Subvector Inference in Partially Identified Models with Many Moment Inequalities

Alexandre Belloni

joint work with Federico Bugni (Duke) and Victor Chernozhukov (MIT)

Meeting in Mathematical Statistics CIRM, December 20th, 2017

Happy Birthday

Luminy, December 12, 2013

Linear programming approach to high-dimensional errors-in-variables models

Alexandre Tsybakov, joint work with Mathieu Rosenbaum

Laboratoire de Statistique, CREST and Laboratoire de Probabilités et Modèles Aléatoires, Université Paris 6

Luminy, December 10, 2013

	Alexandre Tsyba	kov	Linear progr	rammir	ng for error	s-in-variabl	es			
(Mathieu: "Did you get	the slide	es I s	ent?.	[send]	my b	est ·	to S	Sach	ıa,
I am feeling bad not	t having	been	able [.]	to i	make	it to	Lum	iny	·!")	

イロト イロト イミト イミト ニミー のへの

- ▷ There is a large literature on inference in partially identified (PI) models defined by moment (in)equalities.
- \triangleright We consider a model characterized by ($heta^*, F$)
 - $\theta^* \in \mathbb{R}^{d_{\theta}}$ is a finite dimensional parameter of interest,
 - F is the distribution of data, i.e., $W \sim F$ (W_i , $i = 1, \ldots, n$, i.i.d.)

- ▷ There is a large literature on inference in partially identified (PI) models defined by moment (in)equalities.
- \triangleright We consider a model characterized by (θ^*, F)
 - $\theta^* \in \mathbb{R}^{d_{\theta}}$ is a finite dimensional parameter of interest,
 - F is the distribution of data, i.e., $W \sim F$ (W_i , i = 1, ..., n, i.i.d.)

 \vartriangleright The main prediction of the model is that the true parameter θ^* satisfies

$$\mathbb{E}[m_j(W,\theta)] \leqslant 0, \text{ for } j = 1, \dots, p_l,$$

$$\mathbb{E}[m_j(W,\theta)] = 0, \text{ for } j = p_l + 1, \dots, p_l + p_E.$$
(1)

 \triangleright key issue: θ^* is *not* assumed to be point identified, i.e., given *F*, there might be a **set** of θ that satisfy (1).

$$\Theta_{I} \equiv \left\{ \theta \in \Theta \text{ s.t. } \begin{array}{l} \mathbb{E}[m_{j}(W, \theta)] \leqslant 0 \text{ for } j = 1, \dots, p_{I} \\ \mathbb{E}[m_{j}(W, \theta)] = 0 \text{ for } j = p_{I} + 1, \dots, p_{I} + p_{E} \end{array} \right\}.$$

Interval-Outcome Linear Regression (e.g., Manski and Tamer 2002) \triangleright let Y_i^* denote a latent dependent variable

$$Y_i^* = X_i' \theta^* + \varepsilon_i, \quad \mathbb{E}[\varepsilon_i \mid X_i] = 0 \text{ a.s.}$$

 \triangleright We only observe an interval s.t. $Y_i \in [Y_i^I, Y_i^u]$

Interval-Outcome Linear Regression (e.g., Manski and Tamer 2002) \triangleright let Y_i^* denote a latent dependent variable

$$Y_i^* = X_i' heta^* + arepsilon_i, \quad \mathbb{E}[arepsilon_i \mid X_i] = 0$$
 a.s.

▷ We only observe an interval s.t. $Y_i \in [Y_i^I, Y_i^u]$ which leads to

$$\mathbb{E}[X_i'\theta^* - Y_i^u \mid X_i] \leq 0$$
$$\mathbb{E}[Y_i' - X_i'\theta^* \mid X_i] \leq 0$$

 \triangleright We could use

$$\begin{split} \mathbb{E}[X'_i\theta^* - Y^u_i] &\leq 0\\ \mathbb{E}[Y'_i - X'_i\theta^*] &\leq 0\\ \mathbb{E}[(X'_i\theta^* - Y^u_i)X_{ij}1\{X_{ij} \geq 0\}] &\leq 0\\ \mathbb{E}[(Y'_i - X'_i\theta^*)X_{ij}1\{X_{ij} \geq 0\}] &\leq 0\\ \mathbb{E}[-(X'_i\theta^* - Y^u_i)X_{ij}1\{X_{ij} \leq 0\}] &\leq 0\\ \mathbb{E}[-(Y'_i - X'_i\theta^*)X_{ij}1\{X_{ij} \leq 0\}] &\leq 0 \end{split}$$

Discrete Choice Model with Multiple Equilibria (Ciliberto and Tamer, 2009)

 \triangleright *m* firms play an entry game (Nash Equilibrium) on *n* independent markets

 \triangleright On each market, a firm makes an entry decision $d_j \in \{0,1\}$

profit function $\pi_j(d_j, d_{-j}, X, \varepsilon, \theta^*)$

Discrete Choice Model with Multiple Equilibria (Ciliberto and Tamer, 2009) \triangleright *m* firms play an entry game (Nash Equilibrium) on *n* independent markets \triangleright On each market, a firm makes an entry decision $d_j \in \{0, 1\}$

profit function $\pi_j(d_j, d_{-j}, X, \varepsilon, \theta^*) \ge \pi_j(1 - d_j, d_{-j}, X, \varepsilon, \theta^*)$

where X firm/market characteristics, and we would like to infer θ^*

Discrete Choice Model with Multiple Equilibria (Ciliberto and Tamer, 2009)

- \triangleright *m* firms play an entry game (Nash Equilibrium) on *n* independent markets
- \triangleright On each market, a firm makes an entry decision $d_j \in \{0,1\}$

profit function $\pi_j(d_j, d_{-j}, X, \varepsilon, \theta^*) \ge \pi_j(1 - d_j, d_{-j}, X, \varepsilon, \theta^*)$

where X firm/market characteristics, and we would like to infer θ^* \triangleright There are set-valued functions R_1 , R_2 such that

- *d* is the unique equilibrium if $\varepsilon \in R_1(d, X, \theta)$
- *d* is a possible equilibrium if $\varepsilon \in R_2(d, X, \theta)$

Discrete Choice Model with Multiple Equilibria (Ciliberto and Tamer, 2009)

- \triangleright *m* firms play an entry game (Nash Equilibrium) on *n* independent markets
- \triangleright On each market, a firm makes an entry decision $d_j \in \{0,1\}$

profit function $\pi_j(d_j, d_{-j}, X, \varepsilon, \theta^*) \ge \pi_j(1 - d_j, d_{-j}, X, \varepsilon, \theta^*)$

where X firm/market characteristics, and we would like to infer θ^* \triangleright There are set-valued functions R_1 , R_2 such that

- *d* is the unique equilibrium if $\varepsilon \in R_1(d, X, \theta)$
- *d* is a possible equilibrium if $\varepsilon \in R_2(d, X, \theta)$

Conclude that

$$\begin{split} \mathbb{E}[1\{d = d'\} \mid X] & \geqslant \mathbb{E}[1\{\varepsilon \in R_1(d, X, \theta_0)\} \mid X] \\ \mathbb{E}[1\{d = d'\} \mid X] & \leqslant \mathbb{E}[1\{\varepsilon \in R_1(d, X, \theta_0) \cup R_2(d, X, \theta_0)\} \mid X] \end{split}$$

Discrete Choice Model with Multiple Equilibria (Ciliberto and Tamer, 2009)

- \triangleright *m* firms play an entry game (Nash Equilibrium) on *n* independent markets
- \triangleright On each market, a firm makes an entry decision $d_j \in \{0,1\}$

profit function $\pi_j(d_j, d_{-j}, X, \varepsilon, \theta^*) \ge \pi_j(1 - d_j, d_{-j}, X, \varepsilon, \theta^*)$

where X firm/market characteristics, and we would like to infer θ^* \triangleright There are set-valued functions R_1 , R_2 such that

- *d* is the unique equilibrium if $\varepsilon \in R_1(d, X, \theta)$
- *d* is a possible equilibrium if $\varepsilon \in R_2(d, X, \theta)$

Conclude that

$$\begin{split} \mathbb{E}[1\{d=d'\} \mid X] & \geqslant \mathbb{E}[1\{\varepsilon \in R_1(d,X,\theta_0)\} \mid X] \\ \mathbb{E}[1\{d=d'\} \mid X] & \leqslant \mathbb{E}[1\{\varepsilon \in R_1(d,X,\theta_0) \cup R_2(d,X,\theta_0)\} \mid X] \end{split}$$

▷ If conditional distribution of ε given X is known (up to a subvector of θ_0), we can calculate numerically right-hand sides of both inequalities

 \triangleright we have 2^{m+1} moment inequalities for each value of $X \in \mathcal{X}$ (a discrete set).

 \triangleright We consider a model characterized by (θ^*, F)

- $\theta \in \mathbb{R}^{d_{\theta}}$ is a finite dimensional parameter of interest,
- F is the distribution of data, i.e., $W \sim F$ (W_i , $i = 1, \ldots, n$, i.i.d.)

 \vartriangleright The main prediction of the model is that the true parameter θ^* satisfies

$$\mathbb{E}[m_j(W,\theta)] \leq 0, \text{ for } j = 1, \dots, p_l,$$

$$\mathbb{E}[m_j(W,\theta)] = 0, \text{ for } j = p_l + 1, \dots, p_l + p_E.$$
(2)

 \triangleright key issue: θ^* is *not* assumed to be point identified, i.e., given *F*, there might be a **set** of θ that satisfy (2).

$$\Theta_I \equiv \left\{ \theta \in \Theta \text{ s.t. } \mathbb{E}[m_j(W, \theta)] \leqslant 0 \text{ for } j = 1, \dots, p
ight\}.$$

where $p = p_I + 2p_E$.

 \triangleright We consider a model characterized by (θ^*, F)

- $\theta \in \mathbb{R}^{d_{\theta}}$ is a finite dimensional parameter of interest,
- F is the distribution of data, i.e., $W \sim F$ (W_i , $i = 1, \ldots, n$, i.i.d.)

 \vartriangleright The main prediction of the model is that the true parameter θ^* satisfies

$$\mathbb{E}[m_j(W,\theta)] \leq 0, \text{ for } j = 1, \dots, p_l,$$

$$\mathbb{E}[m_j(W,\theta)] = 0, \text{ for } j = p_l + 1, \dots, p_l + p_E.$$
(2)

key issue: θ* is not assumed to be point identified,
 i.e., given F, there might be a set of θ that satisfy (2).

$$\Theta_I \equiv \left\{ \theta \in \Theta \text{ s.t. } \mathbb{E}[m_j(W, \theta)] \leqslant 0 \text{ for } j = 1, \dots, p \right\}.$$

where $p = p_I + 2p_E$.

▷ We formally deal with unconditional moments

 \triangleright We consider a model characterized by (θ^*, F)

- $\theta \in \mathbb{R}^{d_{\theta}}$ is a finite dimensional parameter of interest,
- F is the distribution of data, i.e., $W \sim F$ (W_i , $i = 1, \ldots, n$, i.i.d.)

 $\triangleright~$ The main prediction of the model is that the true parameter θ^* satisfies

$$\mathbb{E}[m_j(W,\theta)] \leq 0, \text{ for } j = 1, \dots, p_l,$$

$$\mathbb{E}[m_j(W,\theta)] = 0, \text{ for } j = p_l + 1, \dots, p_l + p_E.$$
(2)

key issue: θ* is not assumed to be point identified,
 i.e., given F, there might be a set of θ that satisfy (2).

$$\Theta_I \equiv \left\{ \theta \in \Theta \text{ s.t. } \mathbb{E}[m_j(W, \theta)] \leqslant 0 \text{ for } j = 1, \dots, p
ight\}.$$

where $p = p_I + 2p_E$.

We formally deal with unconditional moments but conditional moments can be approximated via

 $\mathbb{E}[m_j(W,\theta^*) \mid z_i] \leqslant 0 \Rightarrow \mathbb{E}[m_j(W,\theta^*) \mathbb{1}\{z_i \in [a,b]\}] \leqslant 0 \ \text{ for all } [a,b]$

 $\,\vartriangleright\,$ The literature focuses on inference on PI parameter vector $\theta^*\in\Theta$

 \triangleright The literature focuses on inference on PI parameter vector $\theta^* \in \Theta$, i.e.,

$$H_0: \theta^* = \theta_0$$
 vs. $H_1: \theta^* \neq \theta_0$.

 \triangleright The literature focuses on inference on PI parameter vector $\theta^* \in \Theta$, i.e.,

$$H_0: \theta^* = \theta_0$$
 vs. $H_1: \theta^* \neq \theta_0$.

▷ We are not interested on θ^* but on $h(\theta^*)$ for a *known* fn. $h : \Theta \to \Lambda$. This is the problem addressed in this paper:

Hypothesis test (HT): For fixed h_0 , we want to test:

$$H_0: h(\theta^*) = h_0 \quad \text{vs.} \quad H_1: h(\theta^*) \neq h_0 \tag{3}$$

 \triangleright The literature focuses on inference on PI parameter vector $\theta^* \in \Theta$, i.e.,

$$H_0: \theta^* = \theta_0$$
 vs. $H_1: \theta^* \neq \theta_0$.

