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Motivating example

> p quantitative phenotypic traits, measured across a population
» Mean p € RP, covariance matrix X € RP*P

Q: Suppose natural selection acts on one of the traits. What will
be the distribution of this trait in the next generation? On the
distribution of other traits?



Motivating example

> p quantitative phenotypic traits, measured across a population
» Mean p € RP, covariance matrix X € RP*P

Q: Suppose natural selection acts on one of the traits. What will
be the distribution of this trait in the next generation? On the
distribution of other traits?

A: Depends on the “additive genetic component” of X

Can estimate genetic covariance using variance components
models (Fisher 1918)



Half-sib experiment
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One-way layout: ~ n = IJ individuals, [/ groups of size J

Yi=p+aj+ej €RP (as row vector)

a; N(0,X4), group effect

gjj i N(0,%E), residual error

Additive genetic covariance: G ~4x,

[vs.  phenotypic covariance: Cov(Y)=Xa + Zg]



Understanding G for high-dimensional trait sets

Multivariate breeder’s equation (Lande and Arnold 1983):

Ap=Gp

» Leading principal components of G indicate directions of
strongest evolutionary response

» Rank of G indicates effective dimensionality of evolution

> Sparsity of G indicates extent of genetic correlations among
traits



MANOVA estimator for ¥ 4 [ox G]

Between-group and within-group “sums of squares”:  (p X p)

SSA=JY (Yi=V)T(Yi=Y)  SSE=> (Y;-Y)T(V;-Y)

ij
—YTP,Y =YTPeY
Standard MANOVA estimator:
$a=1( L1 ssa 7555 =Y'BY
AT\t - ’
for B = 714Ps — TEPE. NOT positive definite!

Estimation of genetic covariance ¥ 4 quite different from

'phenotypic covariance’ n~1YTY (estimates ¥4 + Xg).



Agenda

v

Variance component models and quadratic estimators

v

Bulk eigenvalue distributions

v

Extreme eigenvalue distributions

v

Spiked models: effect on Sa

Theory is asymptotic (p, | — oo proportionally and J fixed), using
random matrix theory.

Simulations assess accuracy in finite samples.



Multivariate variance component models

One way design Yi=p+ai+e€j is an example of:

Y =X+ Uia1+ ...+ Uk—104—1 + €

XB —  fixed effects model

U, — fixed incidence matrices

ar — |, xp random effects, rows ~ N(0,%,)
€ — nxp residual errors, rows ~ N(0,Xy)

Covariance components:  21,..., 2



Some designs in quantitative genetics

[Examples, mixed model Y = X3+ Uiz + ...+ Ugk_1ak—1 + € ]

Balanced half-sib
Unbalanced half-sib

Full-sib half-sib
Monozygotic twin half-sib

Comstock-Robinson

all cases:

[e.g. Lynch & Walsh, 1998]

Balanced one way I, J
Unbalanced one way [, n;
Nested two-way I, J;, njj
Balanced nested multi-way [/, J,...,n

Replicated crossed two-way [/,J, K, L



Quadratic Estimators of Variance Component Matrices

In the mixed model, consider estimators of X, of form:
s =YT'BY

e (M)ANOVA estimators:
equate Sum of Squares to expectations & solve, e.g. (1-way)

B:TAPA—TEPE

e MINQUE [minimum norm quadratic unbiased estimator]
e.g. unbalanced one way design, with ‘prior parameter’ p > 0,

B = 1,4l ,a — 7,6 PE



Quadratic Estimators - Structure

Insert data
Y = U1a1—|—---+Ukak

(after setting X3 = 0, e = Uka)
into estimator

k
Y, =YTBY = Y o] U] BUsas

r,s=1

Write as = GSZi/z, Gs i.i.d Gaussian matrix; B, s = U,TBUS.

5= 5267 B,.6.x:?

r,s

“Doubly correlated”, general B.



Models in Wireless Communications
e MIMO-Multiple Access Channels ¥ s

s+ S RY2G:T,G,R? /l \ N {

r=1 (ny antennas) l ‘ \ ‘

R., T, >= 0 — receiver, transmitter
covariances. Couillet-Debbah-Silverstein 2011

e Frequency selective MIMO Moustakas-Simon 2007, Dupuy-Loubaton 2011
k
1/2 1/2 +1/2 1/2
N RVGrTPTY?6RY
r,s=1

e Variance components: B = (B, s) symmetric, not necess > 0

S 526 B, Gxy?

r,s



Bulk eigenvalue distribution



Special case: no common random effects

Y has n rows .9 Ny (0, X); y=p/n—= Yo

y=nlyTy (B =n"tl,)
Empirical eigenvalue distribution:  pg = pt i 5)\,_(5:)
Theorem [Martenko-Pastur] There are deterministic measures g, s.t.

ps — fron — 0 a.s.

pon has Stieltjes transform mo(z) = [(\ — z) '10,(d\) given by
1 -1
mo(z) = - Tr[(1 =~ —vzmo(2))E — zId] ",

(with unique solution mg(z) € Ct)



Special?® case: M-P quarter circle law

When X = Id, 1o = pon has the quarter circle density

f(X) — \/(E+ _X)(X — E—) Ey = (1 4 p/n)2

27X ’

n=1600 p = 500

For general ¥, density f(x) can have multiple intervals of support.



