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Part 1: Problem formulation and
background



Problem

» Model: we observe a sample Yi,...,Y,, generated by
Yz:X'ana izla"'ana

— X4,...,X,, are iid random variables with density fx;

— N1,...,7y are iid random variables, independent of
X1,...,X,, with density g.

» The goal: estimate fx on the basis of Y7,...,Y,,. We consider
the problem of estimating fx at a single given point x.

> fy is a scale mixture of fx and g:

fy() =fx*gl(y) := JOOOO 2 fx(4)g(z)da = JOO ~g(4) fx (z)dz.



Related literature

» Stochastic volatility model: X; >0, n; ~ N(0,1).
Van Es, Spreij & Van Zanten (2003), Van Es & Spreij (2011),

Belomestny & Schoemakers (2015)...

» Multiplicative censoring model: X; >0, n; ~ U[0, 1].
Vardi (1989), Vardi & Zhang (1992), Andersen & Hansen (2001),
Belomestny, Comte & Genon-Catalot (2016)...

» Estimation of mixing densities/distributions
— location models (deconvolution): vast literature...

— exponential families: Zhang (1990, 95), Loh & Zhang (1997)...

— demixing of scale mixtures: 777



A naive approach: deconvolution with log-data

» The case of positive r.v.: if X; >0 and n; > 0 then

— take log—transformation of the data
V=X +n,, Y =lnY;, X, =InX;, n,=Inn,.

— estimate fX/(a:) by a deconvolution technique and
transform back using the formula fx(z) = 2 fx/(Inz).
» The approach is not applicable when
— random variables may take negative values

— estimating at zero: the inverse transformation is not

well-defined there.



Research questions

» T he problem was studied only for specific distributions of the
measurement errors (uniform, normal, Beta), and proposed

estimators are designed for these distributions...

» The goal is to provide answers to the following questions:

— How to construct estimators of fx in a principled way

under general assumptions on g7
— What is the achievable estimation accuracy?

— What is the accuracy of the deconvolution estimator

resulting from the naive approach?



Part 2: Preliminaries



1. The Mellin transform

The Mellin transform: for a function u supported on [0, )

() = Mu: 2] = J " e Lu(z)da,

0
where z takes values in a strip Q, :={2€ C:a < Re(z) < b}

(the strip 2, can degenerate to a vertical line).

If u(z) = O(z7%%¢) as 2 — 0+ and u(z) = O(z7°7¢) as x — @

then the integral defines an analytic function on €,.
If u is a probability density then always {1 + iw,w € R} € ,,.

The inversion formula

1 c+100
u(r) = — r~*u(z)dz, Vce (a,b).

211 c—100



2. The Mellin transform

The Parceval formula: for any ¢ in the common strip of

analyticity of u(1 — z) and v(z)

JOO u(x)v(x)dr = L ZOO (1l — 2)v(z)dz.

0 - 2mi c—i00
The Mellin transform of u * v:
[u xv](2) = M[u*v; z] = M[u; z|M|v; z].

The bilateral Laplace transform of a function u on (—0, )

o0
u(z) = Llu; z] = J u(x)e **dux.
—Q0
The relationship between the Mellin and Laplace transforms

Mlu; z] = J e *Pule *)dr = Llw; z], w(x):=u(e™™).

—0Q0



Identifiability

» The issue of identifiability arises since X and n may take
negative values.

» Let gt (z) :=g(z)1(x > 0) and ¢~ (z) := g(—x)1(z > 0), and let
gt (z), g (z) be the one—sided Mellin transforms defined on
Qv N Q- =:{ze€C:a < Re(z) < b},
Qe N Q- # & since a<1<b.

» Lemma: The probability density fx is identifiable from
fy = fx g if and only if g (z) # g~ (z) almost everywhere on
Qg+ N Qy—, or g(z) # g(—x) on a set of positive Lebesgue
measure.
— if g is non—symmetric then fx is identifiable;

— if supp(g) = [0,00) then fx is identifiable.



