduction

@ Our next goal is to find an estimator 9(%) of f(X) with a small bias
Esg(X) — f(X) (of the order o(n~'/2)) and such that

n'2((9(%), B) — (Exg(%), B))

is asymptotically normal.

@ To this end, one has to find a sufficiently smooth approximate
solution of the equation

Exg(¥) = f(¥),% € 9.
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Wishart Operators and Bias Reduction

T9(X) =Esg(X)= [ g(V)P(Z;dV),¥ e ¢

g

@ To find an estimator of f(X) with a small bias, one needs to solve

(approximately) the following integral equation (“the Wishart
equation”)
Tg(x) = f(X),x ecl.

@ Bias operator: B:=7T —I.

@ Formally, the solution of the Wishart equation is given by
Neumann series:

9X)=(Z+B) H(Z)=(Z-B+B2—..)(X)
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Wishart Operators and Bias Reduction

@ Given a smooth function f : R — R, define

k k
f(2) =) (—1YBI(Z T)+ > (~1YBIf(

j=0 J=1

@ Then

Exfi(£) — f(Z) = (Z + B)f(T) — f(X) = (—1)kBFHT (D).

@ Asymptotically efficient estimator is h( A) f(3), where k is an
integer such that, for some g € (0,1] <k+1+p5<s.

’1a
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Bootstrap Chain

o
T9(E) =Esg(¥)= | g(V)P(;dV),x e
cd

Trg(¥) = Exg(£®),x e g,
where
Oy 50 =35 5@
is a Markov chain in C¢ with transition probability kernel P.

o Note that >-U+") is the sample covariance based on ni.i.d.
observations ~ N(0; £1)) (conditionally on 50))
@ Conditionally on 30), with a “high probability",

260 - 50 < 20y, /9
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k-th order difference

@ k-th order difference along the Markov chain:

BXf(X) = (T — 1) i <)Tff( )

j=0

—.

° ZI’.‘:O(—1 )"—f(’j?) f(30)) is the k-th order difference of f along the
trajectory of the Bootstrap Chain. For f of smoothness k, it should

be of the order (ﬁ)k.

Vladimir Koltchinskii (Georgia Tech) Functionals of Covariance Luminy, December 2017 24 /31



A bound on B*f(X)

Suppose that f € BY_ | (R) and that k < d < n. Then, for some C > 1,

k/2
B < C¥Ifll e (IZIF v ”Z”)<%) '
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Bounds on the bias of f(5)

Corollary
Suppose f € BX1(R) and k + 1 < d < n. Then, for some C > 1,

~ (k+1)/2
IB=f(£) — A < CE )i fllgen (1142 v 20) ($)

If, for some o € (1/2,1),2logn < d < n“and k > 1%, then

IExfi(%) — ()] = o(n~"/2).
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Sketch of the proof: reduction to orthogonally invariant

functions

@ f(x) = xv¢/(x)

° g(X) = tr(y(X))
@ g is orthogonally invariant function on % : g(UZU~") = g(¥)

Proposition
If g is orthogonally invariant, then 7 g is orthogonally invariant.

@ Dg(x) :=X'/2Dg(x)x'/?

Proposition
Vk DT* = TKD and DB = BD.

® Dg(x)=v'(X), D9(x)=1(X)
e Bff(X) = DBkg(X)
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Sketch of the proof: a representation of BXg(X)

@ g orthogonally invariant, ©'/2Wx /2 = U(W'2EW'/2)U~" imply
TY(X) = Exg(¥) = Eg(X'2WE'/?) = Eg(W' 2L W'/?),

where W := n" 21(7:1 Zi®Z, 2y, ..., 2Zyiid. standard normal
@ By induction,

TF9() = Bg(W, /2 .. WPz w/ /2 w]/?),
where W, ..., W i.i.d. copies of W
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Sketch of the proof: a representation of BXg(X)

e Denote Vj(t) :Ith,(W1/2 l),t €[0,1]
@ S(ty,....t):= Vi(ty)... Vi(ty)
g

@ o(ty,....t):=g(S(ty,...,tk)* LS(ty, ..., %)), (t,..., t) € [0,1]
0Ai¢(t1,..- ):¢(t1,---, "atk)_¢(t1a"'707"'atk)
o

oty ... )
BXg(L) =EAq...Axp =E / / TN aty ... dt

@ Integral representation:

oKo(ty,. .., t)
Kf(x) = DBk / /D (tr,
B*f(X) = DB"g ot . 8tk aty ... dty
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Sketch of the proof: bounding partial derivatives

Lemma

8k¢(t1,...,tk)’S

oty ...0l
k
< kzk(2k+1) D/ s Kk+1 Y (1 \2k+1
<542 max 1Dl (I v I [Tact + 5%

§

where 6; .= ||W; — I||.

It implies that
IBH(2)]| = IDB*g(T)| <

. k
< 3kok(2k+1) k+1 _ 1\ 2k+1
< 32K max | Digl (I V) (I W11 W17

k2 k+1 d\ "
< C max [|Dg|l (1= V=N )

o 1<j<k+1
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