Eigenvalues and Variance Components

lain Johnstone

Statistics and Biomedical Data Science, Stanford

On the occasion of the 60th birthday of Oleg Lepski and Alexandre Tsybakov

Luminy, 19 December, 2017

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Joint with Mark Blows & Zhou Fan

Motivating example

p quantitative phenotypic traits, measured across a population

• Mean $\mu \in \mathbb{R}^{p}$, covariance matrix $\Sigma \in \mathbb{R}^{p \times p}$

Q: Suppose natural selection acts on one of the traits. What will be the distribution of this trait in the next generation? On the distribution of other traits?

Motivating example

p quantitative phenotypic traits, measured across a population

• Mean $\mu \in \mathbb{R}^{p}$, covariance matrix $\Sigma \in \mathbb{R}^{p \times p}$

Q: Suppose natural selection acts on one of the traits. What will be the distribution of this trait in the next generation? On the distribution of other traits?

A: Depends on the "additive genetic component" of $\boldsymbol{\Sigma}$

Can estimate genetic covariance using variance components models (Fisher 1918)

Half-sib experiment

One-way layout: n = IJ individuals, I groups of size J

$$\begin{split} Y_{ij} &= \mu + \alpha_i + \varepsilon_{ij} \quad \in \mathbb{R}^p \quad \text{(as row vector)} \\ \alpha_i \stackrel{iid}{\sim} \mathcal{N}(0, \Sigma_A), \qquad \text{group effect} \\ \varepsilon_{ij} \stackrel{iid}{\sim} \mathcal{N}(0, \Sigma_E), \qquad \text{residual error} \end{split}$$

Additive genetic covariance: $G \approx 4\Sigma_A$ [vs. phenotypic covariance: $Cov(Y) = \Sigma_A + \Sigma_E$]

Understanding G for high-dimensional trait sets

Multivariate breeder's equation (Lande and Arnold 1983):

$$\Delta \mu = G\beta$$

- Leading principal components of G indicate directions of strongest evolutionary response
- ▶ Rank of *G* indicates effective dimensionality of evolution
- Sparsity of G indicates extent of genetic correlations among traits

MANOVA estimator for Σ_A [\propto *G*]

Between-group and within-group "sums of squares": (p imes p)

$$SSA = J \sum_{i} (\bar{Y}_{i} - \bar{Y})^{T} (\bar{Y}_{i} - \bar{Y}) \qquad SSE = \sum_{i,j} (Y_{ij} - \bar{Y}_{i})^{T} (Y_{ij} - \bar{Y}_{i})$$
$$= Y^{T} P_{A} Y \qquad = Y^{T} P_{E} Y$$

Standard MANOVA estimator:

$$\hat{\Sigma}_{A} = \frac{1}{J} \left(\frac{1}{I-1} SSA - \frac{1}{n-I} SSE \right) = Y^{T} BY,$$

for $B = \tau_A P_A - \tau_E P_E$. NOT positive definite!

Estimation of genetic covariance Σ_A quite different from 'phenotypic covariance' $n^{-1}Y^TY$ (estimates $\Sigma_A + \Sigma_E$).

- Variance component models and quadratic estimators
- Bulk eigenvalue distributions
- Extreme eigenvalue distributions
- Spiked models: effect on $\hat{\Sigma}_A$

Theory is asymptotic $(p, I \rightarrow \infty$ proportionally and J fixed), using random matrix theory.

Simulations assess accuracy in finite samples.

