Eigenvalues and Variance Components

lain Johnstone
Statistics and Biomedical Data Science, Stanford
On the occasion of the 60th birthday of Oleg Lepski and Alexandre Tsybakov
Luminy, 19 December, 2017

Joint with Mark Blows \& Zhou Fan

Motivating example

- p quantitative phenotypic traits, measured across a population
- Mean $\mu \in \mathbb{R}^{p}$, covariance matrix $\Sigma \in \mathbb{R}^{p \times p}$

Q: Suppose natural selection acts on one of the traits. What will be the distribution of this trait in the next generation? On the distribution of other traits?

Motivating example

- pquantitative phenotypic traits, measured across a population
- Mean $\mu \in \mathbb{R}^{p}$, covariance matrix $\Sigma \in \mathbb{R}^{p \times p}$

Q: Suppose natural selection acts on one of the traits. What will be the distribution of this trait in the next generation? On the distribution of other traits?

A: Depends on the "additive genetic component" of Σ

Can estimate genetic covariance using variance components models (Fisher 1918)

Half-sib experiment

Sires
Dams

Offspring

One-way layout: $\quad n=I J$ individuals, I groups of size J

$$
\begin{array}{ll}
Y_{i j}=\mu+\alpha_{i}+\varepsilon_{i j} & \in \mathbb{R}^{p} \quad \text { (as row vector) } \\
\alpha_{i} \stackrel{i i d}{\sim} \mathcal{N}\left(0, \Sigma_{A}\right), & \text { group effect } \\
\varepsilon_{i j} \stackrel{i i d}{\sim} \mathcal{N}\left(0, \Sigma_{E}\right), & \text { residual error }
\end{array}
$$

Additive genetic covariance: $\quad G \approx 4 \Sigma_{A}$
[vs. phenotypic covariance: $\operatorname{Cov}(Y)=\Sigma_{A}+\Sigma_{E}$]

Understanding G for high-dimensional trait sets

Multivariate breeder's equation (Lande and Arnold 1983):

$$
\Delta \mu=G \beta
$$

- Leading principal components of G indicate directions of strongest evolutionary response
- Rank of G indicates effective dimensionality of evolution
- Sparsity of G indicates extent of genetic correlations among traits

MANOVA estimator for $\Sigma_{A} \quad[\propto G]$

Between-group and within-group "sums of squares": $\quad(p \times p)$

$$
\begin{aligned}
S S A & =J \sum_{i}\left(\bar{Y}_{i}-\bar{Y}\right)^{T}\left(\bar{Y}_{i}-\bar{Y}\right) & S S E & =\sum_{i, j}\left(Y_{i j}-\bar{Y}_{i}\right)^{T}\left(Y_{i j}-\bar{Y}_{i}\right) \\
& =Y^{T} P_{A} Y & & =Y^{T} P_{E} Y
\end{aligned}
$$

Standard MANOVA estimator:

$$
\hat{\Sigma}_{A}=\frac{1}{J}\left(\frac{1}{I-1} S S A-\frac{1}{n-l} S S E\right)=Y^{T} B Y
$$

for

$$
B=\tau_{A} P_{A}-\tau_{E} P_{E}
$$

NOT positive definite!

Estimation of genetic covariance Σ_{A} quite different from 'phenotypic covariance' $n^{-1} Y^{T} Y$ (estimates $\left.\Sigma_{A}+\Sigma_{E}\right)$.

Agenda

- Variance component models and quadratic estimators
- Bulk eigenvalue distributions
- Extreme eigenvalue distributions
- Spiked models: effect on $\hat{\Sigma}_{A}$

Theory is asymptotic ($p, I \rightarrow \infty$ proportionally and J fixed), using random matrix theory.

Simulations assess accuracy in finite samples.

