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Motivating example

I p quantitative phenotypic traits, measured across a population

I Mean µ ∈ Rp, covariance matrix Σ ∈ Rp×p

Q: Suppose natural selection acts on one of the traits. What will
be the distribution of this trait in the next generation? On the
distribution of other traits?

A: Depends on the “additive genetic component” of Σ

Can estimate genetic covariance using variance components
models (Fisher 1918)
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Half-sib experiment

Sires

Dams

O�spring

...

One-way layout: n = IJ individuals, I groups of size J

Yij = µ+ αi + εij ∈ Rp (as row vector)

αi
iid∼ N (0,ΣA), group effect

εij
iid∼ N (0,ΣE ), residual error

Additive genetic covariance: G ≈ 4ΣA

[vs. phenotypic covariance: Cov(Y ) = ΣA + ΣE ]



Understanding G for high-dimensional trait sets

Multivariate breeder’s equation (Lande and Arnold 1983):

∆µ = Gβ

I Leading principal components of G indicate directions of
strongest evolutionary response

I Rank of G indicates effective dimensionality of evolution

I Sparsity of G indicates extent of genetic correlations among
traits



MANOVA estimator for ΣA [∝ G ]

Between-group and within-group “sums of squares”: (p × p)

SSA = J
∑
i

(Ȳi − Ȳ )T (Ȳi − Ȳ ) SSE =
∑
i ,j

(Yij − Ȳi )
T (Yij − Ȳi )

= Y TPAY = Y TPEY

Standard MANOVA estimator:

Σ̂A =
1

J

(
1

I − 1
SSA− 1

n − I
SSE

)
= Y TBY ,

for B = τAPA − τEPE . NOT positive definite!

Estimation of genetic covariance ΣA quite different from

’phenotypic covariance’ n−1Y TY (estimates ΣA + ΣE ).



Agenda

I Variance component models and quadratic estimators

I Bulk eigenvalue distributions

I Extreme eigenvalue distributions

I Spiked models: effect on Σ̂A

Theory is asymptotic (p, I →∞ proportionally and J fixed), using
random matrix theory.

Simulations assess accuracy in finite samples.



Multivariate variance component models

One way design Yij = µ+ αi + εij is an example of:

Y = Xβ + U1α1 + . . .+ Uk−1αk−1 + ε

Xβ − fixed effects model

Ur − fixed incidence matrices

αr − Ir × p random effects, rows ∼ N(0,Σr )

ε − n × p residual errors, rows ∼ N(0,Σk)

Covariance components: Σ1, . . . ,Σk



Some designs in quantitative genetics

[Examples, mixed model Y = Xβ + U1α1 + . . .+ Uk−1αk−1 + ε ]

[e.g. Lynch & Walsh, 1998]

Balanced half-sib Balanced one way I , J

Unbalanced half-sib Unbalanced one way I , ni

Full-sib half-sib Nested two-way I , Ji , nij
Monozygotic twin half-sib

Balanced nested multi-way I , J, . . . , n

Comstock-Robinson Replicated crossed two-way I , J,K , L

all cases: I ∝ p



Quadratic Estimators of Variance Component Matrices

In the mixed model, consider estimators of Σr of form:

Σ̂ = Y TBY

• (M)ANOVA estimators:
equate Sum of Squares to expectations & solve, e.g. (1-way)

B = τAPA − τEPE

• MINQUE [minimum norm quadratic unbiased estimator]
e.g. unbalanced one way design, with ‘prior parameter’ ρ ≥ 0,

B = τρAΠρA − τρEPE



Quadratic Estimators - Structure

Insert data
Y = U1α1 + · · ·+ Ukαk

(after setting Xβ = 0, ε = Ukαk)
into estimator

Σ̂r = Y TBY =
k∑

r ,s=1

αT
r U

T
r BUsαs

Write αs = GsΣ
1/2
s , Gs i.i.d Gaussian matrix; Br ,s = UT

r BUs .

Σ̂r =
∑
r ,s

Σ
1/2
r GT

r Br ,sGsΣ
1/2
s

“Doubly correlated”, general B.



Models in Wireless Communications
• MIMO-Multiple Access Channels

S +
k∑

r=1

R
1/2
r G ∗r TrGrR

1/2
r

Rr ,Tr � 0 — receiver, transmitter
covariances.
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Fig. 1. Multi-antenna multiple access scenario with Kronecker channels.

interchangeable antennas on each device. We, therefore, claim
that the diagonal entries of and , i.e., the variance of
the channel fading on every antenna, are identical and equal
to one, which, along with the normalization of the Gaussian
matrix , allows for a consistent definition of the SNR. As
a consequence, and . We will see that
under these trace constraints the hypotheses made in Theorem
1 are always satisfied, therefore making Theorem 1 valid for
all possible figures of correlation, including strongly correlated
patterns. The hypotheses of Theorem 2, used to characterize
the ergodic rate region of the MIMO-MAC, require additional
mild assumptions, making Theorem 2 valid for most practical
models of and . These statements are of major impor-
tance and rather new since in other contributions, e.g., [5],
[13], it is usually assumed that the correlation matrices have
uniformly bounded spectral norms across . Physically, this
means that only low correlation patterns are allowed, excluding
short distances between antennas and small solid angles of
energy propagation. The counterpart of this interesting property
is a theoretical reduction of the convergence rates of the derived
deterministic equivalents, compared to those proposed in [5]
and [13].