▷ We are not interested on θ^* but on $h(\theta^*)$ for a *known* fn. $h : \Theta \to \Lambda$. This is the problem addressed in this paper:

Hypothesis test (HT): For fixed h_0 , we want to test:

$$H_0: h(\theta^*) = h_0 \quad \text{vs.} \quad H_1: h(\theta^*) \neq h_0 \tag{3}$$

Confidence set (CS) for $h(\theta^*)$: based on HT inversion of a test for (3).

 \triangleright The literature focuses on inference on PI parameter vector $\theta^* \in \Theta$, i.e.,

$$H_0: \theta^* = \theta_0$$
 vs. $H_1: \theta^* \neq \theta_0$.

▷ We are not interested on θ^* but on $h(\theta^*)$ for a *known* fn. $h : \Theta \to \Lambda$. This is the problem addressed in this paper:

Hypothesis test (HT): For fixed h_0 , we want to test:

$$H_0: h(\theta^*) = h_0 \quad \text{vs.} \quad H_1: h(\theta^*) \neq h_0 \tag{3}$$

Confidence set (CS) for $h(\theta^*)$: based on HT inversion of a test for (3).

 \triangleright Main application: Subvector inference: For $\theta^* \in \Theta \subset \mathbb{R}^{d_{\theta}}$, $d_{\theta} > 1$,

$$H_0$$
 : $\theta_1^* = h_0$ vs. H_1 : $\theta_1^* \neq h_0$.

 \Rightarrow Special case of Eq. (3) with $h(\theta) = \theta_1$ and $h_0 \in \Lambda \subseteq \mathbb{R}$.

Literature review

Most of literature on inference in PI moment (in)eq. is on "vector inference"

 $H_0: \theta^* = \theta_0$ vs. $H_1: \theta^* \neq \theta_0$

Literature review

Most of literature on inference in PI moment (in)eq. is on "vector inference"

 $H_0: \theta^* = \theta_0 \text{ vs. } H_1: \theta^* \neq \theta_0$

- Testing unconditional moment inequalities: Chernozhukov, Hong, and Tamer (2007), Romano and Shaikh (2008), Andrews and Guggenberger (2009), Andrews and Soares (2010), Canay (2010), Bugni (2011), Andrews and Jia Barwick (2012), Romano, Shaikh, and Wolf (2012)
- Testing conditional moment inequalities: Andrews and Shi (2013), Chernozhukov, Lee, and Rosen (2013), Armstrong (2011), Chetverikov (2011), Armstrong and Chan (2012)

Literature review

Most of literature on inference in PI moment (in)eq. is on "vector inference"

$H_0: \theta^* = \theta_0 \text{ vs. } H_1: \theta^* \neq \theta_0$

- Testing unconditional moment inequalities: Chernozhukov, Hong, and Tamer (2007), Romano and Shaikh (2008), Andrews and Guggenberger (2009), Andrews and Soares (2010), Canay (2010), Bugni (2011), Andrews and Jia Barwick (2012), Romano, Shaikh, and Wolf (2012)
- Testing conditional moment inequalities: Andrews and Shi (2013), Chernozhukov, Lee, and Rosen (2013), Armstrong (2011), Chetverikov (2011), Armstrong and Chan (2012)

In both cases, the number of moments p is fixed (explicitly or due to the structure)

Testing unconditional moment inequalities with $p \to \infty$

- ▷ Menzel (2014), where $p \ll n$
- \triangleright Chernozhukov, Chetverikov and Kato (WP 2013), where $p \gg n$

Literature review: subvector

Asymptotically uniformly valid inference for

 $H_0: h(\theta^*) = h_0$ vs. $H_1: h(\theta^*) \neq h_0$

- \triangleright **Projections of CS:** Project usual CS for θ onto space of H_0 . Considered by Andrews et. al. (2009, 10).
 - Related work improving projections: Kaido, Molinari & Stoye (WP, 2015), Gafarov (affine models, WP 2017)
- Subsampling: Profile the criterion function and approximate critical value with subsampling. Proposed by Romano & Shaikh (2008, 10).
- ▷ Project the Criterion Function: Bugni, Canay and Shi (2017)

Literature review: subvector

Asymptotically uniformly valid inference for

 $H_0: h(\theta^*) = h_0$ vs. $H_1: h(\theta^*) \neq h_0$

- \triangleright **Projections of CS:** Project usual CS for θ onto space of H_0 . Considered by Andrews et. al. (2009, 10).
 - Related work improving projections: Kaido, Molinari & Stoye (WP, 2015), Gafarov (affine models, WP 2017)
- ▷ **Subsampling:** Profile the criterion function and approximate critical value with subsampling. Proposed by Romano & Shaikh (2008, 10).

▷ Project the Criterion Function: Bugni, Canay and Shi (2017)

In all cases, the number of moments inequalities p is fixed and asymptotic analysis (i.e., based on the limiting distribution of the process)

Positioning in the literature

	Donsker (e.g. <i>p</i> fixed)	non-Donsker (e.g. <i>p</i> growing)
Vector Inference	Chernozhukov et al (2007) Romano and Shaikh (2008) Andrews and Guggenberger (2009) Andrews and Soares (2010)	Menzel (2014, $p \ll n$) Chernozhukov et al (WP 2013, $p \gg n$)
Subvector Inference	Andrews et. al. (2009, 10) Romano and Shaikh (2008, 10) Bugni, Canay and Shi (2017) Kaido et al (WP, 2015) Gafarov (WP 2017)	

Positioning in the literature

	Donsker (e.g. <i>p</i> fixed)	non-Donsker (e.g. <i>p</i> growing)
Vector Inference	Chernozhukov et al (2007) Romano and Shaikh (2008) Andrews and Guggenberger (2009) Andrews and Soares (2010)	Menzel (2014, $p \ll n$) Chernozhukov et al (WP 2013, $p \gg n$)
Subvector Inference	Andrews et. al. (2009, 10) Romano and Shaikh (2008, 10) Bugni, Canay and Shi (2017) Kaido et al (WP, 2015) Gafarov (WP 2017)	

ī.

Starting point:

- ▷ the minimum resampling critical value in Bugni, Canay and Shi (2017); and
- > CLTs for the max of high-dim vectors used in Chernozhukov et al (WP 2013)

Profiled test statistics for H_0 : $h(\theta^*) = h_0$ vs. H_1 : $h(\theta^*) \neq h_0$

$$T_n(h_0) = \inf_{\theta \in \Theta(h_0)} \max_{j \in [p]} \sqrt{n} \bar{m}_{\theta,j} / \hat{\sigma}_{\theta,j}$$

where $\Theta(h_0) = h^{-1}(h_0) = \{\theta \in \Theta : h(\theta) = h_0\}$ and

$$ar{m}_{ heta,j} = rac{1}{n}\sum_{i=1}^n m_j(W_i, heta) \quad ext{and} \quad \widehat{\sigma}^2_{ heta,j} = rac{1}{n}\sum_{i=1}^n \{m_j(W_i, heta) - ar{m}_{ heta,j}\}^2$$

The test: reject if $T_n(h_0) > c_n(h_0, 1 - \alpha)$ where $c_n(h_0, 1 - \alpha)$ is a critical value.

Profiled test statistics for H_0 : $h(\theta^*) = h_0$ vs. H_1 : $h(\theta^*) \neq h_0$

$$T_n(h_0) = \inf_{\theta \in \Theta(h_0)} \max_{j \in [p]} \sqrt{n} \bar{m}_{\theta,j} / \hat{\sigma}_{\theta,j}$$

where $\Theta(h_0) = h^{-1}(h_0) = \{\theta \in \Theta : h(\theta) = h_0\}$ and

$$ar{m}_{ heta,j} = rac{1}{n}\sum_{i=1}^n m_j(W_i, heta) \quad ext{and} \quad \widehat{\sigma}^2_{ heta,j} = rac{1}{n}\sum_{i=1}^n \{m_j(W_i, heta) - ar{m}_{ heta,j}\}^2$$

The test: reject if $T_n(h_0) > c_n(h_0, 1 - \alpha)$ where $c_n(h_0, 1 - \alpha)$ is a critical value.

Under
$$H_0$$
: $P(T_n(h_0) > c_n(h_0, 1 - \alpha)) \leq \alpha + o(1)$

Profiled test statistics for $H_0: h(\theta^*) = h_0$ vs. $H_1: h(\theta^*) \neq h_0$

$$T_n(h_0) = \inf_{\theta \in \Theta(h_0)} \max_{j \in [p]} \sqrt{n} \bar{m}_{\theta,j} / \hat{\sigma}_{\theta,j}$$

where $\Theta(h_0) = h^{-1}(h_0) = \{\theta \in \Theta : h(\theta) = h_0\}$ and

$$ar{m}_{ heta,j} = rac{1}{n}\sum_{i=1}^n m_j(W_i, heta) \quad ext{and} \quad \widehat{\sigma}_{ heta,j}^2 = rac{1}{n}\sum_{i=1}^n \{m_j(W_i, heta) - ar{m}_{ heta,j}\}^2$$

The test: reject if $T_n(h_0) > c_n(h_0, 1 - \alpha)$ where $c_n(h_0, 1 - \alpha)$ is a critical value.

Under H_0 : $P(T_n(h_0) > c_n(h_0, 1 - \alpha)) \leq \alpha + o(1)$ Our contribution is to construct critical values $c_n(h_0, 1 - \alpha)$ that \triangleright uniformly controls asymptotic size over a large class of dgps $(F \in \mathcal{P}_n)$ \triangleright in the presence of many moment inequalities $(p \to \infty \text{ as } n \to \infty)$

Profiled test statistics for H_0 : $h(\theta^*) = h_0$ vs. H_1 : $h(\theta^*) \neq h_0$

$$T_n(h_0) = \inf_{\theta \in \Theta(h_0)} \max_{j \in [p]} \sqrt{n} \bar{m}_{\theta,j} / \hat{\sigma}_{\theta,j}$$

where $\Theta(h_0) = h^{-1}(h_0) = \{\theta \in \Theta : h(\theta) = h_0\}$ and

$$ar{m}_{ heta,j} = rac{1}{n}\sum_{i=1}^n m_j(W_i, heta) \quad ext{and} \quad \widehat{\sigma}_{ heta,j}^2 = rac{1}{n}\sum_{i=1}^n \{m_j(W_i, heta) - ar{m}_{ heta,j}\}^2$$

The test: reject if $T_n(h_0) > c_n(h_0, 1 - \alpha)$ where $c_n(h_0, 1 - \alpha)$ is a critical value.

Under
$$H_0$$
: $P(T_n(h_0) > c_n(h_0, 1-\alpha)) \leq \alpha + o(1)$

Our contribution is to construct critical values $c_n(h_0, 1 - \alpha)$ that

- \triangleright uniformly controls asymptotic size over a large class of dgps ($F \in \mathcal{P}_n$)
- \triangleright in the presence of many moment inequalities $(p \to \infty \text{ as } n \to \infty)$
- ightarrow allow for $p \gg n$ (also $d_ heta o \infty$ but not clear if empirically relevant)
- \triangleright finite sample analysis, and rate for size error (e.g. polynomially in *n*)
- towards data-driven choice of parameters

Overview of Proposals

Profiled test statistics for $H_0: h(\theta^*) = h_0$ vs. $H_1: h(\theta^*) \neq h_0$

$$T_n(h_0) = \inf_{\theta \in \Theta(h_0)} \max_{j \in [p]} \sqrt{n} \bar{m}_{\theta,j} / \widehat{\sigma}_{\theta,j}$$

We consider different methods to calculate the critical value $c_n(h_0, 1 - \alpha)$:

- Self-Normalized method (not covering today)
 - fast
 - works under very weak conditions
 - potentially conservative
- ▷ Bootstrap-based methods
 - slower (requires simulations)
 - requires stronger conditions
 - but less conservative
- ▷ Hybrids are possible (not covering today)
 - potentially useful to speed up bootstrap-based methods

Profiled test statistics for H_0 : $h(heta^*) = h_0$ vs. H_1 : $h(heta^*)
eq h_0$

$$T_n(h_0) = \inf_{\theta \in \Theta(h_0)} \max_{j \in [p]} \sqrt{n} \bar{m}_{\theta,j} / \hat{\sigma}_{\theta,j}$$

Profiled test statistics for $H_0: h(heta^*) = h_0$ vs. $H_1: h(heta^*)
eq h_0$

$$T_n(h_0) = \inf_{\theta \in \Theta(h_0)} \max_{j \in [p]} \sqrt{n} \bar{m}_{\theta,j} / \hat{\sigma}_{\theta,j}$$

Letting $\widehat{v}_{\theta,j} = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \{m_j(W_i, \theta) - \mathbb{E}[m_j(W_i, \theta)]\} / \widehat{\sigma}_{\theta,j}$

Profiled test statistics for $H_0: h(\theta^*) = h_0$ vs. $H_1: h(\theta^*) \neq h_0$

$$T_n(h_0) = \inf_{\theta \in \Theta(h_0)} \max_{j \in [p]} \sqrt{n} \bar{m}_{\theta,j} / \hat{\sigma}_{\theta,j}$$

Letting $\widehat{v}_{\theta,j} = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \{m_j(W_i, \theta) - \mathbb{E}[m_j(W_i, \theta)]\} / \widehat{\sigma}_{\theta,j}$ we can rewrite $T_n(h_0)$ as

$$T_n(h_0) = \inf_{\theta \in \Theta(h_0)} \max_{j \in [p]} \quad \widehat{v}_{\theta,j} + \sqrt{n} \mathbb{E}[m_j(W,\theta)] / \widehat{\sigma}_{\theta,j}$$

bootstrap: $\hat{v}_{\theta,j}^* = \frac{1}{\sqrt{n}} \sum_{i=1}^n \xi_i \frac{m_j(W_i, \theta) - \bar{m}_{\theta,j}}{\widehat{\sigma}_{\theta,i}}$ where ξ_i 's are i.i.d. N(0, 1).