. — p LN\P .
General case for pg = p 1 5)\,-(2)
Assume e n.p,l,..., Iy — oo proportionally,
e S =YTBY

o % Ul <0(), Bl <O(1/n).



General case for ue = p 37 0, S

Assume e n.p,l,..., Iy — oo proportionally,
e S =YTBY
o X, IUl <0O(), [B]<0O(1/n).

Theorem [Fan J 2016] There are deterministic measures figp, S.t.

g — pron — 0 a.s.

pon has Stieltjes transform mg(z) = [(\ — z) '10,(d\) given by

mo(z) = —113 Tr [(z1d+ zk: b/(2)] o
r=1

for ai(z),...,ak(z), bi(z),..., bx(z) the unique solution to a
certain system of 2k equations.



Particular cases

Notes:
1. pug dependson n,p, l, ... k1,21, .., 2k
2. k = 1: Recovers Marchenko-Pastur theorem for > = n=1YTYy

k = 2 : System of equations for balanced one-way layout, for 3 4:

an(z) = —(1/1) Tr[(z1d 4+ba(2)Za + be(2)Xe) "X A]
aE(z) = 7(1/!‘)) Tr[(z Id +bA(Z)ZA =+ bE(Z)ZE)_le]

1
ba?) = T D T e
be(2) J-1 1

T JU-1=26(2)) T+ Jaa(z) + Jae(2)
mo(2) = —(1/p) Tr[(z1d +ba(2)Ta + be(2)e) ]

1

Easily solvable by iteration to compute =3mg(z) near real-axis.
s



Computing the deterministic equivalent

Theorem (Fan, J. (cont'd))

To compute my(z), the preceding system of equations may be
solved by initializing (ba, bg) arbitrarily, then iteratively updating
(aa, ag) and (ba, be) until convergence.

-1 0 1 2 3 4 -4 -2 2 4 6 8 10
Black curves: m~13mg(z) for Sz = 1074,

Right: ¥4 =Yg =Id. | = 200 groups of size J =2, p = 500.



Balanced nested/crossed designs

Lattice subspace structure:

So
S=P s, |
r'<r 51
Mean (Sum of) Squares MS, for S, 5,
\
EMS: =) ¥, Sri1
re=t .
Sy

Mobius inversion: ft =YTBY

In equation system for mg(z) for 3,
» compute b,(z) as rational function of as(z)

» included in software (forthcoming)



Two-way nested example
(a) (b)

= 2400, ) =400, h=2, kL=3, p=2500

0.51d,, Y3 =2ld,,
22, (C): 23,



About proof of bulk convergence

» Via rectangular free probability
» In classical probability, if scalar variables W 1L H|B, then
E[eiSW\H, B] = IE[eiSW\B]
> use operator-valued free probability for eigenvalues of
k
W=YTBY =3 HTGTB,G.H, (H, = ¥1/?)
r,s=1
Ha, He GZ Gg

via block matrix embedding, e.g. Gp Baa Bare
Ge  Bea Bee



Free probability correspondence

All the familiar probability notions have analogues:

(commutative) probability non-commutative probability
scalarr.vs X, Y random matrices A, B

sample space operator (W*-)algebra
expectation E trace T

moments EX* moments 7(AK) = 3. AK(A)
Fourier transform Stieltjes/Cauchy transform
(asy) independence (asy) freeness

sub o-field H sub (W*-)algebra B
conditional expectation B-valued expectation operator
conditional indep. |H conditional freeness over B

(conditional) Fourier transform  (operator valued) Cauchy transform

Voiculescu 1991, 1995, Speicher 1998, Nica, Shlyakhtenko and Speicher 2002,
Benaych-Georges 2009, Hiai and Petz 2000, Speicher and Vargas 2012,



Extreme eigenvalue distribution



Tracy-Widom at each edge
X = (Xai) MxN, Xai ~ (0, N71); T symmetric
s =XTTX (and, if T>0, ¥ = TY2xXTT?)
For M/N — d > 0 and a regular right (or left) edge E.:

=

0 N o

Theorem [Fan, J 17] If Apax, Amin are extreme eigenvalues near E,,

(YN)?3(Amax — E.) 5 TW;  (right edge)
(’YN)2/3(E* - )‘min) i> TW1 (|Eft edge)

[ Extends Lee — Schnelli, 2016: T > 0, largest eigenvalue only]



Lindeberg swapping

Swap eigenvalues (t,) of T one-at-a-time between bulks:

swapt

_—

Fup

O(N) swaps with careful scaling doesn’t change limit of Apax!
Then build on resolvent comparison approach, Lee - Schnelli, 2016.



Largest eigenvalue under “global null hypothesis”

Back to var. components model: Y = X8 + Ura, + -+ - + Urak

Hy: %, = c,2 Id, r=1,...,k " sphericity”

> =YTBY, [BX = 0]

Note: B has +ve and —ve eigenvalues, even in the limit.