Multivariate variance component models

One way design $\quad Y_{i j}=\mu+\alpha_{i}+\epsilon_{i j} \quad$ is an example of:

$$
Y=X \beta+U_{1} \alpha_{1}+\ldots+U_{k-1} \alpha_{k-1}+\epsilon
$$

$X \beta \quad-\quad$ fixed effects model
$U_{r} \quad-\quad$ fixed incidence matrices
$\alpha_{r} \quad-\quad I_{r} \times p$ random effects, rows $\sim N\left(0, \Sigma_{r}\right)$
$\epsilon-n \times p$ residual errors, rows $\sim N\left(0, \Sigma_{k}\right)$

Covariance components: $\quad \Sigma_{1}, \ldots, \Sigma_{k}$

Some designs in quantitative genetics

[Examples, mixed model $Y=X \beta+U_{1} \alpha_{1}+\ldots+U_{k-1} \alpha_{k-1}+\epsilon$]
[e.g. Lynch \& Walsh, 1998]

Balanced half-sib
Unbalanced half-sib
Full-sib half-sib
Monozygotic twin half-sib
Balanced one way
I, J
Unbalanced one way
I, n_{i}
Nested two-way
$I, J_{i}, n_{i j}$

Balanced nested multi-way $\quad I, J, \ldots, n$
Comstock-Robinson
all cases:

Replicated crossed two-way I, J, K, L

Quadratic Estimators of Variance Component Matrices

In the mixed model, consider estimators of Σ_{r} of form:

$$
\hat{\Sigma}=Y^{T} B Y
$$

- (M)ANOVA estimators:
equate Sum of Squares to expectations \& solve, e.g. (1-way)

$$
B=\tau_{A} P_{A}-\tau_{E} P_{E}
$$

- MINQUE [minimum norm quadratic unbiased estimator] e.g. unbalanced one way design, with 'prior parameter' $\rho \geq 0$,

$$
B=\tau_{\rho A} \Pi_{\rho A}-\tau_{\rho E} P_{E}
$$

Quadratic Estimators - Structure

Insert data

$$
\begin{aligned}
& Y=U_{1} \alpha_{1}+\cdots+U_{k} \alpha_{k} \\
& \quad\left(\text { after setting } X \beta=0, \epsilon=U_{k} \alpha_{k}\right)
\end{aligned}
$$

into estimator

$$
\hat{\Sigma}_{r}=Y^{T} B Y=\sum_{r, s=1}^{k} \alpha_{r}^{T} U_{r}^{T} B U_{s} \alpha_{s}
$$

Write $\alpha_{s}=G_{s} \Sigma_{s}^{1 / 2}, \quad G_{s}$ i.i.d Gaussian matrix; $\quad B_{r, s}=U_{r}^{T} B U_{s}$.

$$
\hat{\Sigma}_{r}=\sum_{r, s} \Sigma_{r}^{1 / 2} G_{r}^{T} B_{r, s} G_{s} \Sigma_{s}^{1 / 2}
$$

"Doubly correlated", general B.

Models in Wireless Communications

- MIMO-Multiple Access Channels

$$
S+\sum_{r=1}^{k} R_{r}^{1 / 2} G_{r}^{*} T_{r} G_{r} R_{r}^{1 / 2}
$$

$R_{r}, T_{r} \succ 0$ - receiver, transmitter covariances.

Couillet-Debbah-Silverstein 2011

- Frequency selective MIMO Moustakas-Simon 2007, Dupuy-Loubaton 2011

$$
\sum_{r, s=1}^{k} R_{r}^{1 / 2} G_{r}^{*} T_{r}^{1 / 2} T_{s}^{1 / 2} G_{s} R_{s}^{1 / 2}
$$