General idea for estimator construction

» Linear functional strategy
Find a pair of kernels K(x,y) and L(x,y) such that

(i) S_ (z,y)fx(y)dy approximates well the value fx(x) to be

recovered;

(ii) kernel L(z,y) is related to K(z,y) via

[ K@oxwa= [ Lennway

— 00 — Q0

» Under (i) and (ii)
%Zn: L(z,Y;)

is a sensible estimator for fx(z)...



Part 3: Estimation at a point separated
away from zero



1. Kernel construction

» Kernel K: for K :R—-R and h > 0 let

Kh(x7y) -

LR (RWEY g > 0

0, y/x < 0.

» Kernel L: for se (1 —0,1—a) define

Ls,h($7y) c=
( 1 s+100 T
27TZ|$| s—ioo | Y
1 S+100
L _27TZ|$| S§—100

z

X

Y

N

K(zh)gt(1—2) iy y/z > 0

g1 =2)2 =g~ —2)]°

z

N

K(zhg~(1 - 2) dz, y/x <O.

(97 (A =2)]" = [g7(1 - 2)]?



2. Kernel construction

Lemma: Let Ky(x,y) be as above; if the integrals in the
definition of Ls y(x,y) are absolutely convergent then

f@ Lan(z,y)fv(y)dy = J_oo Kp (1) fx (t)dt.

One can always set s =0 because 0e (1 —0b,1—a):

-

1 (@ |z|iw_ K(wh)§ (1—iw) y
Lol ) 27| x| S_oob’ [§+(1—iw)]2—[§—(1—iw)]2dw’ T >0,
0,h\L,Y) = S
! SOO |£’7’w K (wh)g~ (1—iw) dow. ¥ <0
. 27z J—oolyl  [gT(1—iw)]*—[g~ (1—iw)]* 77 = ’

where IA((w) .= K (iw), w € R, is the Fourier transform of K.

If supp(g) < [0,00) then g=g*, g~ =0, and
1 ([ |z]* K(wh) Y
L =L - v dw, >0
h(xay) O,h(xvy) 27T|.CE| J_@ Y g(]. _ ZCU) W, T




Connection to deconvolution with log—data

» The log-transformed data
V=X +n,, n,=Inn;, X, =InX;, Y/ =Y.

» The standard deconvolution estimator for fx:(ty) is

) t —zw(Y-/—tO)d :
fX 0) 27m Z f 0 gq7 ’ ~
hence, by applying the inverse transformation
A 1 K h
fx(x0) = —fX’(lnilfo Z f w —iwlIn(Yi/zo) 4,
iy 7T£C()77, 0 gn

» T he deconvolution estimator is a specific case of our
estimator %Z?:l Lgn(z0,Y;) when s =0: if n ~ g then

g () =€e*g(e”), gy (w) =M|g;1+iw] =g(1 + iw).



Assumptions on the error density g

>

From now on we assume: X >0, n > 0,
supp(g) < [0,90), g =: {z : Re(z) € (a,b)}, supp(fx) < [0,0).
By the Riemann—Lebesgue lemma, g(z) — 0 as |Im(z)| — .

Assumption [G1] (polynomial decay)

For o € (a,b) there exist positive wy, ¢y, Bo > By, v such that
— min|y|<y, |9(0 +iw)| = co >0

— Bi|w|7Y < |g(0 + iw)| < Ba|w| ™7, |w| = wo.

[G1] stipulates that |g(z)| does not have zeros on the line

{o + iw,w € R}, and polynomially decreasing as |w| — oo.