Multivariate variance component models

One way design
$$Y_{ij} = \mu + \alpha_i + \epsilon_{ij}$$
 is an example of:

$$Y = X\beta + U_1\alpha_1 + \ldots + U_{k-1}\alpha_{k-1} + \epsilon$$

 $X\beta$ – fixed effects model

 U_r – fixed incidence matrices

 $\alpha_r - I_r \times p$ random effects, rows $\sim N(0, \Sigma_r)$

 $\epsilon - n \times p$ residual errors, rows $\sim N(0, \Sigma_k)$

・ロト・日本・モート モー うへぐ

Covariance components: $\Sigma_1, \ldots, \Sigma_k$

Some designs in quantitative genetics

[Examples, mixed model $Y = X\beta + U_1\alpha_1 + \ldots + U_{k-1}\alpha_{k-1} + \epsilon$]

[e.g. Lynch & Walsh, 1998]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Balanced half-sib	Balanced one way	I , J
Unbalanced half-sib	Unbalanced one way	<i>I</i> , <i>n_i</i>
Full-sib half-sib Monozygotic twin half-sib	Nested two-way	Ι, J _i , n _{ij}
	Balanced nested multi-way	I , J,, n
Comstock-Robinson	Replicated crossed two-way	I , J, K, L
all cases:		$I\propto p$

Quadratic Estimators of Variance Component Matrices

In the mixed model, consider estimators of Σ_r of form:

$$\hat{\Sigma} = Y^T B Y$$

• (M)ANOVA estimators:

equate Sum of Squares to expectations & solve, e.g. (1-way)

$$\mathbf{B} = \tau_{\mathbf{A}} P_{\mathbf{A}} - \tau_{\mathbf{E}} P_{\mathbf{E}}$$

• MINQUE [minimum norm quadratic unbiased estimator] e.g. unbalanced one way design, with 'prior parameter' $\rho \ge 0$,

$$B = \tau_{\rho A} \Pi_{\rho A} - \tau_{\rho E} P_E$$

Quadratic Estimators - Structure

Insert data

$$Y = U_1 lpha_1 + \dots + U_k lpha_k$$

(after setting $Xeta = 0, \epsilon = U_k lpha_k$)

into estimator

$$\hat{\boldsymbol{\Sigma}}_{r} = \boldsymbol{Y}^{\mathsf{T}} \boldsymbol{B} \boldsymbol{Y} = \sum_{r,s=1}^{k} \alpha_{r}^{\mathsf{T}} \boldsymbol{U}_{r}^{\mathsf{T}} \boldsymbol{B} \boldsymbol{U}_{s} \alpha_{s}$$

Write $\alpha_s = G_s \Sigma_s^{1/2}$, G_s i.i.d Gaussian matrix; $B_{r,s} = U_r^T B U_s$.

$$\hat{\Sigma}_r = \sum_{r,s} \Sigma_r^{1/2} \boldsymbol{G}_r^{\mathsf{T}} \boldsymbol{B}_{r,s} \boldsymbol{G}_s \Sigma_s^{1/2}$$

"Doubly correlated", general B.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Models in Wireless Communications

• MIMO-Multiple Access Channels

$$S + \sum_{r=1}^{k} R_{r}^{1/2} G_{r}^{*} T_{r} G_{r} R_{r}^{1/2}$$

 $R_r, T_r \succ 0$ — receiver, transmitter covariances.

Couillet-Debbah-Silverstein 2011

• Frequency selective MIMO Moustakas-Simon 2007, Dupuy-Loubaton 2011

$$\sum_{r,s=1}^{k} R_r^{1/2} G_r^* T_r^{1/2} T_s^{1/2} G_s R_s^{1/2}$$

• Variance components: $B = (B_{r,s})$ symmetric, not necess $\succ 0$

$$\sum_{r,s} \Sigma_r^{1/2} G_r^T B_{r,s} G_s \Sigma_s^{1/2}$$

Bulk eigenvalue distribution

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Special case: no common random effects

Y has *n* rows
$$\stackrel{\text{iid}}{\sim} N_p(0, \Sigma)$$
; $\gamma = p/n \rightarrow \gamma_\infty$
 $\hat{\Sigma} = n^{-1} Y^T Y$ $(B = n^{-1} I_n)$

Empirical eigenvalue distribution: $\mu_{\hat{\Sigma}} = p^{-1} \sum_{i=1}^{p} \delta_{\lambda_{i}(\hat{\Sigma})}$

Theorem [Marčenko-Pastur] There are deterministic measures μ_{0n} s.t.

$$\mu_{\hat{\Sigma}} - \mu_{0n} o 0$$
 a.s.