- Variance components: $B=\left(B_{r, s}\right)$ symmetric, not necess $\succ 0$

$$
\sum_{r, s} \Sigma_{r}^{1 / 2} G_{r}^{T} B_{r, s} G_{s} \Sigma_{s}^{1 / 2}
$$

Bulk eigenvalue distribution

Special case: no common random effects

Y has n rows $\stackrel{\text { iid }}{\sim} N_{p}(0, \Sigma) ; \quad \gamma=p / n \rightarrow \gamma_{\infty}$

$$
\hat{\Sigma}=n^{-1} Y^{\top} Y \quad\left(B=n^{-1} I_{n}\right)
$$

Empirical eigenvalue distribution: $\quad \mu_{\hat{\Sigma}}=p^{-1} \sum_{i=1}^{p} \delta_{\lambda_{i}(\hat{\Sigma})}$
Theorem [Marčenko-Pastur] There are deterministic measures $\mu_{0 n}$ s.t.

$$
\mu_{\hat{\Sigma}}-\mu_{0 n} \rightarrow 0 \quad \text { a.s. }
$$

$\mu_{0 n}$ has Stieltjes transform $m_{0}(z)=\int(\lambda-z)^{-1} \mu_{0 n}(d \lambda)$ given by

$$
m_{0}(z)=\frac{1}{p} \operatorname{Tr}\left[\left(1-\gamma-\gamma z m_{0}(z)\right) \Sigma-z \mathrm{Id}\right]^{-1}
$$

(with unique solution $m_{0}(z) \in \mathbb{C}^{+}$)

Special ${ }^{2}$ case: M-P quarter circle law

When $\Sigma=$ Id,$\quad \mu_{0}=\mu_{0 n}$ has the quarter circle density

$$
f(x)=\frac{\sqrt{\left(E_{+}-x\right)\left(x-E_{-}\right)}}{2 \pi x}, \quad E_{ \pm}=(1 \pm \sqrt{p / n})^{2}
$$

$n=1600 p=500$

For general Σ, density $f(x)$ can have multiple intervals of support.

General case for $\mu_{\hat{\Sigma}}=p^{-1} \sum_{i=1}^{p} \delta_{\lambda_{i}(\hat{\Sigma})}$

Assume • $n, p, I_{1}, \ldots, I_{k} \rightarrow \infty$ proportionally,

- $\hat{\Sigma}=Y^{T} B Y$
- $\left\|\Sigma_{r}\right\|,\left\|U_{r}\right\| \leq O(1),\|B\| \leq O(1 / n)$.

General case for $\mu_{\hat{\Sigma}}=p^{-1} \sum_{i=1}^{p} \delta_{\lambda_{i}(\hat{\Sigma})}$

Assume • $n, p, I_{1}, \ldots, I_{k} \rightarrow \infty$ proportionally,

- $\hat{\Sigma}=Y^{T} B Y$
- $\left\|\Sigma_{r}\right\|,\left\|U_{r}\right\| \leq O(1),\|B\| \leq O(1 / n)$.

Theorem [Fan J 2016] There are deterministic measures $\mu_{0 n}$ s.t.

$$
\mu_{\hat{\Sigma}}-\mu_{0 n} \rightarrow 0 \quad \text { a.s. }
$$

$\mu_{0 n}$ has Stieltjes transform $m_{0}(z)=\int(\lambda-z)^{-1} \mu_{0 n}(d \lambda)$ given by

$$
m_{0}(z)=-\frac{1}{p} \operatorname{Tr}\left[\left(z \mathrm{Id}+\sum_{r=1}^{k} b_{r}(z) \Sigma_{r}\right]^{-1}\right.
$$

for $a_{1}(z), \ldots, a_{k}(z), b_{1}(z), \ldots, b_{k}(z)$ the unique solution to a certain system of $2 k$ equations.