Examples

» Example 1 (Beta distribution): let g(z) = (v + 1)z¥ /61,
z e (0,0), v>—1. Then a = —v, b=, and [G1] holds with

v =1
0o (v +1)

Vv +o)? Fw?
» Example 2 (Pareto distribution): let g(z) = (v —1)0" 1 /2",
x>0,0>0and v>1. Then a = -0, b=r, and [G1] holds

Vo € (—v, ).

g(o +iw)| =

with v = 1,
(v —1)971
\/(V —0)? + w? ’

» Example 3: the product of two independent uniform on [0, 1]

(0 + iw)| = Vo € (—oo,v).

random variables has density g(x) = In(1/x), z € (0,1). Here
G(z) = 1/2%, and [G1] is satisfied with v = 2.



Estimator

» Kernel K: Let K : R — R satisfy the following conditions:
(i) supp(K) = [-1,1],

1
JK )dt =1, J t"K(t)dt =0, k=1,...,m;
—1

(i) K is q times cont. differentiable, max,;—g. 4 ||KY | < Ck.

» The estimator: for g >0, s€ (1 —b,1—a) and h > 0 define

. 1 &
fsn(xo) = 5; s.n(T0, Y.

= (“"’)W e

» If g(2) does not have zeros for all z € 2, then the integral
does not depend on s; otherwise there is a dependence.




Functional class and pointwise risk

» The local Holder functional class %, (A, 5)

Let r>1, A>0, 8> 0; we say that density f belongs to
Hyr = Hnyr(A, B) if for £:=max{ke Ny : k < (3}

max [fM(z)| <A, Va e [r o, ra],

k=1,...,

|f(£)(a;) — f(ﬁ)(x’)| < Alx — :1;’|B_£, Vo, 2’ € [r g, o).

» Remark: condition f e .77, (A, ) does not put any
restrictions on the behavior of f at zero and at infinity...

» The risk of an estimator f and the minimax risk:

Risky,

Risk

f; ) =

f

sup
fxest

By | (o) — Fx(@)l?]

] := inf Risk,, [f; 5]



Bounds on the risk

» Theorem 1: Let [G1] hold with o =1, v > 1/2, and f, be

associated with m > |B]|+1, ¢>~v+1, s =0, and
h=hy :=C} [A2x35+2n]_1/(25+27+1).

If xo = Cy then for large n
Pn

A

~

2~v+1 . __B
RlSkZEQ [fh*) 0, ’l"] 03 A25-:2’Y+1 (3387 1n—1) 28+2v+1 .

» Theorem 2: Let xo > Cy >0, [G1] holds with o =1, v > 1/2,
and |g'(1 + iw)| < Blw|™7, Y|w| = wg. Then

lim inf {qs;lRisk;;O [%O,T]} > Cs.

n—0o0



Remarks

‘The estimator f’h* is rate optimal = the deconvolution

estimator based on the log—transformed data is rate optimal.

The accuracy deteriorates for large zq; e.g., if n ~ U(0,1) then

the minimax risk is proportional to z/*?*®)

The Mellin transform fX of fx € J;,, IS guaranteed to exist
only on the line {1 + iw,w € R}. This is essential in

Theorems 1 and 2: the lower bound is achieved on

(0) (N _ 1 (1) N _ £(0) 0  In(z/zo)
x () = x|l +1n2(513/5130)]7 x (@) =[x (@) + a:w( h )

One can improve dependence of the risk on xg under

additional conditions on fx at zero and/or at infinity.



Improvements and choice of s

» Functional class: for a« > 0, M > 0 define

oo

F =Fam(A,B) =5, (A 0)n {f ; f 2% f(z)dx < M}

0
» Theorem 3: For e >0 let sy := max{—«, (1 —b) +¢}. Let [GI]

hold with 0 =1 — sy, v > 5. Let fs*,h* (xo) be associated with
ho= hy = Cy[ M1 A2g2P 2720y 7V EOF2HD).
If.il?() CQ then

r B
Risky, [ foy hy - F] < CyATmranrt (Mo2 ™ 20— 1) 255257

» Note that s, <0. If n ~U(0,1) and a =1 then s, = —1, and

the bound on the risk is proportional to z;”/*#*3).