Profiled test statistics for H_0 : $h(\theta^*) = h_0$ vs. H_1 : $h(\theta^*) \neq h_0$

$$T_n(h_0) = \inf_{\theta \in \Theta(h_0)} \max_{j \in [p]} \sqrt{n} \bar{m}_{\theta,j} / \hat{\sigma}_{\theta,j}$$

Letting $\widehat{v}_{\theta,j} = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \{m_j(W_i, \theta) - \mathbb{E}[m_j(W_i, \theta)]\} / \widehat{\sigma}_{\theta,j}$ we can rewrite $T_n(h_0)$ as

$$T_n(h_0) = \inf_{\theta \in \Theta(h_0)} \max_{j \in [p]} \quad \widehat{v}_{\theta,j} + \sqrt{n} \mathbb{E}[m_j(W,\theta)] / \widehat{\sigma}_{\theta,j}$$

bootstrap:
$$\hat{v}_{\theta,j}^* = \frac{1}{\sqrt{n}} \sum_{i=1}^n \xi_i \frac{m_j(W_i, \theta) - \bar{m}_{\theta,j}}{\hat{\sigma}_{\theta,j}}$$
 where ξ_i 's are i.i.d. $N(0, 1)$.

Remark: It has been shown that although we can suitably approximate

$$\widehat{v}_{ heta,j}$$
 by $\widehat{v}_{ heta,j}^*$
Proposal via Bootstrap-based methods

Profiled test statistics for H_0 : $h(\theta^*) = h_0$ vs. H_1 : $h(\theta^*) \neq h_0$

$$T_n(h_0) = \inf_{\theta \in \Theta(h_0)} \max_{j \in [p]} \sqrt{n} \bar{m}_{\theta,j} / \hat{\sigma}_{\theta,j}$$

Letting $\hat{v}_{\theta,j} = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \{m_j(W_i, \theta) - \mathbb{E}[m_j(W_i, \theta)]\} / \hat{\sigma}_{\theta,j}$ we can rewrite $T_n(h_0)$ as

$$T_n(h_0) = \inf_{\theta \in \Theta(h_0)} \max_{j \in [p]} \quad \widehat{v}_{\theta,j} + \sqrt{n} \mathbb{E}[m_j(W,\theta)] / \widehat{\sigma}_{\theta,j}$$

bootstrap:
$$\widehat{v}_{\theta,j}^* = \frac{1}{\sqrt{n}} \sum_{i=1}^n \xi_i \frac{m_j(W_i, \theta) - \bar{m}_{\theta,j}}{\widehat{\sigma}_{\theta,j}}$$
 where ξ_i 's are i.i.d. $N(0, 1)$.

Remark: It has been shown that although we can suitably approximate

$$\widehat{v}_{\theta,j}$$
 by $\widehat{v}_{\theta,j}^*$

Andrews and Soares (2010) show it is more delicate to approximate

$$\sqrt{n}\mathbb{E}[m_j(W, heta)]/\widehat{\sigma}_{ heta,j}$$
 by $\sqrt{n}ar{m}_{ heta,j}/\widehat{\sigma}_{ heta,j}$

as there is a non-vanishing noise due to the scaling by \sqrt{n} .

Profiled test statistics for $H_0: h(\theta^*) = h_0$ vs. $H_1: h(\theta^*) \neq h_0$

$$T_n(h_0) = \inf_{\theta \in \Theta(h_0)} \max_{j \in [p]} \quad \widehat{v}_{\theta,j} + \sqrt{n} \mathbb{E}[m_j(W,\theta)] / \widehat{\sigma}_{\theta,j}$$

Profiled test statistics for $H_0: h(\theta^*) = h_0$ vs. $H_1: h(\theta^*) \neq h_0$

$$T_n(h_0) = \inf_{\theta \in \Theta(h_0)} \max_{j \in [p]} \quad \widehat{v}_{\theta,j} + \sqrt{n} \mathbb{E}[m_j(W,\theta)] / \widehat{\sigma}_{\theta,j}$$

A standard way to proceed is to use Generalized Moment Selection (GMS)

$$\varphi_{\theta,j} = \begin{cases} 0, & \text{if } \sqrt{n}\bar{m}_{\theta,j}/\widehat{\sigma}_{\theta,j} \ge -\kappa_n, \\ \\ -\infty, & \text{otherwise} \quad (\text{i.e., inequality will not be used}) \end{cases}$$

for a tuning parameter $\kappa_n \to \infty$

Profiled test statistics for $H_0: h(\theta^*) = h_0$ vs. $H_1: h(\theta^*) \neq h_0$

$$T_n(h_0) = \inf_{\theta \in \Theta(h_0)} \max_{j \in [p]} \quad \widehat{v}_{\theta,j} + \sqrt{n} \mathbb{E}[m_j(W,\theta)] / \widehat{\sigma}_{\theta,j}$$

A standard way to proceed is to use Generalized Moment Selection (GMS)

$$\varphi_{\theta,j} = \begin{cases} 0, & \text{if } \sqrt{n}\bar{m}_{\theta,j}/\hat{\sigma}_{\theta,j} \ge -\kappa_n, \\ \\ -\infty, & \text{otherwise} \quad (\text{i.e., inequality will not be used}) \end{cases}$$

for a tuning parameter $\kappa_n \to \infty$ (recommendation $\sim \{\log n\}^{1/2}$ when p is fixed)

Then set

$$T_n^{GMS*}(h_0) := \inf_{\theta \in \Theta(h_0)} \max_{j \in [p]} \widehat{v}_{\theta,j}^* + \varphi_{\theta,j}$$

and compute the critical values based on the quantile of $T_n^{GMS*}(h_0)$.

Example: $d_{\theta} = 2$, and $\Theta = [-1, 1]^2$. Let p = 2, and consider
$$\begin{split} \mathbb{E}[m_1(W_i, \theta)] &= \mathbb{E}[\theta_1 + \theta_2 - W_{i,1}] \leqslant 0 \\ \mathbb{E}[m_2(W_i, \theta)] &= \mathbb{E}[W_{i,2} - \theta_1 - \theta_2] \leqslant 0 \end{split}$$

where $W_i \in \mathbb{R}^p$, $W_i \sim N(0, I)$ and we are interest on testing

$$H_0: \theta_1 = 0$$
 vs. $H_1: \theta_1 \neq 0$

Example: $d_{\theta} = 2$, and $\Theta = [-1, 1]^2$. Let p = 2, and consider
$$\begin{split} \mathbb{E}[m_1(W_i, \theta)] &= \mathbb{E}[\theta_1 + \theta_2 - W_{i,1}] \leq 0 \\ \mathbb{E}[m_2(W_i, \theta)] &= \mathbb{E}[W_{i,2} - \theta_1 - \theta_2] \leq 0 \end{split}$$

where $W_i \in \mathbb{R}^p$, $W_i \sim N(0, I)$ and we are interest on testing

 $\begin{aligned} & H_0: \theta_1 = 0 \quad \textit{vs.} \quad H_1: \theta_1 \neq 0 \quad \text{so that} \\ \Theta(h_0) = \{ \theta \in \Theta: \theta_1 = 0 \} \quad \text{and} \quad \Theta_I = \{ \theta \in \Theta: \theta_1 + \theta_2 = 0 \} \end{aligned}$

Example: $d_{\theta} = 2$, and $\Theta = [-1, 1]^2$. Let p = 2, and consider
$$\begin{split} \mathbb{E}[m_1(W_i, \theta)] &= \mathbb{E}[\theta_1 + \theta_2 - W_{i,1}] \leq 0 \\ \mathbb{E}[m_2(W_i, \theta)] &= \mathbb{E}[W_{i,2} - \theta_1 - \theta_2] \leq 0 \end{split}$$

where $W_i \in \mathbb{R}^p$, $W_i \sim N(0, I)$ and we are interest on testing

$$H_0: \theta_1 = 0 \quad vs. \quad H_1: \theta_1 \neq 0 \quad \text{so that}$$
$$\Theta(h_0) = \{\theta \in \Theta: \theta_1 = 0\} \quad \text{and} \quad \Theta_I = \{\theta \in \Theta: \theta_1 + \theta_2 = 0\}$$

It follows that for $(Z_1, Z_2) \sim N(0, I)$ we have

$$T_n(0) = \inf_{-1 \leqslant \theta_2 \leqslant 1} \max\left\{\frac{\sqrt{n}\theta_2 - \bar{W}_1}{\widehat{\sigma}_1}, \frac{\bar{W}_2 - \sqrt{n}\theta_2}{\widehat{\sigma}_2}\right\}$$

Example: $d_{\theta} = 2$, and $\Theta = [-1, 1]^2$. Let p = 2, and consider $\mathbb{E}[m_1(W_i, \theta)] = \mathbb{E}[\theta_1 + \theta_2 - W_{i,1}] \leq 0$ $\mathbb{E}[m_2(W_i, \theta)] = \mathbb{E}[W_{i,2} - \theta_1 - \theta_2] \leq 0$

where $W_i \in \mathbb{R}^p$, $W_i \sim N(0, I)$ and we are interest on testing

$$\begin{aligned} & H_0: \theta_1 = 0 \quad \text{vs.} \quad H_1: \theta_1 \neq 0 \quad \text{so that} \\ \Theta(h_0) = \{ \theta \in \Theta: \theta_1 = 0 \} \quad \text{and} \quad \Theta_I = \{ \theta \in \Theta: \theta_1 + \theta_2 = 0 \} \end{aligned}$$

It follows that for $(Z_1, Z_2) \sim N(0, I)$ we have

$$T_n(0) = \inf_{-1 \leqslant \theta_2 \leqslant 1} \max\left\{\frac{\sqrt{n}\theta_2 - \bar{W}_1}{\widehat{\sigma}_1}, \frac{\bar{W}_2 - \sqrt{n}\theta_2}{\widehat{\sigma}_2}\right\} \rightarrow_d \frac{Z_2 - Z_1}{2} \sim N(0, 1/2)$$

Example: $d_{\theta} = 2$, and $\Theta = [-1, 1]^2$. Let p = 2, and consider $\mathbb{E}[m_1(W; \theta)] = \mathbb{E}[\theta_1 + \theta_2 - W; 1] \le 0$

$$\mathbb{E}[m_2(W_i,\theta)] = \mathbb{E}[W_{i,2} - \theta_1 - \theta_2] \leq 0$$

where $W_i \in \mathbb{R}^p$, $W_i \sim N(0, I)$ and we are interest on testing

$$\begin{array}{l} H_0: \theta_1 = 0 \quad \text{vs.} \quad H_1: \theta_1 \neq 0 \quad \text{so that} \\ \Theta(h_0) = \{ \theta \in \Theta: \theta_1 = 0 \} \quad \text{and} \quad \Theta_I = \{ \theta \in \Theta: \theta_1 + \theta_2 = 0 \} \end{array}$$

It follows that for $(Z_1, Z_2) \sim N(0, I)$ we have

$$T_n(0) = \inf_{-1 \leqslant \theta_2 \leqslant 1} \max\left\{\frac{\sqrt{n}\theta_2 - \bar{W}_1}{\widehat{\sigma}_1}, \frac{\bar{W}_2 - \sqrt{n}\theta_2}{\widehat{\sigma}_2}\right\} \rightarrow_d \frac{Z_2 - Z_1}{2} \sim N(0, 1/2)$$

In turn, for GMS, using $\kappa_n = \sqrt{\log n}$ we select both inequalities whp and

$$T_n^{GMS*}(0) \mid (W_i)_{i=1}^n \approx \inf_{\substack{-1 \leqslant \theta_2 \leqslant 1}} \max\left\{-Z_1 + \varphi_{\theta_2,1}, Z_2 + \varphi_{\theta_2,2}\right\}$$

Example: $d_{\theta} = 2$, and $\Theta = [-1, 1]^2$. Let p = 2, and consider

$$\mathbb{E}[m_1(W_i, \theta)] = \mathbb{E}[\theta_1 + \theta_2 - W_{i,1}] \leq 0 \\ \mathbb{E}[m_2(W_i, \theta)] = \mathbb{E}[W_{i,2} - \theta_1 - \theta_2] \leq 0$$

where $W_i \in \mathbb{R}^p$, $W_i \sim N(0, I)$ and we are interest on testing

$$\begin{aligned} & H_0: \theta_1 = 0 \quad vs. \quad H_1: \theta_1 \neq 0 \quad \text{so that} \\ \Theta(h_0) = \{ \theta \in \Theta: \theta_1 = 0 \} \quad \text{and} \quad \Theta_I = \{ \theta \in \Theta: \theta_1 + \theta_2 = 0 \} \end{aligned}$$