Corollary (Fan J 17)

Assume n, p — oo proportionally, Hy holds,
satisfies certain regularity conditions. Then

B||<1/n, and B

()\max(i) - ,unp)/Unp _L> TWh,

where finp, 0np = (kp)~2/3 are functions of p, \1(B), ..., A\n(B).



Formulas for center 1i,, and scale o,

Let t1,..., ty be eigenvalues of T = (pc,csU,” BUs),
with M:/1-|-~---|-Ik.

z(m) = ! + ! EM fo Silverstein-Choi (95)
S )
~ 1 ta lHverstein (o]

m, : solves Z'(m) =0 2(m)
pnp = Ey = z(m.)

onp = [2"'(m.)/(20%)]Y/3 E,=z(m,)

El Karoui 2007, ,1/7_1 0
Hachem-Hardy-Najim 2016



Spiked Variance Component models



Spiked models for variance components
Assume [J '01]:

Y 4 = 03 1d + finite number of spikes

Y £ = 0% 1d + finite number of spikes

Where do corresponding outlier eigenvalues of A appear in the
spectrum?



Spiked models for variance components
Assume [J '01]:

Y 4 = 03 1d + finite number of spikes

Y £ = 0% 1d + finite number of spikes

Where do corresponding outlier eigenvalues of A appear in the
spectrum?  i.e. let

Ya=03ld4+Va0OaVS,  Yep=021d+VEOVS,

©a, ©f (diagonal) contain spike values, columns of Va, Vg the
corresponding eigenvectors. Set

(64 0 o d VTV
e(o eE>’ S<VETVA ld /-

S contains eigenvector alignments.



Aliasing from the error covariance

20

15

10

|
: . ‘ HH.
5 10

-10 -5 0

15
Eigenvalues of 2 4

2a=1Id, but £g = Id+ spike at 25
| = 200 groups of size J =2, p =500 traits.



Dependence on eigenvector alignment

10| 10}
| |
‘ H‘\
5 10 15 20 25

-10 -5 0

~10 -5 0 5 10 15 20

Eigenvalues of ¥4 Eigenvalues of $ 4
> 5o = Id+ spike at 15, L g = Id + spike at 25.
Left: Spikes orthogonal. Right: Spikes aligned.




Locations of outliers

Let ¥ = c1MSA + oo MSE w. deterministic equivalent measure .

- ©a 0 - Id VATVE . tl(/\) Id 0
@(0 @[_:).' 5<VETVA Id > T_( 0 t2(>\)|d

Here, t; and t; are two (explicit) analytic functions of A, c1, .



Locations of outliers

Let ¥ = c1MSA + oo MSE w. deterministic equivalent measure .

- ©a 0 - Id VATVE . t1(>\) Id 0
e<0 ®E>. 5<\/ET\/A Id > T_( 0 t2(>\)|d

Here, t; and t; are two (explicit) analytic functions of A, c1, .

Theorem (Fan & Yi Sun, informal version)
Suppose p, | — oo with af\,a%, ©, S fixed. For each root A of

det (Id+SOT(\)) =0

outside supp(uo), an eigenvalue of 3~ converges to A.
The remaining eigenvalues of ¥ converge to supp(fo)-

— Algorithm to estimate © from loci of outlier eigenvalues of
2(c1, ) as (a1, e2) vary.



Locations of outliers in >4

-

104

| |
o HHHH‘HH\H I ‘ HH‘HHH‘HH .

T = 1d+[2,5,10,15], %¢ — Id, T = 1d,Te = Id+25

-
|
‘HHHHH\ oL ‘ HH‘HHH

ZA =Id +10 ZE = Id +25 left: orthogonal nght ahgned

Black dots indicate theoretical predictions for outlier locations.
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Largest eigenvalue: balanced one-way example

Ho: Xa=0, Xg=Id, Ba = 7aAPa — TePE

- 2 0 2 - 2 0 2

Histogram & QQ-plot of scaled Amax(34) ftnp = 0.91, 0, = 0.012
| =400, J=4, p=500

» Conditions ok if Amax(B) = 1/n with multiplicity < n

» For ¢, unknown, can use 6,2 = pflTr(Zr).



Approximation accuracy in finite samples

I n=p n=4xp
J=2 J=5 J=10 \ J=2 J=5 J=10
0.90 0.938 0.944 0.953 0.932 0.937 0.940
p=20 0.95 0.971 0.974 0.978 0.968 0.970 0.972
0.99 0.995 0.995 0.995 0.993 0.994 0.995
0.90 0.926 0.934 0.931 0.923 0.919 0.918
p =100 | 0.95 0.963 0.969 0.968 0.962 0.961 0.961
0.99 0.992 0.995 0.995 0.993 0.993 0.994
0.90 0.922 0.917 0.918 0.913 0.909 0.916
p =500 | 0.95 0.961 0.958 0.959 0.956 0.954 0.959
0.99 0.992 0.992 0.991 0.993 0.992 0.994

Empirical CDF values at the theoretical 0.90, 0.95, and 0.99
quantiles of the F; law. (Standard errors 0.001-0.003.)

The Tracy-Widom test is slightly conservative in practice.