 μ_{0n} has Stieltjes transform $m_0(z) = \int (\lambda - z)^{-1} \mu_{0n}(d\lambda)$ given by

$$m_0(z) = rac{1}{p} \operatorname{Tr} \left[(1 - \gamma - \gamma z m_0(z)) \Sigma - z \operatorname{Id} \right]^{-1},$$

(with unique solution $m_0(z) \in \mathbb{C}^+$)

Special² case: M-P quarter circle law

When $\Sigma = Id$, $\mu_0 = \mu_{0n}$ has the quarter circle density

$$f(x) = rac{\sqrt{(E_+ - x)(x - E_-)}}{2\pi x}, \qquad E_\pm = (1 \pm \sqrt{p/n})^2$$

For general Σ , density f(x) can have multiple intervals of support.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

General case for $\mu_{\hat{\Sigma}} = p^{-1} \sum_{i=1}^{p} \delta_{\lambda_i(\hat{\Sigma})}$

Assume • $n, p, l_1, \ldots, l_k \rightarrow \infty$ proportionally,

- $\hat{\Sigma} = Y^T B Y$
- $\|\Sigma_r\|, \|U_r\| \le O(1), \|B\| \le O(1/n).$

・ロト・日本・モート モー うへぐ

General case for $\mu_{\hat{\Sigma}} = p^{-1} \sum_{i=1}^{p} \delta_{\lambda_i(\hat{\Sigma})}$

Assume • $n, p, l_1, \ldots, l_k \rightarrow \infty$ proportionally,

- $\hat{\Sigma} = Y^T B Y$
- $\|\Sigma_r\|, \|U_r\| \le O(1), \|B\| \le O(1/n).$

Theorem [Fan J 2016] There are deterministic measures μ_{0n} s.t.

$$\mu_{\hat{\Sigma}} - \mu_{0n} o 0$$
 a.s.

 μ_{0n} has Stieltjes transform $m_0(z) = \int (\lambda - z)^{-1} \mu_{0n}(d\lambda)$ given by

$$m_0(z) = -rac{1}{p}\operatorname{Tr}\left[(z\operatorname{Id} + \sum_{r=1}^k rac{b_r(z)}{\Sigma_r} \sum_r\right]^{-1},$$

for $a_1(z), \ldots, a_k(z), b_1(z), \ldots, b_k(z)$ the unique solution to a certain system of 2k equations.

Particular cases

Notes:

- 1. μ_0 depends on $n, p, l_1, \ldots, l_{k-1}, \Sigma_1, \ldots, \Sigma_k$
- 2. k = 1: Recovers Marchenko-Pastur theorem for $\hat{\Sigma} = n^{-1} Y^T Y$

k = 2: System of equations for balanced one-way layout, for $\hat{\Sigma}_A$:

$$\begin{aligned} a_A(z) &= -(1/I) \operatorname{Tr}[(z \operatorname{Id} + b_A(z)\Sigma_A + b_E(z)\Sigma_E)^{-1}\Sigma_A] \\ a_E(z) &= -(1/n) \operatorname{Tr}[(z \operatorname{Id} + b_A(z)\Sigma_A + b_E(z)\Sigma_E)^{-1}\Sigma_E] \\ b_A(z) &= -\frac{1}{1 + a_A(z) + a_E(z)} \\ b_E(z) &= \frac{J-1}{J(J-1-a_E(z))} - \frac{1}{J+Ja_A(z) + Ja_E(z)} \\ m_0(z) &= -(1/p) \operatorname{Tr}[(z \operatorname{Id} + b_A(z)\Sigma_A + b_E(z)\Sigma_E)^{-1}] \end{aligned}$$

Easily solvable by iteration to compute $\frac{1}{\pi}\Im m_0(z)$ near real-axis.