Part 4: Estimation at zero



Estimation at zero

» Functional class: J.(A, ) is the local Holder class as

7, (A, B) but now on the interval [0,r]. Define also

Ay = H(A, B, M) = (A, B) A {f | flo < M.
» T he problem is trivial if

o0
Ig:zf de<oo < 0€(),.
T

0

Here fy is bounded at the origin, and fy(0) = fx(0)I,. Then

fx(0) can estimated with standard rate n=8/(28+1),

» The condition 0 € (), is restrictive: the only interesting case

0 0]
Ig::J @dxzoo < 0¢ Q.

0 i



Kernel construction and estimator

» For s > 0 we construct a function K, : R — R s.t.

(i) supp(K,) = [0,0),

00)
JK t)dt = 1, J tK ()dt =0, k=1,...,m;
0

(i) |Ks(s + iw)| < c1(s, m) exp{—w?/2}, Vw.
» The kernels K and L: K, p(x) := (1/h)Ks(z/h), and

Lonly) = —— T Kan() o
h | 210 Js_ioo (1 — 2)

_ 1 foo (@)iwwffs(eriu.J) P

2rhi=sys J_ . \y/ g(1 —s—iw)

» [ he estimator:

1
— sh
n

||M:



Assumptions on g

Assumption [G2]: for some pe [0,1), ¢ =0 and § e (0,1)
cox” P|In(1/x)]? < g(z) < Coz™P[In(1/x)]|?, x€|0,9).

[G2] holds for U(0,1) and exp(1) with p =0 and ¢ = 0.

Assumption [G3]: for 1 — o € Q, one has
o0 €—w2/2 J
max f — , dw < (i <
=12 J_ o \[g(1 — o + iw)|

Q0 dl 6—w2/2 2
f—w de! (|§(1 — o+ iw)|>

dw < Cy < o0,
where [ := [(q¢ + 1)/2], q is given in [G2].

[G2] specifies behavior of g at zero; [G3] is a weak
condition...



Bounds on the risk

» Theorem 4: (Upper bound). Suppose [G2] and [G3] with

o =sy:=32(1—p). Let fs*,h* (0) be associated with s = s, and

M(lnn)q+”]”+l”p __ ) 0 pe(0),

h=nh ;:[ =
" A%n I, p=0.

Then for large n
Pn

~

B
RlSkO[fS* h*7%] C3M2B+p+1 A26+1+P (lnn)q+%n_1] 28+p+1

» Theorem 5: (Lower bound). Suppose [G2] and
§ zg*(z)(Inz)?dz < Cy < 0. Then

lim inf {go,;lRiSk?; L%_”T]} > (.

n—0o0



Remarks

» The estimator fs*,h* is optimal in order.

» If p =0 then the rate of convergence is only by a Inn—factor
worse than the standard rate. This is the case, e.g., for
n~ U(0,1) and n ~ exp(1) where the optimal rate is
(Inn/n)?/(28+1)

» In contrast to estimating at xg # 0, the rate of convergence is

completely determined by local behavior of g near the origin.



1. Concluding remarks

» Two completely different settings:
— (A): estimating fx at a point separated from zero;

— (B): estimating fx at zero.

» (A): the accuracy depends on xy and is determined by
— the local smoothness of fx in a vicinity of xg;
— the rate at which |g(z)| decreases as |Im(z)| — oo along a
line which is a global characteristic of g.
» (B): the accuracy determined by
— local smoothness of fx in a vicinity of 0;

— local behavior of g in a vicinity of 0.



2. Concluding remarks

» Implementation

In many cases kernel L, j; can be computed explicitly, and the

estimators can be easily implemented.

» “Super-smooth’” densities

The case of exponential decaying |g(o + iw)| for zg > 0 can be
treated similarly. Here the rates are slow, logarithmic in n,
and the improvements with respect to dependence on zy are

of the second order smallness.

» Adaptation with respect to unknown smoothness seems to

be straightforward, though technical...