Particular cases

Notes:

1. μ_{0} depends on $n, p, I_{1}, \ldots, I_{k-1}, \Sigma_{1}, \ldots, \Sigma_{k}$
2. $k=1$: Recovers Marchenko-Pastur theorem for $\hat{\Sigma}=n^{-1} Y^{T} Y$
$k=2$: System of equations for balanced one-way layout, for $\hat{\Sigma}_{A}$:

$$
\begin{aligned}
& a_{A}(z)=-(1 / I) \operatorname{Tr}\left[\left(z \operatorname{ld}+b_{A}(z) \Sigma_{A}+b_{E}(z) \Sigma_{E}\right)^{-1} \Sigma_{A}\right] \\
& a_{E}(z)=-(1 / n) \operatorname{Tr}\left[\left(z \operatorname{ld}+b_{A}(z) \Sigma_{A}+b_{E}(z) \Sigma_{E}\right)^{-1} \Sigma_{E}\right] \\
& b_{A}(z)=-\frac{1}{1+a_{A}(z)+a_{E}(z)} \\
& b_{E}(z)=\frac{J-1}{J\left(J-1-a_{E}(z)\right)}-\frac{1}{J+J_{a_{A}}(z)+J a_{E}(z)} \\
& m_{0}(z)=-(1 / p) \operatorname{Tr}\left[\left(z \operatorname{ld}+b_{A}(z) \Sigma_{A}+b_{E}(z) \Sigma_{E}\right)^{-1}\right]
\end{aligned}
$$

Easily solvable by iteration to compute $\frac{1}{\pi} \Im m_{0}(z)$ near real-axis.

Computing the deterministic equivalent

Theorem (Fan, J. (cont'd))
To compute $m_{0}(z)$, the preceding system of equations may be solved by initializing $\left(b_{A}, b_{E}\right)$ arbitrarily, then iteratively updating $\left(a_{A}, a_{E}\right)$ and $\left(b_{A}, b_{E}\right)$ until convergence.

Black curves: $\pi^{-1} \Im m_{0}(z)$ for $\Im z=10^{-4}$.
Right: $\Sigma_{A}=\Sigma_{E}=\mathrm{Id} . I=200$ groups of size $J=2, p=500$.

Balanced nested/crossed designs

Lattice subspace structure:

$$
S_{r}=\bigoplus_{r^{\prime} \preceq r} \stackrel{\circ}{S}_{r^{\prime}}
$$

Mean (Sum of) Squares $M S_{r}$ for \dot{S}_{r}

$$
\mathbb{E} M S_{t}=\sum_{r \succeq t} c_{r} \Sigma_{r}
$$

$$
\begin{gathered}
S_{0} \\
\mid \\
S_{1} \\
\vdots \\
S_{r} \\
\mid \\
S_{r+1} \\
\vdots \\
S_{k}
\end{gathered}
$$

Möbius inversion: $\hat{\Sigma}_{t}=Y^{\top} B_{t} Y$
In equation system for $m_{0}(z)$ for $\hat{\Sigma}_{t}$,

- compute $b_{r}(z)$ as rational function of $a_{s}(z)$
- included in software (forthcoming)

Two-way nested example

$\Sigma_{1}=I d_{p}$,
(a): $\hat{\Sigma}_{1}$,

About proof of bulk convergence

- Via rectangular free probability
- In classical probability, if scalar variables $W \Perp H \mid B$, then

$$
\mathbb{E}\left[e^{i s W} \mid H, B\right]=\mathbb{E}\left[e^{i s W} \mid B\right]
$$

- use operator-valued free probability for eigenvalues of

$$
W=Y^{T} B Y=\sum_{r, s=1}^{k} H_{r}^{T} G_{r}^{T} B_{r, s} G_{s} H_{s}, \quad\left(H_{r}=\Sigma_{r}^{1 / 2}\right)
$$

via block matrix embedding, e.g.

$$
\left[\begin{array}{ccc}
H_{A}, H_{E} & G_{A}^{T} & G_{E}^{T} \\
G_{A} & B_{A A} & B_{A E} \\
G_{E} & B_{E A} & B_{E E}
\end{array}\right]
$$