Computing the deterministic equivalent

Theorem (Fan, J. (cont'd))

To compute $m_0(z)$, the preceding system of equations may be solved by initializing (b_A, b_E) arbitrarily, then iteratively updating (a_A, a_E) and (b_A, b_E) until convergence.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

Balanced nested/crossed designs

Lattice subspace structure:

$$S_r = \bigoplus_{r' \preceq r} \mathring{S}_{r'},$$

Mean (Sum of) Squares MS_r for \mathring{S}_r

$$\mathbb{E} MS_t = \sum_{r \succeq t} c_r \Sigma_r$$

Möbius inversion: $\hat{\Sigma}_t = Y^T B_t Y$

In equation system for $m_0(z)$ for $\hat{\Sigma}_t$,

- compute $b_r(z)$ as rational function of $a_s(z)$
- included in software (forthcoming)

Two-way nested example

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

About proof of bulk convergence

- Via rectangular free probability
- ▶ In classical probability, if scalar variables $W \perp H | B$, then

$$\mathbb{E}[e^{isW}|H,B] = \mathbb{E}[e^{isW}|B]$$

use operator-valued free probability for eigenvalues of

$$W = Y^T B Y = \sum_{r,s=1}^k H_r^T G_r^T B_{r,s} G_s H_s, \qquad (H_r = \Sigma_r^{1/2})$$

via block matrix embedding, e.g.

$$\begin{bmatrix} H_A, H_E & G_A^T & G_E^T \\ G_A & B_{AA} & B_{AE} \\ G_E & B_{EA} & B_{EE} \end{bmatrix}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Free probability correspondence

All the familiar probability notions have analogues:

(commutative) probability	non-commutative probability
scalar r.v.s X, Y	random matrices A, B
sample space	operator (W^* -)algebra
expectation $\mathbb E$	trace $ au$
moments $\mathbb{E}X^k$	moments $ au(A^k) = \sum_i \lambda_i^k(A)$
Fourier transform	Stieltjes/Cauchy transform
(asy) independence	(asy) freeness
sub σ -field ${\cal H}$	sub (W^* -)algebra ${\cal B}$
conditional expectation	$\mathcal B$ -valued expectation operator
conditional indep. $ \mathcal{H} $	conditional freeness over ${\cal B}$
(conditional) Fourier transform	(operator valued) Cauchy transform

Voiculescu 1991, 1995, Speicher 1998, Nica, Shlyakhtenko and Speicher 2002, Benaych-Georges 2009, Hiai and Petz 2000, Speicher and Vargas 2012,

Extreme eigenvalue distribution

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Tracy-Widom at each edge

$$\begin{split} X &= (X_{\alpha i}) \quad M \times N, \qquad X_{\alpha i} \sim (0, N^{-1}); \qquad T \text{ symmetric} \\ \hat{\Sigma} &= X^T T X \qquad (\text{and, if } T \geq 0, \quad \tilde{\Sigma} = T^{1/2} X X^T T^{1/2}) \end{split}$$

For $M/N \rightarrow d > 0$ and a regular right (or left) edge E_* :

Theorem [Fan, J 17] If $\lambda_{\max}, \lambda_{\min}$ are extreme eigenvalues near E_* ,

$$(\gamma N)^{2/3} (\lambda_{\max} - E_*) \xrightarrow{L} TW_1$$
 (right edge)
 $(\gamma N)^{2/3} (E_* - \lambda_{\min}) \xrightarrow{L} TW_1$ (left edge)

[Extends Lee – Schnelli, 2016: T > 0, largest eigenvalue only]

Lindeberg swapping

Swap eigenvalues (t_{α}) of T one-at-a-time between bulks:

O(N) swaps with careful scaling doesn't change limit of λ_{max} ! Then build on resolvent comparison approach, Lee - Schnelli, 2016.