The rate performance of multi-cell or multi-user communi-
cation schemes is connected to the so-called Stieltjes transform
and Shannon transform of matrices of the type

(2)

We study these matrices using tools from the field of large di-
mensional random matrix theory [16]. Among these tools, we
define the Stieltjes transform of the Hermitian nonneg-
ative definite matrix , for , as

where denotes the (cumulative) distribution function of the
eigenvalues of . The Stieltjes transform was originally used
to characterize the asymptotic distribution of the eigenvalues
of large dimensional random matrices [17]. From a wireless
communications viewpoint, it can be used to characterize the

signal-to-interference plus noise ratio of certain communica-
tion models, e.g., [18], [19]. A second interest of the Stieltjes
transform in wireless communications is its link to the so-called
Shannon transform of , that we define for as

The Shannon transform is commonly used to provide approxi-
mations of capacity expressions in large dimensional systems,
e.g., [6]. In the present work, the Shannon transform of will
be used to provide a deterministic approximation of the ergodic
achievable rate of the MIMO-MAC.

Before introducing our main results, namely Theorem 1 and
Theorem 2, which are rather technical and difficult to fathom
without a preliminary explanation, we briefly describe these re-
sults in telecommunication terms and their consequences to the
multi-user multi-cell communication models at hand.

B. Main Results

The main results of this work unfold as follows.
• Theorem 1 provides a deterministic equivalent

for the Stieltjes transform of , under the as-
sumption that and grow large with the same order
of magnitude and the sequences of distribution functions

and form tight sequences [20]. This is,
we provide an approximation of which can
be expressed without reference to the random matrices
and which is almost surely asymptotically exact when

. The tightness hypothesis is the key assumption
that allows degenerated and matrices to be valid
in our framework, and that therefore allows us to study
strongly correlated channel models.

• Theorem 2 provides a deterministic equivalent for
the Shannon transform of . In this theorem, the
assumptions on the and matrices are only slightly
more constraining and of marginal importance for practical
purposes. In particular, Theorem 2 theoretically allows the
largest eigenvalues of or to grow linearly with ,

Couillet-Debbah-Silverstein 2011

• Frequency selective MIMO Moustakas-Simon 2007, Dupuy-Loubaton 2011

k∑
r ,s=1

R
1/2
r G ∗r T

1/2
r T

1/2
s GsR

1/2
s

• Variance components: B = (Br ,s) symmetric, not necess � 0∑
r ,s

Σ
1/2
r GT

r Br ,sGsΣ
1/2
s



Bulk eigenvalue distribution



Special case: no common random effects

Y has n rows
iid∼ Np(0,Σ); γ = p/n→ γ∞

Σ̂ = n−1Y TY (B = n−1In)

Empirical eigenvalue distribution: µΣ̂ = p−1
∑p

i=1 δλi (Σ̂)

Theorem [Marčenko-Pastur] There are deterministic measures µ0n s.t.

µΣ̂ − µ0n → 0 a.s.

µ0n has Stieltjes transform m0(z) =
∫

(λ− z)−1µ0n(dλ) given by

m0(z) =
1

p
Tr
[
(1− γ − γzm0(z))Σ− z Id

]−1
,

(with unique solution m0(z) ∈ C+)



Special2 case: M-P quarter circle law

When Σ = Id, µ0 = µ0n has the quarter circle density

f (x) =

√
(E+ − x)(x − E−)

2πx
, E± = (1±

√
p/n)2

For general Σ, density f (x) can have multiple intervals of support.



General case for µΣ̂ = p−1
∑p

i=1 δλi (Σ̂)

Assume • n, p, I1, . . . , Ik →∞ proportionally,

• Σ̂ = Y TBY

• ‖Σr‖, ‖Ur‖ ≤ O(1), ‖B‖ ≤ O(1/n).

Theorem [Fan J 2016] There are deterministic measures µ0n s.t.

µΣ̂ − µ0n → 0 a.s.