It follows that for $(Z_1, Z_2) \sim N(0, I)$ we have

$$T_n(0) = \inf_{-1 \leqslant \theta_2 \leqslant 1} \max\left\{\frac{\sqrt{n}\theta_2 - \bar{W}_1}{\widehat{\sigma}_1}, \frac{\bar{W}_2 - \sqrt{n}\theta_2}{\widehat{\sigma}_2}\right\} \to_d \frac{Z_2 - Z_1}{2} \sim N(0, 1/2)$$

In turn, for GMS, using $\kappa_n = \sqrt{\log n}$ we select both inequalities whp and

$$T_n^{GMS*}(0) \mid (W_i)_{i=1}^n
ightarrow_d \min\{-Z_1, Z_2\}$$
 whp

Example: $d_{\theta} = 2$, and $\Theta = [-1, 1]^2$. Let p = 2, and consider

$$\begin{split} \mathbb{E}[m_1(W_i,\theta)] &= \mathbb{E}[\theta_1 + \theta_2 - W_{i,1}] \leq 0 \\ \mathbb{E}[m_2(W_i,\theta)] &= \mathbb{E}[W_{i,2} - \theta_1 - \theta_2] \leq 0 \end{split}$$

where $W_i \in \mathbb{R}^p$, $W_i \sim N(0, I)$ and we are interest on testing

$$\begin{aligned} & H_0: \theta_1 = 0 \quad vs. \quad H_1: \theta_1 \neq 0 \quad \text{so that} \\ \Theta(h_0) = \{ \theta \in \Theta: \theta_1 = 0 \} \quad \text{and} \quad \Theta_I = \{ \theta \in \Theta: \theta_1 + \theta_2 = 0 \} \end{aligned}$$

It follows that for $(Z_1, Z_2) \sim N(0, I)$ we have

$$T_n(0) = \inf_{-1 \leqslant \theta_2 \leqslant 1} \max\left\{\frac{\sqrt{n}\theta_2 - \bar{W}_1}{\widehat{\sigma}_1}, \frac{\bar{W}_2 - \sqrt{n}\theta_2}{\widehat{\sigma}_2}\right\} \to_d \frac{Z_2 - Z_1}{2} \sim N(0, 1/2)$$

In turn, for GMS, using $\kappa_n = \sqrt{\log n}$ we select both inequalities whp and

$$T_n^{GMS*}(0) \mid (W_i)_{i=1}^n \rightarrow_d \min\{-Z_1, Z_2\}$$
 whp

Critical values based on $T_n^{GMS*}(0)$ fail to control size.

Example: $d_{\theta} = 2$, and $\Theta = [-1, 1]^2$. Let p = 2, and consider

$$\begin{split} \mathbb{E}[m_1(W_i,\theta)] &= \mathbb{E}[\theta_1 + \theta_2 - W_{i,1}] \leq 0 \\ \mathbb{E}[m_2(W_i,\theta)] &= \mathbb{E}[W_{i,2} - \theta_1 - \theta_2] \leq 0 \end{split}$$

where $W_i \in \mathbb{R}^p$, $W_i \sim N(0, I)$ and we are interest on testing

$$\begin{aligned} & H_0: \theta_1 = 0 \quad vs. \quad H_1: \theta_1 \neq 0 \quad \text{ so that} \\ \Theta(h_0) = \{ \theta \in \Theta: \theta_1 = 0 \} \quad \text{and} \quad \Theta_I = \{ \theta \in \Theta: \theta_1 + \theta_2 = 0 \} \end{aligned}$$

It follows that for $(Z_1, Z_2) \sim N(0, I)$ we have

$$T_n(0) = \inf_{-1 \leqslant \theta_2 \leqslant 1} \max\left\{\frac{\sqrt{n}\theta_2 - \bar{W}_1}{\widehat{\sigma}_1}, \frac{\bar{W}_2 - \sqrt{n}\theta_2}{\widehat{\sigma}_2}\right\} \to_d \frac{Z_2 - Z_1}{2} \sim N(0, 1/2)$$

In turn, for GMS, using $\kappa_n = \sqrt{\log n}$ we select both inequalities whp and

$$T_n^{GMS*}(0) \mid (W_i)_{i=1}^n \rightarrow_d \min\{-Z_1, Z_2\}$$
 whp

Critical values based on $T_n^{GMS*}(0)$ fail to control size. Indeed, for $\alpha = 0.1$

- $c_n^{GMS}(0,1-\alpha) \approx 0.5$ and $P(T_n(0) > c_n^{GMS}(0,1-\alpha)) \approx 0.24$.
- $c_n(0, 1 \alpha) \approx 0.86$
- GMS quantiles are "too" small

1) "Discard Resampling" (DR):

$$\begin{split} T_n^{DR*}(h_0) &\equiv \inf_{\theta \in \widehat{\Theta}_I(h_0)} \max_{j \in [p]} \widehat{v}_{\theta,j}^* + \varphi_{\theta,j} \\ \text{where } \widehat{\Theta}_I(h_0) \subseteq \text{``arg min''}_{\theta \in \Theta(h_0)} \max_{j \in [p]} \sqrt{n} \overline{m}_{\theta,j} / \widehat{\sigma}_{\theta,j} \\ \varphi_{\theta,j} &= \begin{cases} 0, \text{ if } \sqrt{n} \overline{m}_{\theta,j} / \widehat{\sigma}_{\theta,j} \geqslant \max_{\ell \in [p]} \sqrt{n} \overline{m}_{\theta,\ell} / \widehat{\sigma}_{\theta,\ell} - \kappa_n, \\ -\infty, \text{ otherwise (i.e., inequality will not be used)} \end{cases} \end{split}$$

1) "Discard Resampling" (DR):

$$\begin{split} T_n^{DR*}(h_0) &\equiv \inf_{\theta \in \widehat{\Theta}_I(h_0)} \max_{j \in [p]} \widehat{v}_{\theta,j}^* + \varphi_{\theta,j} \\ \text{where } \widehat{\Theta}_I(h_0) \subseteq \text{``arg min''}_{\theta \in \Theta(h_0)} \max_{j \in [p]} \sqrt{n} \overline{m}_{\theta,j} / \widehat{\sigma}_{\theta,j} \\ \varphi_{\theta,j} &= \begin{cases} 0, \text{ if } \sqrt{n} \overline{m}_{\theta,j} / \widehat{\sigma}_{\theta,j} \geqslant \max_{\ell \in [p]} \sqrt{n} \overline{m}_{\theta,\ell} / \widehat{\sigma}_{\theta,\ell} - \kappa_n, \\ -\infty, \text{ otherwise (i.e., inequality will not be used)} \end{cases}$$

2) "Penalized Resampling" (PR): $T_n^{PR*}(h_0) \equiv \inf_{\theta \in \Theta(h_0)} \max_{j \in [p]} \widehat{v}_{\theta,j}^* + \kappa_n^{-1} \sqrt{n} \overline{m}_{\theta,j} / \widehat{\sigma}_{\theta,j},$

where $\kappa_n \ge 1$ is a penalty parameter

1) "Discard Resampling" (DR):

$$\begin{split} T_n^{DR*}(h_0) &\equiv \inf_{\theta \in \widehat{\Theta}_I(h_0)} \max_{j \in [p]} \widehat{v}_{\theta,j}^* + \varphi_{\theta,j} \\ \text{where } \widehat{\Theta}_I(h_0) \subseteq \text{``arg min''}_{\theta \in \Theta(h_0)} \max_{j \in [p]} \sqrt{n} \overline{m}_{\theta,j} / \widehat{\sigma}_{\theta,j} \\ \varphi_{\theta,j} &= \begin{cases} 0, \text{ if } \sqrt{n} \overline{m}_{\theta,j} / \widehat{\sigma}_{\theta,j} \geqslant \max_{\ell \in [p]} \sqrt{n} \overline{m}_{\theta,\ell} / \widehat{\sigma}_{\theta,\ell} - \kappa_n, \\ -\infty, \text{ otherwise (i.e., inequality will not be used)} \end{cases}$$

2) "Penalized Resampling" (PR): $T_n^{PR*}(h_0) \equiv \inf_{\theta \in \Theta(h_0)} \max_{j \in [p]} \hat{v}_{\theta,j}^* + \kappa_n^{-1} \sqrt{n} \bar{m}_{\theta,j} / \hat{\sigma}_{\theta,j},$

where $\kappa_n \ge 1$ is a penalty parameter

3) "Minimum Resampling" (MR):

$$T_n^{MR*}(h_0) \equiv \min\{T_n^{DR*}(h_0), T_n^{PR*}(h_0)\}$$

The impact of many moment inequalities, $p \gg n$

 \triangleright lack of a Donsker property for the whole process $\{v_{\theta,j}: \theta \in \Theta(h_0), j \in [p]\}$

- no limiting distributions guaranteed to exist
- cannot invoke Donsker's functional CLT to establish the convergence in distribution of $\mathcal{T}_n(h_0)$
- restriction on the criterion functions
 - we use $Q(heta) = \max_{j \in [p]} \sqrt{n} ar{m}_{ heta,j} / \widehat{\sigma}_{ heta,j}$
 - do not use (MMM): $\tilde{Q}(\theta) = \sum_{j=1}^{p} \{\sqrt{n}\bar{m}_{\theta,j}/\hat{\sigma}_{\theta,j}\}_{+}^{2}$
 - do not use (AQLR): $Q(\theta) = \min_{t \in \mathbb{R}^p} (\sqrt{n} \overline{m}_{\theta,j} / \widehat{\sigma}_{\theta,j} t)' \widetilde{\Sigma}_{\theta}^{-1} (\sqrt{n} \overline{m}_{\theta,j} / \widehat{\sigma}_{\theta,j} t)$

▷ tuning parameters need to account for growing entropy

Condition M.

Condition M.

(i) $\Theta(h_0) = \{\theta \in \Theta : h(\theta) = h_0\}$ is well behaved

Condition M.

(i) $\Theta(h_0) = \{\theta \in \Theta : h(\theta) = h_0\}$ is well behaved

(ii) $\{\widetilde{m}_{j}(\cdot,\theta) := \sigma_{\theta,j}^{-1}m_{j}(\cdot,\theta) : \theta \in \Theta(h_{0}), j \in [p]\}$ is well behaved

Condition M.

(i) $\Theta(h_0) = \{\theta \in \Theta : h(\theta) = h_0\}$ is well behaved

(ii) $\{\widetilde{m}_{j}(\cdot, \theta) := \sigma_{\theta, j}^{-1}m_{j}(\cdot, \theta) : \theta \in \Theta(h_{0}), j \in [p]\}$ is well behaved

(iii) Polynomial Minorant condition away from the identified set

Condition M. The following conditions hold: (i) set $\Theta(h_0)$ is convex and $\sup_{\theta \in \Theta(h_0)} \|\theta\|_{\infty} \leq C\sqrt{n}$

Condition M. The following conditions hold: (i) set $\Theta(h_0)$ is convex and $\sup_{\theta \in \Theta(h_0)} \|\theta\|_{\infty} \leq C\sqrt{n}$ (ii) $\{\widetilde{m}_j(\cdot, \theta) : \theta \in \Theta(h_0), j \in [p]\}$ is VC type class of functions

- with constants \overline{A} and $v \ge 1$ and envelope F (i.e. $F(W) \ge |\widetilde{m}_j(W, \theta)|$)
- for some b > 0, $q \ge 4$, we have

 $Ep[F^q]^{1/q} \leqslant b$ and $\mathbb{E}[|\widetilde{m}_j(W, \theta)|^k] \leqslant b^{k-2}, k = 3, 4$

Condition M. The following conditions hold: (i) set $\Theta(h_0)$ is convex and $\sup_{\theta \in \Theta(h_0)} \|\theta\|_{\infty} \leq C\sqrt{n}$ (ii) $\{\widetilde{m}_j(\cdot, \theta) : \theta \in \Theta(h_0), j \in [p]\}$ is VC type class of functions

- with constants \bar{A} and $v \ge 1$ and envelope F (i.e. $F(W) \ge |\widetilde{m}_j(W, \theta)|$)
- for some b > 0, $q \ge 4$, we have

 $Ep[F^q]^{1/q} \leqslant b$ and $\mathbb{E}[|\widetilde{m}_j(W, \theta)|^k] \leqslant b^{k-2}, k = 3, 4$

- $\mathbb{E}[\{\widetilde{m}_j(W,\theta) \widetilde{m}_j(W,\widetilde{\theta})\}^2] \leq L_C \|\theta \widetilde{\theta}\|^{\chi}$ for some $\chi \geq 1$.
- $\max_{j \in [p]} \| \nabla_{\theta} \mathbb{E}[\widetilde{m}_j(W, \theta)] \| \leqslant L_G$ for every $\theta \in \Theta(h_0)$

Condition M. The following conditions hold: (i) set $\Theta(h_0)$ is convex and $\sup_{\theta \in \Theta(h_0)} \|\theta\|_{\infty} \leq C\sqrt{n}$ (ii) $\{\widetilde{m}_j(\cdot, \theta) : \theta \in \Theta(h_0), j \in [p]\}$ is VC type class of functions