Largest eigenvalue under "global null hypothesis"

Back to var. components model: $Y = X\beta + U_1\alpha_r + \cdots + U_k\alpha_k$

$$H_0: \Sigma_r = c_r^2 \operatorname{Id}, \quad r = 1, \dots, k$$
 "sphericity"

$$\hat{\Sigma} = Y^T B Y, \qquad [BX = 0]$$

Note: B has +ve and -ve eigenvalues, even in the limit.

Corollary (Fan J 17)

Assume $n, p \to \infty$ proportionally, H_0 holds, $||B|| \simeq 1/n$, and B satisfies certain regularity conditions. Then

$$(\lambda_{\max}(\hat{\Sigma}) - \mu_{np}) / \sigma_{np} \xrightarrow{L} TW_1,$$

where $\mu_{np}, \sigma_{np} = (\kappa p)^{-2/3}$ are functions of $p, \lambda_1(B), \ldots, \lambda_n(B)$.

Formulas for center μ_{np} and scale σ_{np}

Let
$$t_1, \ldots, t_M$$
 be eigenvalues of $T = (pc_r c_s U_r^T B U_s)$,
with $M = I_1 + \cdots + I_k$.

$$z(m) = -rac{1}{m} + rac{1}{p}\sum_{lpha=1}^{M}rac{t_{lpha}}{1+t_{lpha}m}$$

Silverstein-Choi (95)

$$m_*$$
 : solves $z'(m) = 0$
 $\mu_{np} = E_+ = z(m_*)$
 $\sigma_{np} = [z''(m_*)/(2p^2)]^{1/3}$

El Karoui 2007, Hachem-Hardy-Najim 2016

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Spiked Variance Component models

Spiked models for variance components

Assume [J '01]:

 $\Sigma_A = \sigma_A^2 \operatorname{Id} + \operatorname{finite} \operatorname{number} \operatorname{of} \operatorname{spikes}$ $\Sigma_E = \sigma_E^2 \operatorname{Id} + \operatorname{finite} \operatorname{number} \operatorname{of} \operatorname{spikes}$

Where do corresponding outlier eigenvalues of $\hat{\Sigma}_A$ appear in the spectrum?

Spiked models for variance components

Assume [J '01]:

$$\Sigma_A = \sigma_A^2 \operatorname{Id} + \operatorname{finite} \operatorname{number} \operatorname{of} \operatorname{spikes}$$

 $\Sigma_E = \sigma_E^2 \operatorname{Id} + \operatorname{finite} \operatorname{number} \operatorname{of} \operatorname{spikes}$

Where do corresponding outlier eigenvalues of $\hat{\Sigma}_A$ appear in the spectrum? i.e. let

$$\Sigma_A = \sigma_A^2 \operatorname{Id} + V_A \Theta_A V_A^T, \qquad \Sigma_E = \sigma_E^2 \operatorname{Id} + V_E \Theta_E V_E^T,$$

 Θ_A, Θ_E (diagonal) contain spike values, columns of V_A, V_E the corresponding eigenvectors. Set

$$\Theta = \begin{pmatrix} \Theta_A & 0 \\ 0 & \Theta_E \end{pmatrix}, \qquad S = \begin{pmatrix} \mathsf{Id} & V_A^T V_E \\ V_E^T V_A & \mathsf{Id} \end{pmatrix}.$$

S contains eigenvector alignments.

Aliasing from the error covariance

 $\Sigma_A = Id$, but $\Sigma_E = Id + spike$ at 25

I = 200 groups of size J = 2, p = 500 traits.

Dependence on eigenvector alignment

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Locations of outliers

Let
$$\hat{\Sigma} = c_1 \text{MSA} + c_2 \text{MSE}$$
 w. deterministic equivalent measure μ_0 .
 $\Theta = \begin{pmatrix} \Theta_A & 0 \\ 0 & \Theta_E \end{pmatrix}, \quad S = \begin{pmatrix} \text{Id} & V_A^T V_E \\ V_E^T V_A & \text{Id} \end{pmatrix}, \quad T = \begin{pmatrix} t_1(\lambda) \text{Id} & 0 \\ 0 & t_2(\lambda) \text{Id} \end{pmatrix}$

Here, t_1 and t_2 are two (explicit) analytic functions of λ , c_1 , c_2 .