µ0n has Stieltjes transform m0(z) =
∫

(λ− z)−1µ0n(dλ) given by

m0(z) = −1

p
Tr
[
(z Id +

k∑
r=1

br (z)Σr

]−1
,

for a1(z), . . . , ak(z), b1(z), . . . , bk(z) the unique solution to a
certain system of 2k equations.
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Particular cases

Notes:

1. µ0 depends on n, p, I1, . . . , Ik−1,Σ1, . . . ,Σk

2. k = 1: Recovers Marchenko-Pastur theorem for Σ̂ = n−1Y TY

k = 2 : System of equations for balanced one-way layout, for Σ̂A:

aA(z) = −(1/I ) Tr[(z Id +bA(z)ΣA + bE (z)ΣE )−1ΣA]

aE (z) = −(1/n) Tr[(z Id +bA(z)ΣA + bE (z)ΣE )−1ΣE ]

bA(z) = − 1

1 + aA(z) + aE (z)

bE (z) =
J − 1

J(J − 1 − aE (z))
− 1

J + JaA(z) + JaE (z)

m0(z) = −(1/p) Tr[(z Id +bA(z)ΣA + bE (z)ΣE )−1]

Easily solvable by iteration to compute 1
π=m0(z) near real-axis.



Computing the deterministic equivalent

Theorem (Fan, J. (cont’d))

To compute m0(z), the preceding system of equations may be
solved by initializing (bA, bE ) arbitrarily, then iteratively updating
(aA, aE ) and (bA, bE ) until convergence.
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Black curves: π−1=m0(z) for =z = 10−4.

Right: ΣA = ΣE = Id. I = 200 groups of size J = 2, p = 500.



Balanced nested/crossed designs

Lattice subspace structure:

Sr =
⊕
r ′�r

S̊r ′ ,

Mean (Sum of) Squares MSr for S̊r

EMSt =
∑
r�t

crΣr

Möbius inversion: Σ̂t = Y TBtY

S0

S1

Sr

...

Sr+1

Sk

..

S0

S1

S2 S3

S4

S5

In equation system for m0(z) for Σ̂t ,

I compute br (z) as rational function of as(z)

I included in software (forthcoming)



Two-way nested example
(a) (b)

(c)

n = 2400, I1 = 400, I2 = 2, I3 = 3, p = 500

Σ1 = Idp, Σ2 = 0.5 Idp, Σ3 = 2 Idp,
(a): Σ̂1, (b): Σ̂2, (c): Σ̂3,



About proof of bulk convergence

I Via rectangular free probability

I In classical probability, if scalar variables W ⊥⊥ H|B, then

E[e isW |H,B] = E[e isW |B]

I use operator-valued free probability for eigenvalues of

W = Y TBY =
k∑

r ,s=1

HT
r GT

r Br ,sGsHs , (Hr = Σ
1/2
r )

via block matrix embedding, e.g.

HA,HE GT
A GT

E

GA BAA BAE

GE BEA BEE





Free probability correspondence

All the familiar probability notions have analogues:

(commutative) probability non-commutative probability

scalar r.v.s X ,Y random matrices A,B
sample space operator (W ∗-)algebra
expectation E trace τ
moments EX k moments τ(Ak) =

∑
i λ

k
i (A)

Fourier transform Stieltjes/Cauchy transform
(asy) independence (asy) freeness

sub σ-field H sub (W ∗-)algebra B
conditional expectation B-valued expectation operator
conditional indep. |H conditional freeness over B
(conditional) Fourier transform (operator valued) Cauchy transform

Voiculescu 1991, 1995, Speicher 1998, Nica, Shlyakhtenko and Speicher 2002,
Benaych-Georges 2009, Hiai and Petz 2000, Speicher and Vargas 2012,



Extreme eigenvalue distribution



Tracy-Widom at each edge

X = (Xαi ) M × N, Xαi ∼ (0,N−1); T symmetric

Σ̂ = XTTX (and, if T ≥ 0, Σ̃ = T 1/2XXTT 1/2)

For M/N → d > 0 and a regular right (or left) edge E∗:

¤E

0

Theorem [Fan, J 17] If λmax, λmin are extreme eigenvalues near E∗,

(γN)2/3(λmax − E∗)
L→ TW1 (right edge)

(γN)2/3(E∗ − λmin)
L→ TW1 (left edge)

[ Extends Lee – Schnelli, 2016: T > 0, largest eigenvalue only]



Lindeberg swapping

Swap eigenvalues (tα) of T one-at-a-time between bulks:

¤E

0

 
MP
f

®
tswap 

 swaps)N(O

O(N) swaps with careful scaling doesn’t change limit of λmax!
Then build on resolvent comparison approach, Lee - Schnelli, 2016.



Largest eigenvalue under “global null hypothesis”

Back to var. components model: Y = Xβ + U1αr + · · ·+ Ukαk

H0 : Σr = c2
r Id, r = 1, . . . , k ”sphericity”

Σ̂ = Y TBY , [BX = 0]

Note: B has +ve and −ve eigenvalues, even in the limit.