- with constants \bar{A} and $v \ge 1$ and envelope F (i.e. $F(W) \ge |\widetilde{m}_j(W, \theta)|$)
- for some b > 0, $q \ge 4$, we have

 $Ep[F^q]^{1/q} \leqslant b$ and $\mathbb{E}[|\widetilde{m}_j(W, \theta)|^k] \leqslant b^{k-2}, \ k = 3, 4$

- $\mathbb{E}[\{\widetilde{m}_j(W,\theta) \widetilde{m}_j(W,\widetilde{\theta})\}^2] \leq L_C \|\theta \widetilde{\theta}\|^{\chi}$ for some $\chi \geq 1$.
- max_{j∈[p]} ||∇_θ 𝔼[m̃_j(W, θ)]|| ≤ L_G for every θ ∈ Θ(h₀)
 (iii) For every θ ∈ Θ(h₀) \ Θ_I we have

$$\max_{j \in [\rho]} \mathbb{E}\left[\widetilde{m}_{j}\left(W,\theta\right)\right] \geq \vartheta_{n} \min\left\{\delta, \inf_{\widetilde{\theta} \in \Theta(h_{0}) \cap \Theta_{l}} \left\|\theta - \widetilde{\theta}\right\|\right\}$$

Condition M. The following conditions hold: (i) set $\Theta(h_0)$ is convex and $\sup_{\theta \in \Theta(h_0)} \|\theta\|_{\infty} \leq C\sqrt{n}$ (ii) $\{\widetilde{m}_j(\cdot, \theta) : \theta \in \Theta(h_0), j \in [p]\}$ is VC type class of functions

- with constants \bar{A} and $v \ge 1$ and envelope F (i.e. $F(W) \ge |\widetilde{m}_j(W, \theta)|$)
- for some b > 0, $q \ge 4$, we have

 $Ep[F^q]^{1/q} \leqslant b$ and $\mathbb{E}[|\widetilde{m}_j(W, \theta)|^k] \leqslant b^{k-2}, \ k=3,4$

- $\mathbb{E}[\{\widetilde{m}_j(W,\theta) \widetilde{m}_j(W,\widetilde{\theta})\}^2] \leq L_C \|\theta \widetilde{\theta}\|^{\chi}$ for some $\chi \geq 1$.
- max_{j∈[p]} ||∇_θ 𝔼[m̃_j(W, θ)]|| ≤ L_G for every θ ∈ Θ(h₀)
 (iii) For every θ ∈ Θ(h₀) \ Θ_I we have

$$\max_{j \in [\rho]} \mathbb{E}\left[\widetilde{m}_{j}\left(W,\theta\right)\right] \geq \vartheta_{n} \min\left\{\delta, \inf_{\widetilde{\theta} \in \Theta(h_{0}) \cap \Theta_{l}} \left\|\theta - \widetilde{\theta}\right\|\right\}$$

Define $\gamma = o(1)$, in particular $\gamma \ll \alpha$

$$\triangleright \ \bar{w}_n = (1 - \gamma) \text{-quantile of } \sup_{\theta \in \Theta(h_0), j \in [p]} |\hat{v}_{\theta, j}^*|$$

$$\triangleright \ K_n = v \log(n\bar{A}b) + d_{\theta} \log(nb) + \log p$$

Condition M. The following conditions hold: (i) set $\Theta(h_0)$ is convex and $\sup_{\theta \in \Theta(h_0)} \|\theta\|_{\infty} \leq C\sqrt{n}$ (ii) $\{\widetilde{m}_j(\cdot, \theta) : \theta \in \Theta(h_0), j \in [p]\}$ is VC type class of functions

- with constants \overline{A} and $v \ge 1$ and envelope F (i.e. $F(W) \ge |\widetilde{m}_j(W, \theta)|$)
- for some b > 0, $q \ge 4$, we have

 $Ep[F^q]^{1/q} \leqslant b$ and $\mathbb{E}[|\widetilde{m}_j(W, \theta)|^k] \leqslant b^{k-2}, k = 3, 4$

- $\mathbb{E}[\{\widetilde{m}_j(W,\theta) \widetilde{m}_j(W,\widetilde{\theta})\}^2] \leq L_C \|\theta \widetilde{\theta}\|^{\chi}$ for some $\chi \geq 1$.
- max_{j∈[p]} ||∇_θE[m̃_j(W, θ)]|| ≤ L_G for every θ ∈ Θ(h₀)
 (iii) For every θ ∈ Θ(h₀) \ Θ_I we have

$$\max_{j \in [p]} \mathbb{E}\left[\widetilde{m}_{j}\left(W,\theta\right)\right] \geq \vartheta_{n} \min\left\{\delta, \inf_{\widetilde{\theta} \in \Theta(h_{0}) \cap \Theta_{I}} \left\|\theta - \widetilde{\theta}\right\|\right\}$$

Define $\gamma = o(1)$, in particular $\gamma \ll \alpha$ (e.g., $\gamma = n^{-c}$ for some c > 0) $\triangleright \ \bar{w}_n = (1 - \gamma)$ -quantile of $\sup_{\theta \in \Theta(h_0), j \in [p]} |\hat{v}^*_{\theta, j}| \lesssim \sqrt{d_\theta \log(pn)}$ $\triangleright \ K_n = v \log(n\bar{A}b) + d_\theta \log(nb) + \log p \quad \lesssim d_\theta \log(pn)$

Rates for Size Control

$$T_n^{DR*}(h_0) \equiv \inf_{\theta \in \widehat{\Theta}_l(h_0)} \max_{j \in [p]} \widehat{v}_{\theta,j}^* + \varphi_{\theta,j}$$

where $\widehat{\Theta}_{l}(h_{0}) \subseteq$ "arg min" $_{\theta \in \Theta(h_{0})} \max_{j \in [p]} \sqrt{n}\overline{m}_{\theta,j}/\widehat{\sigma}_{\theta,j}$

$$\varphi_{\theta,j} = \begin{cases} 0, & \text{if } \sqrt{n}\bar{m}_{\theta,j}/\widehat{\sigma}_{\theta,j} \geqslant \max_{\ell \in [p]} \sqrt{n}\bar{m}_{\theta,\ell}/\widehat{\sigma}_{\theta,\ell} - \kappa_n, \\ \\ -\infty, & \text{otherwise} \quad (\text{i.e., inequality will not be used}) \end{cases}$$

$$T_n^{DR*}(h_0) \equiv \inf_{\theta \in \widehat{\Theta}_I(h_0)} \max_{j \in [p]} \widehat{v}_{\theta,j}^* + \varphi_{\theta,j}$$

where $\widehat{\Theta}_{I}(h_{0}) \subseteq$ "arg min" $_{\theta \in \Theta(h_{0})} \max_{j \in [p]} \sqrt{n \overline{m}_{\theta,j}} / \widehat{\sigma}_{\theta,j}$

$$\varphi_{\theta,j} = \begin{cases} 0, & \text{if } \sqrt{n\bar{m}_{\theta,j}}/\widehat{\sigma}_{\theta,j} \geqslant \max_{\ell \in [p]} \sqrt{n\bar{m}_{\theta,\ell}}/\widehat{\sigma}_{\theta,\ell} - \kappa_n, \\ & \\ -\infty, & \text{otherwise} \quad (\text{i.e., inequality will not be used} \end{cases}$$

Issues to address:

- no functional min max CLT since $p \to \infty$ (and potentially $d_{ heta} \to \infty$)
- handle random set $\widehat{\Theta}_{I}(h_{0})$
- handle random selection of inequalities
- penalty parameter κ_n

$$T_n^{DR*}(h_0) \equiv \inf_{\theta \in \widehat{\Theta}_I(h_0)} \max_{j \in [p]} \widehat{v}_{\theta,j}^* + \varphi_{\theta,j}$$

where $\widehat{\Theta}_I(h_0) \subseteq$ "arg min" $_{\theta \in \Theta(h_0)} \max_{j \in [p]} \sqrt{n\overline{m}_{\theta,j}}/\widehat{\sigma}_{\theta,j}$
$$\varphi_{\theta,j} = \begin{cases} 0, & \text{if } \sqrt{n\overline{m}_{\theta,j}}/\widehat{\sigma}_{\theta,j} \geqslant \max_{\ell \in [p]} \sqrt{n\overline{m}_{\theta,\ell}}/\widehat{\sigma}_{\theta,\ell} - \kappa_n, \\ -\infty, & \text{otherwise} \quad (\text{i.e., inequality will not be used}) \end{cases}$$

Theorem (Simplified)

Suppose Condition M is satisfied with $d_{\theta} + L_G/\vartheta_n \leqslant C$ and that H_0 holds. Then

$$P(T_n(h_0) \ge t) \le P(T_n^{DS*}(h_0) \ge t - C\delta'_{n,\gamma}) + C\{\gamma + n^{-1}\}$$

$$T_n^{DR*}(h_0) \equiv \inf_{\theta \in \widehat{\Theta}_I(h_0)} \max_{j \in [p]} \widehat{v}_{\theta,j}^* + \varphi_{\theta,j}$$

where $\widehat{\Theta}_I(h_0) \subseteq$ "arg min" $_{\theta \in \Theta(h_0)} \max_{j \in [p]} \sqrt{n\overline{m}_{\theta,j}}/\widehat{\sigma}_{\theta,j}$
$$\varphi_{\theta,j} = \begin{cases} 0, & \text{if } \sqrt{n\overline{m}_{\theta,j}}/\widehat{\sigma}_{\theta,j} \geqslant \max_{\ell \in [p]} \sqrt{n\overline{m}_{\theta,\ell}}/\widehat{\sigma}_{\theta,\ell} - \kappa_n, \\ -\infty, & \text{otherwise} \quad (\text{i.e., inequality will not be used}) \end{cases}$$

Theorem (Simplified)

Suppose Condition M is satisfied with $d_{\theta} + L_G/\vartheta_n \leqslant C$ and that H_0 holds. Then

$$P(T_n(h_0) \ge t) \le P(T_n^{DS*}(h_0) \ge t - C\delta'_{n,\gamma}) + C\{\gamma + n^{-1}\}$$

where we have

$$\delta_{n,\gamma}^{\prime}\lesssimrac{\log^{2/3}(np)}{\gamma^{1/3}n^{1/6}}$$

provided that $\kappa_n/\bar{w}_n \to \infty$.

$$T_n^{DR*}(h_0) \equiv \inf_{\theta \in \widehat{\Theta}_I(h_0)} \max_{j \in [p]} \widehat{v}_{\theta,j}^* + \varphi_{\theta,j}$$

where $\widehat{\Theta}_I(h_0) \subseteq$ "arg min" $_{\theta \in \Theta(h_0)} \max_{j \in [p]} \sqrt{n\overline{m}_{\theta,j}}/\widehat{\sigma}_{\theta,j}$
$$\varphi_{\theta,j} = \begin{cases} 0, & \text{if } \sqrt{n\overline{m}_{\theta,j}}/\widehat{\sigma}_{\theta,j} \geqslant \max_{\ell \in [p]} \sqrt{n\overline{m}_{\theta,\ell}}/\widehat{\sigma}_{\theta,\ell} - \kappa_n, \\ -\infty, & \text{otherwise} \quad (\text{i.e., inequality will not be used}) \end{cases}$$

Theorem (Simplified)

Suppose Condition M is satisfied with $d_{\theta} + L_G/\vartheta_n \leqslant C$ and that H_0 holds. Then

$$P(T_n(h_0) \ge t) \leqslant P(T_n^{DS*}(h_0) \ge t - C\delta'_{n,\gamma}) + Cn^{-c}$$

for some 0 < c < 1/6

$$\delta_{n,\gamma}^\prime \lesssim rac{\log^{2/3}(np)}{n^{1/6-c}}$$

provided that $\kappa_n/\sqrt{\log p} \to \infty$.

$$T_n^{DR*}(h_0) \equiv \inf_{\theta \in \widehat{\Theta}_I(h_0)} \max_{j \in [p]} \widehat{v}_{\theta,j}^* + \varphi_{\theta,j}$$

where $\widehat{\Theta}_I(h_0) \subseteq$ "arg min" $_{\theta \in \Theta(h_0)} \max_{j \in [p]} \sqrt{n}\overline{m}_{\theta,j}/\widehat{\sigma}_{\theta,j}$
$$\varphi_{\theta,j} = \begin{cases} 0, & \text{if } \sqrt{n}\overline{m}_{\theta,j}/\widehat{\sigma}_{\theta,j} \geqslant \max_{\ell \in [p]} \sqrt{n}\overline{m}_{\theta,\ell}/\widehat{\sigma}_{\theta,\ell} - \kappa_n, \\ -\infty, & \text{otherwise} \quad (\text{i.e., inequality will not be used}) \end{cases}$$