Free probability correspondence

All the familiar probability notions have analogues:
(commutative) probability
non-commutative probability
scalar r.v.s X, Y
sample space
expectation \mathbb{E}
moments $\mathbb{E} X^{k}$
Fourier transform
(asy) independence
sub σ-field \mathcal{H}
conditional expectation
conditional indep. $\mid \mathcal{H}$
(conditional) Fourier transform
random matrices A, B
operator (W^{*}-)algebra
trace τ
moments $\tau\left(A^{k}\right)=\sum_{i} \lambda_{i}^{k}(A)$
Stieltjes/Cauchy transform
(asy) freeness
sub (W^{*}-) algebra \mathcal{B}
\mathcal{B}-valued expectation operator conditional freeness over \mathcal{B}
(operator valued) Cauchy transform

Voiculescu 1991, 1995, Speicher 1998, Nica, Shlyakhtenko and Speicher 2002, Benaych-Georges 2009, Hiai and Petz 2000, Speicher and Vargas 2012,

Extreme eigenvalue distribution

Tracy-Widom at each edge

$$
\begin{aligned}
& X=\left(X_{\alpha i}\right) M \times N, \quad X_{\alpha i} \sim\left(0, N^{-1}\right) ; \quad T \text { symmetric } \\
& \left.\hat{\Sigma}=X^{T} T X \quad \text { (and, if } T \geq 0, \tilde{\Sigma}=T^{1 / 2} X X^{T} T^{1 / 2}\right)
\end{aligned}
$$

For $M / N \rightarrow d>0$ and a regular right (or left) edge E_{*} :

Theorem [Fan, J 17] If $\lambda_{\max }, \lambda_{\min }$ are extreme eigenvalues near E_{*},

$$
\begin{array}{ll}
(\gamma N)^{2 / 3}\left(\lambda_{\max }-E_{*}\right) \xrightarrow{L} \mathrm{TW}_{1} & \text { (right edge) } \\
(\gamma N)^{2 / 3}\left(E_{*}-\lambda_{\min }\right) \xrightarrow{L} \mathrm{TW}_{1} & \text { (left edge) }
\end{array}
$$

Extends Lee - Schnelli, 2016: $T>0$, largest eigenvalue only]

Lindeberg swapping

Swap eigenvalues $\left(t_{\alpha}\right)$ of T one-at-a-time between bulks:

$O(N)$ swaps with careful scaling doesn't change limit of $\lambda_{\max }$! Then build on resolvent comparison approach, Lee - Schnelli, 2016.

Largest eigenvalue under "global null hypothesis"

Back to var. components model: $\quad Y=X \beta+U_{1} \alpha_{r}+\cdots+U_{k} \alpha_{k}$

$$
\begin{gathered}
H_{0}: \Sigma_{r}=c_{r}^{2} \text { Id }, \quad r=1, \ldots, k \quad \text { "sphericity" } \\
\hat{\Sigma}=Y^{T} B Y, \quad[B X=0]
\end{gathered}
$$

Note: B has +ve and -ve eigenvalues, even in the limit.

Corollary (Fan J 17)
Assume $n, p \rightarrow \infty$ proportionally, H_{0} holds, $\|B\| \asymp 1 / n$, and B satisfies certain regularity conditions. Then

$$
\left(\lambda_{\max }(\hat{\Sigma})-\mu_{n p}\right) / \sigma_{n p} \xrightarrow{L} T W_{1},
$$

where $\mu_{n p}, \sigma_{n p}=(\kappa p)^{-2 / 3}$ are functions of $p, \lambda_{1}(B), \ldots, \lambda_{n}(B)$.