Corollary (Fan J 17)

Assume n, p →∞ proportionally, H0 holds, ‖B‖ � 1/n, and B
satisfies certain regularity conditions. Then

(λmax(Σ̂)− µnp)/σnp
L→ TW1,

where µnp, σnp = (κp)−2/3 are functions of p, λ1(B), . . . , λn(B).



Formulas for center µnp and scale σnp

Let t1, . . . , tM be eigenvalues of T = (pcrcsU
T
r BUs),

with M = I1 + · · ·+ Ik .

z(m) = − 1

m
+

1

p

M∑
α=1

tα
1 + tαm

Silverstein-Choi (95)

m∗ : solves z ′(m) = 0

µnp = E+ = z(m∗)

σnp = [z ′′(m∗)/(2p2)]1/3

El Karoui 2007,
Hachem-Hardy-Najim 2016

)¤m(z=¤E

1=¿{1

¤m

E=¿1 0={10 0

)+m(00=z2=°

)m(z

m



Spiked Variance Component models



Spiked models for variance components

Assume [J ’01]:

ΣA = σ2
A Id + finite number of spikes

ΣE = σ2
E Id + finite number of spikes

Where do corresponding outlier eigenvalues of Σ̂A appear in the
spectrum?

i.e. let

ΣA = σ2
A Id +VAΘAV

T
A , ΣE = σ2

E Id +VEΘEV
T
E ,

ΘA,ΘE (diagonal) contain spike values, columns of VA,VE the
corresponding eigenvectors. Set

Θ =

(
ΘA 0
0 ΘE

)
, S =

(
Id V T

A VE

V T
E VA Id

)
.

S contains eigenvector alignments.
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Aliasing from the error covariance
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0

5

10

15

20

Eigenvalues of Σ̂A

ΣA = Id, but ΣE = Id + spike at 25

I = 200 groups of size J = 2, p = 500 traits.



Dependence on eigenvector alignment
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Eigenvalues of Σ̂A
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Eigenvalues of Σ̂A

ΣA = Id + spike at 15, ΣE = Id + spike at 25.

Left: Spikes orthogonal. Right: Spikes aligned.



Locations of outliers

Let Σ̂ = c1MSA + c2MSE w. deterministic equivalent measure µ0.

Θ =

(
ΘA 0
0 ΘE

)
, S =

(
Id V T

A VE

V T
E VA Id

)
, T =

(
t1(λ) Id 0

0 t2(λ) Id

)
Here, t1 and t2 are two (explicit) analytic functions of λ, c1, c2.

Theorem (Fan & Yi Sun, informal version)

Suppose p, I →∞ with σ2
A, σ

2
E ,Θ,S fixed. For each root λ of

det (Id +SΘT (λ)) = 0

outside supp(µ0), an eigenvalue of Σ̂ converges to λ.
The remaining eigenvalues of Σ̂ converge to supp(µ0).

→ Algorithm to estimate Θ from loci of outlier eigenvalues of
Σ̂(c1, c2) as (c1, c2) vary.
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Locations of outliers in Σ̂A
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ΣA = Id +[2, 5, 10, 15],ΣE = Id, ΣA = Id,ΣE = Id +25
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ΣA = Id +10,ΣE = Id +25; left: orthogonal, right: aligned

Black dots indicate theoretical predictions for outlier locations.
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Largest eigenvalue: balanced one-way example

H0 : ΣA = 0, ΣE = Id, BA = τAPA − τEPE

Histogram & QQ-plot of scaled λmax(Σ̂A) µnp = 0.91, σnp = 0.012

I = 400, J = 4, p = 500

I Conditions ok if λmax(B) � 1/n with multiplicity � n

I For cr unknown, can use ĉ2
r = p−1Tr(Σ̂r ).



Approximation accuracy in finite samples

F1
n = p n = 4× p

J = 2 J = 5 J = 10 J = 2 J = 5 J = 10

p = 20
0.90 0.938 0.944 0.953 0.932 0.937 0.940
0.95 0.971 0.974 0.978 0.968 0.970 0.972
0.99 0.995 0.995 0.995 0.993 0.994 0.995

p = 100
0.90 0.926 0.934 0.931 0.923 0.919 0.918
0.95 0.963 0.969 0.968 0.962 0.961 0.961
0.99 0.992 0.995 0.995 0.993 0.993 0.994

p = 500
0.90 0.922 0.917 0.918 0.913 0.909 0.916
0.95 0.961 0.958 0.959 0.956 0.954 0.959
0.99 0.992 0.992 0.991 0.993 0.992 0.994

Empirical CDF values at the theoretical 0.90, 0.95, and 0.99
quantiles of the F1 law. (Standard errors 0.001–0.003.)

The Tracy-Widom test is slightly conservative in practice.