Theorem

Assume that Condition M is satisfied and that H_0 holds. Then

$$P(T_n(h_0) \ge t) \le P(T_n^{DS*}(h_0) \ge t - C\delta'_{n,\gamma}) + C\{\gamma + n^{-1}\}$$

where we have

$$\delta_{n,\gamma}' := \frac{CbK_n}{\gamma^{3/q}n^{1/2}} + \frac{C(bK_n^2)^{1/3}}{\gamma^{1/3}n^{1/6}} + CL_C^{1/2} \left(\frac{CK_n^{1/2}}{\gamma^{1/q}n^{1/2}\vartheta_n}\right)^{\chi/2} \frac{K_n^{1/2}}{\gamma^{1/q}} + \frac{CbK_n}{\gamma^{1/q}n^{1/2-1/q}}$$
provided that $\kappa_n \ge \bar{w}_n \{ 6 + 2L_G/\vartheta_n \}$

10

Rates for Size Control for Penalized Resampling

$$T_n^{PR*}(h_0) = \inf_{\theta \in \Theta(h_0)} \max_{j \in [p]} \widehat{v}_{\theta,j}^* + \kappa_n^{-1} \sqrt{n} \bar{m}_{\theta,j} / \widehat{\sigma}_{\theta,j}$$

Rates for Size Control for Penalized Resampling

$$T_n^{PR*}(h_0) = \inf_{\theta \in \Theta(h_0)} \max_{j \in [p]} \widehat{v}_{\theta,j}^* + \kappa_n^{-1} \sqrt{n} \bar{m}_{\theta,j} / \widehat{\sigma}_{\theta,j}$$

Issues to address:

- no functional CLT for min max since $p \to \infty$ (and potentially $d_{ heta} \to \infty$)
- need to handle random centering $\kappa_n^{-1} \sqrt{n} \bar{m}_{\theta,j} / \hat{\sigma}_{\theta,j}$
- penalty parameter κ_n
Rates for Size Control for Penalized Resampling

$$T_n^{PR*}(h_0) = \inf_{\theta \in \Theta(h_0)} \max_{j \in [p]} \widehat{v}_{\theta,j}^* + \kappa_n^{-1} \sqrt{n} \bar{m}_{\theta,j} / \widehat{\sigma}_{\theta,j}$$

Theorem (Simplified)

Suppose Condition M is satisfied with $d_{\theta} + L_G/\vartheta_n \leqslant C$, $\chi = 2$, and that H_0 holds. Then

$$\mathsf{P}(\mathsf{T}_n(h_0) \ge t) \leqslant \mathsf{P}(\mathsf{T}_n^{\mathsf{PR}*}(h_0) \ge t - C\delta_{n,\gamma}'') + C\{\gamma + n^{-1}\}$$

where we have

$$\delta_{n,\gamma}'' := \frac{\log^{2/3}(np)}{\gamma^{1/3}n^{1/6}} + \kappa_n \frac{\log^{3/2}(np)}{n^{1/2}} + \frac{\bar{w}_n}{\kappa_n}$$

Rates for Size Control for Penalized Resampling

$$T_n^{PR*}(h_0) = \inf_{\theta \in \Theta(h_0)} \max_{j \in [p]} \widehat{v}_{\theta,j}^* + \kappa_n^{-1} \sqrt{n} \bar{m}_{\theta,j} / \widehat{\sigma}_{\theta,j}$$

Theorem

Assume that Condition M is satisfied and that H_0 holds. Then

$$P(T_n(h_0) \ge t) \le P(T_n^{PR*}(h_0) \ge t - C\delta'_{n,\gamma}) + C\{\gamma + n^{-1}\}$$

where we have

$$\delta_{n,\gamma}' := \frac{L_G \kappa_n K_n}{\gamma^{2/q} n^{1/2} \vartheta_n^2} + \frac{(bK_n^2)^{1/3}}{\gamma^{1/3} n^{1/6}} + \frac{(b)^{1/2} K_n^{3/4}}{\gamma^{1/q} n^{1/4}} + \frac{bK_n}{\gamma^{1/q} n^{1/2-1/q}} + \frac{\bar{w}_n}{\kappa_n} + L_C^{1/2} \left(\frac{\kappa_n K_n^{1/2}}{n^{1/2} \vartheta_n \gamma^{1/q}}\right)^{\chi/2} \frac{K_n^{1/2}}{\gamma^{1/q}}$$

Rates for Size Control for Minimum Resampling

$$T_n^{MR*}(h_0) = \min\{T_n^{DR*}(h_0), T_n^{MR*}(h_0)\}$$

Rates for Size Control for Minimum Resampling

$$T_n^{MR*}(h_0) = \min\{T_n^{DR*}(h_0), T_n^{MR*}(h_0)\}$$

Issues:

 \triangleright note that T_n^{MR*} is also a MinMax statistics

- as it is the minimum of two MinMax statistics
- need to handle random set in the minimization
- need to handle random centering
- \triangleright clearly need to couple the statistics (use the same $\xi_i \sim N(0, 1)$ for both)
- ightarrow no functional CLT for MinMax as $p
 ightarrow\infty$ (and potentially $d_ heta
 ightarrow\infty$)

Rates for Size Control for Minimum Resampling

$$T_n^{MR*}(h_0) = \min\{T_n^{DR*}(h_0), T_n^{MR*}(h_0)\}$$

Issues:

 \triangleright note that T_n^{MR*} is also a MinMax statistics

- as it is the minimum of two MinMax statistics
- need to handle random set in the minimization
- need to handle random centering
- \triangleright clearly need to couple the statistics (use the same $\xi_i \sim N(0, 1)$ for both)
- \triangleright no functional CLT for MinMax as $p \to \infty$ (and potentially $d_{ heta} \to \infty$)

Theorem

Assume that Condition M is satisfied and that H_0 holds. Then

$$P(T_n(h_0) \ge t) \le P(T_n^{MR*}(h_0) \ge t - C\delta_{n,\gamma}) + C\{\gamma + n^{-1}\}$$

where we have

$$\delta_{n,\gamma} := \delta'_{n,\gamma} + \delta''_{n,\gamma}$$

Theorem. Let X_1, \ldots, X_n be independent random matrices in $\mathbb{R}^{N \times p}$ ($Np \ge 2$), Y_1, \ldots, Y_n be independent random matrices in $\mathbb{R}^{N \times p}$ with $Y_i \sim N(\mathbb{E}[X_i], \text{Var } X_i)$.

Define
$$T = \min_{k \in [N]} \max_{j \in [\rho]} \sum_{i=1}^{n} \frac{X_{ikj}}{\sqrt{n}}$$
, and $\widetilde{T} = \min_{k \in [N]} \max_{j \in [\rho]} \sum_{i=1}^{n} \frac{Y_{ikj}}{\sqrt{n}}$

Theorem. Let X_1, \ldots, X_n be independent random matrices in $\mathbb{R}^{N \times p}$ $(Np \ge 2)$, Y_1, \ldots, Y_n be independent random matrices in $\mathbb{R}^{N \times p}$ with $Y_i \sim N(\mathbb{E}[X_i], \text{Var } X_i)$.

Define
$$T = \min_{k \in [N]} \max_{j \in [p]} \sum_{i=1}^{n} \frac{X_{ikj}}{\sqrt{n}}$$
, and $\widetilde{T} = \min_{k \in [N]} \max_{j \in [p]} \sum_{i=1}^{n} \frac{Y_{ikj}}{\sqrt{n}}$

Then for every $\delta > 0$ and every Borel subset A of $\mathbb R$ we have

$$P(T \in A) \leqslant P(\widetilde{T} \in A^{C\delta}) + \frac{C \log^2(Np)}{\delta^3 n^{1/2}} \{L_n + M_{n,X}(\delta) + M_{n,Y}(\delta)\}$$

where C is a universal positive constant

Theorem. Let X_1, \ldots, X_n be independent random matrices in $\mathbb{R}^{N \times p}$ $(Np \ge 2)$, Y_1, \ldots, Y_n be independent random matrices in $\mathbb{R}^{N \times p}$ with $Y_i \sim N(\mathbb{E}[X_i], \text{Var } X_i)$.

Define
$$T = \min_{k \in [N]} \max_{j \in [p]} \sum_{i=1}^{n} \frac{X_{ikj}}{\sqrt{n}}$$
, and $\widetilde{T} = \min_{k \in [N]} \max_{j \in [p]} \sum_{i=1}^{n} \frac{Y_{ikj}}{\sqrt{n}}$

Then for every $\delta > 0$ and every Borel subset A of $\mathbb R$ we have

$$P(T \in A) \leqslant P(\widetilde{T} \in A^{C\delta}) + \frac{C \log^2(Np)}{\delta^3 n^{1/2}} \{L_n + M_{n,X}(\delta) + M_{n,Y}(\delta)\}$$

where C is a universal positive constant, and

$$L_{n} = \max_{k \in N, j \in [p]} \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[|\widetilde{X}_{ikj}|^{3}],$$

$$M_{n,W}(\delta) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[\max_{k \in N, j \in [p]} |\widetilde{W}_{ikj}|^{3} \cdot 1\left\{\max_{k \in N, j \in [p]} |\widetilde{W}_{ikj}| > \delta\sqrt{n}/\log(Np)\right\}\right],$$

for $\widetilde{W}_i = W_i - \mathbb{E}[W_i]$

Theorem. Let X_1, \ldots, X_n be independent random matrices in $\mathbb{R}^{N \times p}$ $(Np \ge 2)$, Y_1, \ldots, Y_n be independent random matrices in $\mathbb{R}^{N \times p}$ with $Y_i \sim N(\mathbb{E}[X_i], \text{Var } X_i)$.

Define
$$T = \min_{k \in [N]} \max_{j \in [\rho]} \sum_{i=1}^{n} \frac{X_{ikj}}{\sqrt{n}}$$
, and $\widetilde{T} = \min_{k \in [N]} \max_{j \in [\rho]} \sum_{i=1}^{n} \frac{Y_{ikj}}{\sqrt{n}}$

Then for every $\delta > 0$ and every Borel subset A of $\mathbb R$ we have

$$P(T \in A) \leq P(\widetilde{T} \in A^{C\delta}) + \frac{C \log^2(N\rho)}{\delta^3 n^{1/2}} \{L_n + M_{n,X}(\delta) + M_{n,Y}(\delta)\}$$

where C is a universal positive constant. In many settings

 $L_n + M_{n,X}(\delta) + M_{n,Y}(\delta) \leqslant C$

Theorem. Let X_1, \ldots, X_n be independent random matrices in $\mathbb{R}^{N \times p}$ $(Np \ge 2)$, Y_1, \ldots, Y_n be independent random matrices in $\mathbb{R}^{N \times p}$ with $Y_i \sim N(\mathbb{E}[X_i], \text{Var } X_i)$.

Define
$$T = \min_{k \in [N]} \max_{j \in [\rho]} \sum_{i=1}^{n} \frac{X_{ikj}}{\sqrt{n}}$$
, and $\widetilde{T} = \min_{k \in [N]} \max_{j \in [\rho]} \sum_{i=1}^{n} \frac{Y_{ikj}}{\sqrt{n}}$

Then for every $\delta > 0$ and every Borel subset A of $\mathbb R$ we have

$$P(T \in A) \leq P(\widetilde{T} \in A^{C\delta}) + \frac{C \log^2(N\rho)}{\delta^3 n^{1/2}} \{L_n + M_{n,X}(\delta) + M_{n,Y}(\delta)\}$$

where C is a universal positive constant. In many settings

$$L_n + M_{n,X}(\delta) + M_{n,Y}(\delta) \leq C$$

We apply with $A = [t, \infty)$, so $A^{C\delta} = [t - C\delta, \infty)$

Theorem. Let X_1, \ldots, X_n be independent random matrices in $\mathbb{R}^{N \times p}$ $(Np \ge 2)$, Y_1, \ldots, Y_n be independent random matrices in $\mathbb{R}^{N \times p}$ with $Y_i \sim N(\mathbb{E}[X_i], \text{Var } X_i)$.

Define
$$T = \min_{k \in [N]} \max_{j \in [\rho]} \sum_{i=1}^{n} \frac{X_{ikj}}{\sqrt{n}}$$
, and $\widetilde{T} = \min_{k \in [N]} \max_{j \in [\rho]} \sum_{i=1}^{n} \frac{Y_{ikj}}{\sqrt{n}}$

Then for every $\delta > 0$ and every Borel subset A of $\mathbb R$ we have

$$P(T \in A) \leq P(\widetilde{T} \in A^{C\delta}) + \frac{C \log^2(N\rho)}{\delta^3 n^{1/2}} \{L_n + M_{n,X}(\delta) + M_{n,Y}(\delta)\}$$

where C is a universal positive constant. In many settings

$$L_n + M_{n,X}(\delta) + M_{n,Y}(\delta) \leqslant C$$

We apply with $A = [t, \infty)$, so $A^{C\delta} = [t - C\delta, \infty)$, and for some $\gamma \to 0$ $\frac{C \log^2(N\rho)}{\delta^3 n^{1/2}} \leq \gamma$

Theorem. Let X_1, \ldots, X_n be independent random matrices in $\mathbb{R}^{N \times p}$ $(Np \ge 2)$, Y_1, \ldots, Y_n be independent random matrices in $\mathbb{R}^{N \times p}$ with $Y_i \sim N(\mathbb{E}[X_i], \text{Var } X_i)$.