Formulas for center $\mu_{n p}$ and scale $\sigma_{n p}$

Let t_{1}, \ldots, t_{M} be eigenvalues of $T=\left(p c_{r} c_{s} U_{r}^{T} B U_{s}\right)$,

$$
\text { with } M=I_{1}+\cdots+I_{k}
$$

$$
\begin{equation*}
z(m)=-\frac{1}{m}+\frac{1}{p} \sum_{\alpha=1}^{M} \frac{t_{\alpha}}{1+t_{\alpha} m} \tag{95}
\end{equation*}
$$

$$
\begin{aligned}
& m_{*}: \text { solves } z^{\prime}(m)=0 \\
& \mu_{n p}=E_{+}=z\left(m_{*}\right) \\
& \sigma_{n p}=\left[z^{\prime \prime}\left(m_{*}\right) /\left(2 p^{2}\right)\right]^{1 / 3}
\end{aligned}
$$

El Karoui 2007,
Hachem-Hardy-Najim 2016

Spiked Variance Component models

Spiked models for variance components

Assume [J '01]:

$$
\begin{aligned}
& \Sigma_{A}=\sigma_{A}^{2} \mathrm{ld}+\text { finite number of spikes } \\
& \Sigma_{E}=\sigma_{E}^{2} \mathrm{Id}+\text { finite number of spikes }
\end{aligned}
$$

Where do corresponding outlier eigenvalues of $\hat{\Sigma}_{A}$ appear in the spectrum?

Spiked models for variance components

Assume [J '01]:

$$
\begin{aligned}
& \Sigma_{A}=\sigma_{A}^{2} \operatorname{ld}+\text { finite number of spikes } \\
& \Sigma_{E}=\sigma_{E}^{2} \mathrm{Id}+\text { finite number of spikes }
\end{aligned}
$$

Where do corresponding outlier eigenvalues of $\hat{\Sigma}_{A}$ appear in the spectrum? i.e. let

$$
\Sigma_{A}=\sigma_{A}^{2} \operatorname{ld}+V_{A} \Theta_{A} V_{A}^{T}, \quad \Sigma_{E}=\sigma_{E}^{2} \operatorname{ld}+V_{E} \Theta_{E} V_{E}^{T}
$$

Θ_{A}, Θ_{E} (diagonal) contain spike values, columns of V_{A}, V_{E} the corresponding eigenvectors. Set

$$
\Theta=\left(\begin{array}{cc}
\Theta_{A} & 0 \\
0 & \Theta_{E}
\end{array}\right), \quad S=\left(\begin{array}{cc}
\mathrm{Id} & V_{A}^{T} V_{E} \\
V_{E}^{T} V_{A} & \mathrm{ld}
\end{array}\right) .
$$

S contains eigenvector alignments.

Aliasing from the error covariance

Eigenvalues of $\hat{\Sigma}_{A}$
$\Sigma_{A}=$ Id, but $\Sigma_{E}=$ Id + spike at 25
$I=200$ groups of size $J=2, p=500$ traits.

Dependence on eigenvector alignment

Eigenvalues of $\hat{\Sigma}_{A}$

Eigenvalues of $\hat{\Sigma}_{A}$
$\Sigma_{A}=\mathrm{Id}+$ spike at $15, \Sigma_{E}=\mathrm{Id}+$ spike at 25 .
Left: Spikes orthogonal.
Right: Spikes aligned.

Locations of outliers

Let $\hat{\Sigma}=c_{1}$ MSA $+c_{2}$ MSE w. deterministic equivalent measure μ_{0}.

$$
\Theta=\left(\begin{array}{cc}
\Theta_{A} & 0 \\
0 & \Theta_{E}
\end{array}\right), \quad S=\left(\begin{array}{cc}
\mathrm{Id} & V_{A}^{T} V_{E} \\
V_{E}^{T} V_{A} & \mathrm{Id}
\end{array}\right), \quad T=\left(\begin{array}{cc}
t_{1}(\lambda) \mathrm{ld} & 0 \\
0 & t_{2}(\lambda) \mathrm{Id}
\end{array}\right)
$$

Here, t_{1} and t_{2} are two (explicit) analytic functions of λ, c_{1}, c_{2}.