Locations of outliers

Let $\hat{\Sigma} = c_1 \text{MSA} + c_2 \text{MSE}$ w. deterministic equivalent measure μ_0 . $\Theta = \begin{pmatrix} \Theta_A & 0 \\ 0 & \Theta_E \end{pmatrix}, \quad S = \begin{pmatrix} \text{Id} & V_A^T V_E \\ V_E^T V_A & \text{Id} \end{pmatrix}, \quad T = \begin{pmatrix} t_1(\lambda) \text{ Id} & 0 \\ 0 & t_2(\lambda) \text{ Id} \end{pmatrix}$

Here, t_1 and t_2 are two (explicit) analytic functions of λ , c_1 , c_2 .

Theorem (Fan & Yi Sun, informal version) Suppose $p, I \rightarrow \infty$ with $\sigma_A^2, \sigma_E^2, \Theta, S$ fixed. For each root λ of

 $\det\left(\mathsf{Id} + S\Theta T(\lambda)\right) = 0$

outside supp(μ_0), an eigenvalue of $\hat{\Sigma}$ converges to λ . The remaining eigenvalues of $\hat{\Sigma}$ converge to supp(μ_0).

 \rightarrow Algorithm to estimate Θ from loci of outlier eigenvalues of $\hat{\Sigma}(c_1, c_2)$ as (c_1, c_2) vary.

Locations of outliers in $\hat{\Sigma}_A$

Black dots indicate theoretical predictions for outlier locations.

References

Z Fan, I Johnstone. Eigenvalue distributions of variance components estimators in high-dimensional random effects models. *arXiv:1607.02201*

Z Fan, I Johnstone. Tracy-Widom at each edge of real covariance estimators. *arXiv:1707.02352*

M Blows, Z Fan, E Hine, I Johnstone, Y Sun. Spiked covariances and eigenvalue estimation in high-dimensional random effects models. *In preparation.*

THANK YOU!

Largest eigenvalue: balanced one-way example

$$H_0: \Sigma_A = 0, \quad \Sigma_E = \mathsf{Id}, \qquad B_A = \tau_A P_A - \tau_E P_E$$

Histogram & QQ-plot of scaled $\lambda_{max}(\hat{\Sigma}_A) \ \mu_{np} = 0.91, \sigma_{np} = 0.012$ $I = 400, \quad J = 4, \quad p = 500$

• Conditions ok if $\lambda_{\max}(B) \approx 1/n$ with multiplicity $\approx n$

For c_r unknown, can use $\hat{c}_r^2 = p^{-1} \text{Tr}(\hat{\Sigma}_r)$.

Approximation accuracy in finite samples

	E	r $n = p$			$n = 4 \times p$		
	J = 2	J = 5	J = 10	J = 2	J = 5	J = 10	
p = 20	0.90	0.938	0.944	0.953	0.932	0.937	0.940
	0.95	0.971	0.974	0.978	0.968	0.970	0.972
	0.99	0.995	0.995	0.995	0.993	0.994	0.995
	0.90	0.926	0.934	0.931	0.923	0.919	0.918
<i>p</i> = 100	0.95	0.963	0.969	0.968	0.962	0.961	0.961
	0.99	0.992	0.995	0.995	0.993	0.993	0.994
	0.90	0.922	0.917	0.918	0.913	0.909	0.916
p = 500	0.95	0.961	0.958	0.959	0.956	0.954	0.959
	0.99	0.992	0.992	0.991	0.993	0.992	0.994

Empirical CDF values at the theoretical 0.90, 0.95, and 0.99 quantiles of the F_1 law. (Standard errors 0.001–0.003.)

The Tracy-Widom test is slightly conservative in practice.