Define
$$T = \min_{k \in [N]} \max_{j \in [p]} \sum_{i=1}^{n} \frac{X_{ikj}}{\sqrt{n}}$$
, and $\widetilde{T} = \min_{k \in [N]} \max_{j \in [p]} \sum_{i=1}^{n} \frac{Y_{ikj}}{\sqrt{n}}$

Then for every $\delta > 0$ and every Borel subset A of $\mathbb R$ we have

$$P(T \in A) \leqslant P(\widetilde{T} \in A^{C\delta}) + \frac{C \log^2(Np)}{\delta^3 n^{1/2}} \{L_n + M_{n,X}(\delta) + M_{n,Y}(\delta)\}$$

where C is a universal positive constant. In many settings

$$L_n + M_{n,X}(\delta) + M_{n,Y}(\delta) \leqslant C$$

We apply with $A = [t, \infty)$, so $A^{C\delta} = [t - C\delta, \infty)$, and for some $\gamma \to 0$ $\frac{C \log^2(N\rho)}{\delta^3 n^{1/2}} \leqslant \gamma$

which makes the error

$$\delta = \frac{C \log^{2/3}(Np)}{\gamma^{1/3} n^{1/6}}$$

Theorem. Let X_1, \ldots, X_n be independent random matrices in $\mathbb{R}^{N \times p}$ $(Np \ge 2)$, Y_1, \ldots, Y_n be independent random matrices in $\mathbb{R}^{N \times p}$ with $Y_i \sim N(\mathbb{E}[X_i], \text{Var } X_i)$.

Define
$$T = \min_{k \in [N]} \max_{j \in [p]} \sum_{i=1}^{n} \frac{X_{ikj}}{\sqrt{n}}$$
, and $\widetilde{T} = \min_{k \in [N]} \max_{j \in [p]} \sum_{i=1}^{n} \frac{Y_{ikj}}{\sqrt{n}}$

Then for every $\delta > 0$ and every Borel subset A of $\mathbb R$ we have

$$P(T \in A) \leqslant P(\widetilde{T} \in A^{C\delta}) + \frac{C \log^2(Np)}{\delta^3 n^{1/2}} \{L_n + M_{n,X}(\delta) + M_{n,Y}(\delta)\}$$

where C is a universal positive constant. In many settings

$$L_n + M_{n,X}(\delta) + M_{n,Y}(\delta) \leqslant C$$

We apply with $A = [t, \infty)$, so $A^{C\delta} = [t - C\delta, \infty)$, and for some $\gamma \to 0$ $\frac{C \log^2(N\rho)}{\delta^3 n^{1/2}} \leq \gamma$

which makes the error

 $\delta = \frac{C \log^{2/3}(Np)}{\gamma^{1/3} n^{1/6}} \quad \text{in our case } N \leqslant n^{Cd_{\theta}} \quad (N = 1 \text{ recovers the case of max})$

Proof is based on Stein's method.

(Extends to processes, Empirical Bootstrap as in Deng and Zhang, 2017) One key new step is a smooth approximation of the MinMax.

Proof is based on Stein's method.

(Extends to processes, Empirical Bootstrap as in Deng and Zhang, 2017) One key new step is a smooth approximation of the MinMax.

Recall the LSE function that approximates the max. For $X_k \in \mathbb{R}^p$

$$F_{eta}(X_k) = eta^{-1} \log \left(\sum_{j=1}^p \exp(eta X_{kj})
ight)$$

Proof is based on Stein's method.

(Extends to processes, Empirical Bootstrap as in Deng and Zhang, 2017) One key new step is a smooth approximation of the MinMax.

Recall the LSE function that approximates the max. For $X_k \in \mathbb{R}^p$

$$F_{eta}(X_k) = eta^{-1} \log \left(\sum_{j=1}^p \exp(eta X_{kj})
ight)$$

In order to approximate min max

Proof is based on Stein's method.

(Extends to processes, Empirical Bootstrap as in Deng and Zhang, 2017) One key new step is a smooth approximation of the MinMax.

Recall the LSE function that approximates the max. For $X_k \in \mathbb{R}^p$

$$F_{eta}(X_k) = eta^{-1} \log \left(\sum_{j=1}^p \exp(eta X_{kj})
ight)$$

In order to approximate min max $= -\max\{-\max\}$

Proof is based on Stein's method.

(Extends to processes, Empirical Bootstrap as in Deng and Zhang, 2017) One key new step is a smooth approximation of the MinMax.

Recall the LSE function that approximates the max. For $X_k \in \mathbb{R}^p$

$$F_{eta}(X_k) = eta^{-1} \log \left(\sum_{j=1}^{p} \exp(eta X_{kj})
ight)$$

In order to approximate $\min max = -\max\{-max\}$ and proceed to use

$$G_{\beta}(X) = -F_{\beta}(-\{F_{\beta}(X_k)\}_{k=1}^N)$$

Proof is based on Stein's method.

(Extends to processes, Empirical Bootstrap as in Deng and Zhang, 2017) One key new step is a smooth approximation of the MinMax. Recall the LSE function that approximates the max. For $X_k \in \mathbb{R}^p$

$$F_{eta}(X_k) = eta^{-1} \log \left(\sum_{j=1}^{p} \exp(eta X_{kj})
ight)$$

In order to approximate $\min max = -\max\{-max\}$ and proceed to use

$$G_{\beta}(X) = -F_{\beta}(-\{F_{\beta}(X_k)\}_{k=1}^N)$$

that satisfies:

$$egin{aligned} -eta^{-1}\log N \leqslant G_eta(X) - \min_{k\in [N]}\max_{j\in [p]}X_{kj} \leqslant eta^{-1}\log p \ & \|
abla G_eta(X)\|_1 \leqslant 1 \ & \|
abla^2 G_eta(X)\|_1 \leqslant 4eta \ & \|
abla^3 G_eta(X)\|_1 \leqslant 24eta^2 \end{aligned}$$

LEMMA 11. Consider $m(X) = g \circ G_{\beta}(X)$. Then we have (1) for $(k, j) \in [N] \times [p]$

$$m'_{kj}(X) = g'(G_{\beta}(X))\pi_k(-F_{\beta}(X))\pi_j^{\mu_k}(X_{k})$$

(2) for $(k, j) \in ([N] \times [p])^2$, we have

$$\begin{array}{ll} m_{(k,j)}''(X) &= g''(G_{\beta}(X))\pi_{k_{2}}(-F_{\beta}(X))\pi_{j_{2}}^{\mu_{k_{2}}}(X_{k_{2}}.)\pi_{k_{1}}(-F_{\beta}(X))\pi_{j_{1}}^{\mu_{k_{1}}}(X_{k_{1}}.) \\ &-g'(G_{\beta}(X))\beta w_{k_{1}k_{2}}(-F_{\beta}(X))\pi_{j_{2}}^{\mu_{k_{2}}}(X_{k_{2}}.)\pi_{j_{1}}^{\mu_{k_{1}}}(X_{k_{1}}.) \\ &+g'(G_{\beta}(X))\pi_{k_{1}}(-F_{\beta}(X))\delta_{k_{1}k_{2}}\beta w_{j_{1}j_{2}}^{\mu_{k_{1}}}(X_{k_{1}}.) \end{array}$$

(3) for $(k, j) \in ([N] \times [p])^3$, we have

$$\begin{split} m_{(k,j)}^{\prime\prime\prime}(X) &= g^{\prime\prime\prime}(G_{\beta}(X))\prod_{\ell=1}^{3}\pi_{k\ell}(-F_{\beta}(X))\pi_{j_{\ell}}^{\mu_{k\ell}}(X_{k\ell}.) \\ &-g^{\prime\prime}(G_{\beta}(X))\beta w_{k_{2}k_{3}}(-F_{\beta}(X))\pi_{k_{1}}(-F_{\beta}(X))\prod_{\ell=1}^{3}\pi_{j_{\ell}}^{\mu_{k\ell}}(X_{k_{\ell}}.) \\ &+g^{\prime\prime}(G_{\beta}(X))\pi_{k_{2}}(-F_{\beta}(X))\delta_{k_{2}k_{3}}\beta w_{j_{2}j_{3}}^{\mu_{k}}(X_{k_{2}}.)\pi_{k_{1}}(-F_{\beta}(X))\pi_{j_{1}}^{\mu_{k}}(X_{k_{\ell}}.) \\ &-g^{\prime\prime}(G_{\beta}(X))\pi_{k_{2}}(-F_{\beta}(X))\beta w_{k_{1}k_{3}}(-F_{\beta}(X))\prod_{\ell=1}^{3}\pi_{j_{\ell}}^{\mu_{k\ell}}(X_{k_{\ell}}.) \\ &+g^{\prime\prime}(G_{\beta}(X))\pi_{k_{3}}(-F_{\beta}(X))\pi_{j_{2}}^{\mu_{k}}(X_{k_{2}}.)\pi_{k_{1}}(-F_{\beta}(X))\delta_{k_{1}k_{3}}\beta w_{j_{1}j_{3}}^{\mu_{k}}(X_{k_{\ell}}.) \\ &-g^{\prime\prime}(G_{\beta}(X))\pi_{k_{3}}(-F_{\beta}(X))\beta w_{k_{1}k_{2}}(-F_{\beta}(X))\prod_{\ell=1}^{3}\pi_{j_{\ell}}^{\mu_{k}}(X_{k_{\ell}}.) \\ &-g^{\prime\prime}(G_{\beta}(X))\beta w_{k_{1}k_{2}}(-F_{\beta}(X))M_{k_{2}k_{3}}\beta w_{j_{1}j_{3}}^{\mu_{k}}(X_{k_{\ell}}.) \\ &-g^{\prime\prime}(G_{\beta}(X))\beta w_{k_{1}k_{2}}(-F_{\beta}(X))\delta_{k_{2}k_{3}}\beta w_{j_{1}j_{3}}^{\mu_{k}}(X_{k_{\ell}}.) \\ &-g^{\prime\prime}(G_{\beta}(X))\beta w_{k_{1}k_{2}}(-F_{\beta}(X))\pi_{j_{3}}^{\mu_{k}}(X_{k_{2}}.)\delta_{k_{1}k_{3}}\beta w_{j_{1}j_{3}}(X_{k_{\ell}}.) \\ &+g^{\prime\prime}(G_{\beta}(X))\pi_{k_{3}}(-F_{\beta}(X))\pi_{j_{3}}^{\mu_{k}}(X_{k_{3}}.)\delta_{k_{1}k_{2}}\beta w_{j_{1}j_{2}}(X_{k_{\ell}}.) \\ &-g^{\prime\prime}(G_{\beta}(X))\beta w_{k_{1}k_{3}}(-F_{\beta}(X))\pi_{j_{3}}^{\mu_{k}}(X_{k_{3}}.)\delta_{k_{1}k_{2}}\beta w_{j_{1}j_{2}}(X_{k_{\ell}}.) \\ &-g^{\prime\prime}(G_{\beta}(X))\beta w_{k_{1}k_{3}}(-F_{\beta}(X))\pi_{j_{3}}^{\mu_{k}}(X_{k_{3}}.)\delta_{k_{1}k_{2}}\beta w_{j_{1}j_{2}}(X_{k_{\ell}}.) \\ &-g^{\prime\prime}(G_{\beta}(X))\pi_{k_{3}}(-F_{\beta}(X))\beta_{j_{3}}^{\mu_{k}}(X_{k_{3}}.)\delta_{k_{1}k_{2}}\beta w_{j_{1}j_{2}}(X_{k_{\ell}}.) \\ &-g^{\prime\prime}(G_{\beta}(X))\pi_{k_{3}}(-F_{\beta}(X))\delta_{k_{1}k_{2}k_{3}}\beta^{2}q_{j_{1}j_{1}j_{3}}^{\mu_{k}}(X_{k_{\ell}}.) \\ &-g^{\prime\prime}(G_{\beta}(X))\pi_{k_{3}}(-F_{\beta}(X))\delta_{k_{1}k_{2}}M_{k_{3}}^{2}\beta_{k_{1}j_{1}j_{3}}}(X_{k_{\ell}}.) \\ &-g^{\prime\prime}(G_{\beta}(X))\pi_{k_{3}}(-F_{\beta}(X))\delta_{k_{1}k_{2}}M_{k_{3}}^{2}\delta_{j_{1}j_{1}j_{3}}^{\mu_{k}}(X_{k_{\ell}}.) \\ &-g^{\prime\prime}(G_{\beta}(X))\pi_{k_{3}}(-F_{\beta}(X))\delta_{k_{1}k_{2}k_{3}}\beta^{2}q_{j_{1}j_{1}j_{3}}^{\mu_{k}}(X_{k_{\ell}}.) \\ &-g^{\prime\prime}(G_{\beta}(X))\pi_{k_{3}}(-F_{\beta}(X))\delta_{k_{1}k_{2}}M_{k_{3}}^{2}\delta_{j_{1}j_{3}j_{3}}(X_{k_{\ell}}.) \\ &-g^{\prime\prime}(G_{\beta}(X))\pi_{k_{3}}(-F_{\beta}(X))\delta_{k_{1}k$$

We obtained

$$P(T_n(h_0) \ge t) \le P(T_n^{MR*}(h_0) \ge t - C\delta_{n,\gamma}) + C\{\gamma + n^{-1}\}$$

where we can take $\gamma \rightarrow 0$, and $\delta_{n,\gamma} = o(1)$.