Locations of outliers

Let $\hat{\Sigma}=c_{1}$ MSA $+c_{2}$ MSE w. deterministic equivalent measure μ_{0}.
$\Theta=\left(\begin{array}{cc}\Theta_{A} & 0 \\ 0 & \Theta_{E}\end{array}\right), \quad S=\left(\begin{array}{cc}\mathrm{Id} & V_{A}^{T} V_{E} \\ V_{E}^{T} V_{A} & \mathrm{Id}\end{array}\right), \quad T=\left(\begin{array}{cc}t_{1}(\lambda) \mathrm{Id} & 0 \\ 0 & t_{2}(\lambda) \mathrm{Id}\end{array}\right)$
Here, t_{1} and t_{2} are two (explicit) analytic functions of λ, c_{1}, c_{2}.
Theorem (Fan \& Yi Sun, informal version)
Suppose $p, I \rightarrow \infty$ with $\sigma_{A}^{2}, \sigma_{E}^{2}, \Theta, S$ fixed. For each root λ of

$$
\operatorname{det}(\operatorname{ld}+S \Theta T(\lambda))=0
$$

outside supp $\left(\mu_{0}\right)$, an eigenvalue of $\hat{\Sigma}$ converges to λ.
The remaining eigenvalues of $\hat{\Sigma}$ converge to $\operatorname{supp}\left(\mu_{0}\right)$.
\rightarrow Algorithm to estimate Θ from loci of outlier eigenvalues of $\hat{\Sigma}\left(c_{1}, c_{2}\right)$ as $\left(c_{1}, c_{2}\right)$ vary.

Locations of outliers in $\hat{\Sigma}_{A}$

Black dots indicate theoretical predictions for outlier locations.

References

Z Fan, I Johnstone. Eigenvalue distributions of variance components estimators in high-dimensional random effects models. arXiv:1607.02201

Z Fan, I Johnstone. Tracy-Widom at each edge of real covariance estimators. arXiv:1707.02352

M Blows, Z Fan, E Hine, I Johnstone, Y Sun. Spiked covariances and eigenvalue estimation in high-dimensional random effects models. In preparation.

THANK YOU!

Largest eigenvalue: balanced one-way example

$$
H_{0}: \Sigma_{A}=0, \quad \Sigma_{E}=\mathrm{ld}, \quad B_{A}=\tau_{A} P_{A}-\tau_{E} P_{E}
$$

Histogram \& QQ-plot of scaled $\lambda_{\max }\left(\hat{\Sigma}_{A}\right) \mu_{n p}=0.91, \sigma_{n p}=0.012$

$$
I=400, \quad J=4, \quad p=500
$$

- Conditions ok if $\lambda_{\max }(B) \asymp 1 / n$ with multiplicity $\asymp n$
- For c_{r} unknown, can use $\hat{c}_{r}^{2}=p^{-1} \operatorname{Tr}\left(\hat{\Sigma}_{r}\right)$.

Approximation accuracy in finite samples

	F_{1}	$J=2$	$\begin{aligned} & n=p \\ & J=5 \end{aligned}$	$J=10$	$J=2$	$\begin{aligned} & =4 \times p \\ & J=5 \end{aligned}$	$J=10$
$p=20$	0.90	0.938	0.944	0.953	0.932	0.937	0.940
	0.95	0.971	0.974	0.978	0.968	0.970	0.972
	0.99	0.995	0.995	0.995	0.993	0.994	0.995
$p=100$	0.90	0.926	0.934	0.931	0.923	0.919	0.918
	0.95	0.963	0.969	0.968	0.962	0.961	0.961
	0.99	0.992	0.995	0.995	0.993	0.993	0.994
$p=500$	0.90	0.922	0.917	0.918	0.913	0.909	0.916
	0.95	0.961	0.958	0.959	0.956	0.954	0.959
	0.99	0.992	0.992	0.991	0.993	0.992	0.994

Empirical CDF values at the theoretical 0.90, 0.95, and 0.99 quantiles of the F_{1} law. (Standard errors 0.001-0.003.)

The Tracy-Widom test is slightly conservative in practice.