We obtained

$$P(T_n(h_0) \ge t) \le P(T_n^{MR*}(h_0) \ge t - C\delta_{n,\gamma}) + C\{\gamma + n^{-1}\}$$

where we can take $\gamma \rightarrow 0$, and $\delta_{n,\gamma} = o(1)$.

Use a critical value $c_{n,1-\alpha} := c_n^{MR}(h_0, 1-\alpha)$ based on $T_n^{MR*}(h_0)$ for HT

We obtained

$$P(T_n(h_0) \ge t) \le P(T_n^{MR*}(h_0) \ge t - C\delta_{n,\gamma}) + C\{\gamma + n^{-1}\}$$

where we can take $\gamma \rightarrow 0$, and $\delta_{n,\gamma} = o(1)$.

Use a critical value $c_{n,1-\alpha} := c_n^{MR}(h_0, 1-\alpha)$ based on $T_n^{MR*}(h_0)$ for HT. Then

 $P(T_n(h_0) \ge c_{n,1-\alpha})$

We obtained

$$P(T_n(h_0) \ge t) \le P(T_n^{MR*}(h_0) \ge t - C\delta_{n,\gamma}) + C\{\gamma + n^{-1}\}$$

where we can take $\gamma \rightarrow 0$, and $\delta_{n,\gamma} = o(1)$.

Use a critical value $c_{n,1-\alpha} := c_n^{MR}(h_0, 1-\alpha)$ based on $T_n^{MR*}(h_0)$ for HT. Then

$$P(T_n(h_0) \ge c_{n,1-\alpha}) \le P(T_n^{MR*}(h_0) \ge c_{n,1-\alpha} - C\delta_{n,\gamma}) + o(1)$$
$$\le \alpha + P(|T_n^{MR*}(h_0) - c_{n,1-\alpha}| \le C\delta_{n,\gamma}) + o(1)$$

We obtained

$$P(T_n(h_0) \ge t) \le P(T_n^{MR*}(h_0) \ge t - C\delta_{n,\gamma}) + C\{\gamma + n^{-1}\}$$

where we can take $\gamma \rightarrow 0$, and $\delta_{n,\gamma} = o(1)$.

Use a critical value $c_{n,1-\alpha} := c_n^{MR}(h_0, 1-\alpha)$ based on $T_n^{MR*}(h_0)$ for HT. Then

$$\begin{split} P(T_n(h_0) \geqslant c_{n,1-\alpha}) &\leq P(T_n^{MR*}(h_0) \geqslant c_{n,1-\alpha} - C\delta_{n,\gamma}) + o(1) \\ &\leq \alpha + P(|T_n^{MR*}(h_0) - c_{n,1-\alpha}| \leqslant C\delta_{n,\gamma}) + o(1) \end{split}$$

We need to ensure that

$$P(|T_n^{MR*}(h_0) - c_{n,1-lpha}| \leqslant C\delta_{n,\gamma})$$
 is small

We obtained

$$P(T_n(h_0) \ge t) \le P(T_n^{MR*}(h_0) \ge t - C\delta_{n,\gamma}) + C\{\gamma + n^{-1}\}$$

where we can take $\gamma \rightarrow 0$, and $\delta_{n,\gamma} = o(1)$.

Use a critical value $c_{n,1-\alpha} := c_n^{MR}(h_0, 1-\alpha)$ based on $T_n^{MR*}(h_0)$ for HT. Then

$$\begin{split} P(T_n(h_0) \geqslant c_{n,1-\alpha}) &\leqslant P(T_n^{MR*}(h_0) \geqslant c_{n,1-\alpha} - C\delta_{n,\gamma}) + o(1) \\ &\leqslant \alpha + P(|T_n^{MR*}(h_0) - c_{n,1-\alpha}| \leqslant C\delta_{n,\gamma}) + o(1) \end{split}$$

We need to ensure that

$$P(|T_n^{MR*}(h_0) - c_{n,1-lpha}| \leqslant C\delta_{n,\gamma})$$
 is small

i.e., that $T_n^{MR*}(h_0)$ does not concentrate too fast around $c_{n,1-\alpha}$ as $p \to \infty$.

Anti-Concentration

Anti-concentration essentially bounds the probability density function

Anti-concentration essentially bounds the probability density function

Theorem (Chernozhukov, Chetverikov and Kato (2011))

Let $X \in \mathbb{R}^p$ be a vector of Gaussian random variables such that $\operatorname{Var}(X_j) \ge 1$. Let $Z = \max_{i \in [p]} X_i$. Then for any $\epsilon > 0$ and $x \in \mathbb{R}$

$$\mathbb{P}\left(|Z-x|\leqslant\epsilon\right)\leqslant C\epsilon\sqrt{\log p}$$

In particular the probability density function of Z satisfies $\max_{t \in \mathbb{R}} f_Z(t) \leqslant C \sqrt{\log p}$

• allows for non-central and arbitrary correlation structure

Anti-concentration essentially bounds the probability density function

Theorem (Chernozhukov, Chetverikov and Kato (2011))

Let $X \in \mathbb{R}^p$ be a vector of Gaussian random variables such that $\operatorname{Var}(X_j) \ge 1$. Let $Z = \max_{i \in [p]} X_i$. Then for any $\epsilon > 0$ and $x \in \mathbb{R}$

$$\mathbb{P}\left(|Z-x|\leqslant\epsilon\right)\leqslant C\epsilon\sqrt{\log p}$$

In particular the probability density function of Z satisfies $\max_{t \in \mathbb{R}} f_Z(t) \leqslant C \sqrt{\log p}$

• allows for non-central and arbitrary correlation structure

For coupling between Max statistics (N = 1), say T and Z, we have

$$P(T \ge c_{1-\alpha}) \le P(Z \ge c_{1-\alpha} - \delta_{n,\gamma}) + C\gamma$$

Anti-concentration essentially bounds the probability density function

Theorem (Chernozhukov, Chetverikov and Kato (2011))

Let $X \in \mathbb{R}^p$ be a vector of Gaussian random variables such that $\operatorname{Var}(X_j) \ge 1$. Let $Z = \max_{i \in [p]} X_i$. Then for any $\epsilon > 0$ and $x \in \mathbb{R}$

$$\mathbb{P}\left(|Z-x|\leqslant\epsilon\right)\leqslant C\epsilon\sqrt{\log p}$$

In particular the probability density function of Z satisfies $\max_{t \in \mathbb{R}} f_Z(t) \leqslant C \sqrt{\log p}$

• allows for non-central and arbitrary correlation structure

For coupling between Max statistics (N = 1), say T and Z, we have

$$P(T \ge c_{1-\alpha}) \le P(Z \ge c_{1-\alpha} - \delta_{n,\gamma}) + C\gamma \le \alpha + P(|Z - c_{1-\alpha}| \le \delta_{n,\gamma}) + \gamma$$

Anti-concentration essentially bounds the probability density function

Theorem (CCK (2011))

Let $X \in \mathbb{R}^p$ be a vector of Gaussian random variables such that $\operatorname{Var}(X_j) \ge 1$. Let $Z = \max_{j \in [p]} X_j$. Then for any $\epsilon > 0$ and $x \in \mathbb{R}$

$$\mathbb{P}\left(|Z-x|\leqslant\epsilon\right)\leqslant C\epsilon\sqrt{\log p}$$

In particular the probability density function of Z satisfies $\max_{t \in \mathbb{R}} f_Z(t) \leqslant C \sqrt{\log p}$

• allows for non-central and arbitrary correlation structure

For coupling between Max statistics (N = 1), say T and Z,

we need $\delta_{n,\gamma}\sqrt{\log p} + \gamma \to 0$

Anti-concentration essentially bounds the probability density function

Theorem (CCK (2011))

Let $X \in \mathbb{R}^p$ be a vector of Gaussian random variables such that $\operatorname{Var}(X_j) \ge 1$. Let $Z = \max_{j \in [p]} X_j$. Then for any $\epsilon > 0$ and $x \in \mathbb{R}$

$$\mathbb{P}\left(|Z-x|\leqslant\epsilon\right)\leqslant C\epsilon\sqrt{\log p}$$

In particular the probability density function of Z satisfies $\max_{t \in \mathbb{R}} f_Z(t) \leqslant C \sqrt{\log p}$

allows for non-central and arbitrary correlation structure

For coupling between Max statistics (N = 1), say T and Z,

we need
$$\delta_{n,\gamma}\sqrt{\log p} + \gamma \to 0$$
 implied by $\delta_{n,\gamma} = \frac{\log^{2/3}(p)}{\gamma^{1/3}n^{1/6}} = o\left(\frac{1}{\sqrt{\log p}}\right)$

That is, $\log^{7/6}(p) = o(n^{1/6})$.

Anti-concentration essentially bounds the probability density function

Lemma

For $X_{kj} \sim N(0, 1)$, *i.i.d.*, $k \in [N]$, $j \in [p]$, let

 $Z = \min_{k \in [N]} \max_{j \in [p]} X_{kj}.$
Anti-Concentration: MinMax

Anti-concentration essentially bounds the probability density function

Lemma

For $X_{kj} \sim N(0, 1)$, i.i.d., $k \in [N]$, $j \in [p]$, let

 $Z = \min_{k \in [N]} \max_{j \in [p]} X_{kj}.$

If $p/\sqrt{2\pi} > \log(Np) \ge 3$, the probability density function f_Z satisfies

$$\left\{\sqrt{2}\log^{1/2}\left(\frac{p/\sqrt{2\pi}}{\log N}\right) - 2\right\}\frac{\log(N)}{e} \leqslant \max_{t \in \mathbb{R}} f_Z(t) \leqslant 4\sqrt{2}\log^{3/2}(Np)$$

Anti-Concentration: MinMax

Anti-concentration essentially bounds the probability density function

Lemma

For $X_{kj} \sim N(0, 1)$, i.i.d., $k \in [N]$, $j \in [p]$, let

 $Z = \min_{k \in [N]} \max_{j \in [p]} X_{kj}.$

If $p/\sqrt{2\pi} > \log(Np) \ge 3$, the probability density function f_Z satisfies

$$\left\{\sqrt{2}\log^{1/2}\left(\frac{p/\sqrt{2\pi}}{\log N}\right) - 2\right\}\frac{\log(N)}{e} \leqslant \max_{t \in \mathbb{R}} f_Z(t) \leqslant 4\sqrt{2}\log^{3/2}(Np)$$

That is, if p = N, for some universal constants 0 < c < C we have

$$c \log^{3/2} p \leqslant \max_{t \in \mathbb{R}} f_Z(t) \leqslant C \log^{3/2}(p)$$

Anti-Concentration: MinMax

Anti-concentration essentially bounds the probability density function

Lemma

For $X_{kj} \sim N(0,1)$, i.i.d., $k \in [N]$, $j \in [p]$, let

 $Z = \min_{k \in [N]} \max_{j \in [p]} X_{kj}.$

If $p/\sqrt{2\pi} > \log(Np) \ge 3$, the probability density function f_Z satisfies

$$\left\{\sqrt{2}\log^{1/2}\left(\frac{p/\sqrt{2\pi}}{\log N}\right) - 2\right\}\frac{\log(N)}{e} \leqslant \max_{t \in \mathbb{R}} f_Z(t) \leqslant 4\sqrt{2}\log^{3/2}(Np)$$

That is, if p = N, for some universal constants 0 < c < C we have

$$c \log^{3/2} p \leqslant \max_{t \in \mathbb{R}} f_Z(t) \leqslant C \log^{3/2}(p)$$

suggests anti-concentration of MinMax is quite different from the Max
currently only partial results for arbitrary correlation structures

Anti-Concentration

However note that our bounds are

$$P(T_n(h_0) \ge t) \le P(T_n^{MR*}(h_0) \ge t - C\delta_{n,\gamma}) + C\{\gamma + n^{-1}\}$$

It suffices to control the concentration of the bootstrapped statistics

• not of the original statistics

Anti-Concentration

However note that our bounds are

$$P(T_n(h_0) \ge t) \le P(T_n^{MR*}(h_0) \ge t - C\delta_{n,\gamma}) + C\{\gamma + n^{-1}\}$$

It suffices to control the concentration of the bootstrapped statistics

not of the original statistics

We can estimate

$$P(|T_n^{MR*}(h_0)-t| \leq 2C\delta_{n,\gamma})$$

via bootstrap for $t = c_n(h_0, 1 - \alpha)$ and bound the anti-concentration factor \triangleright adaptive to the setting (in contrast to analytical bounds) \triangleright can be estimated using the same bootstrap that computed $c_n(h_0, 1 - \alpha)$

Let $\mathcal{A}_{1-\alpha}^* := \frac{P(|\mathcal{T}_n^{MR*}(h_0) - t| \leqslant 2C\delta_{n,\gamma})}{2C\delta_{n,\gamma}}$ denote the anti-concentration rate.

Suppose Condition M, m_j and its derivatives are uniformly bounded, $\sigma_{\theta,j} \ge c$, $L_G/\vartheta_n + L_C \le C$. Then, letting $\mathcal{A}^*_{1-\alpha}$ denote the anti-concentration rate, provided

$$\frac{K_n^{2/3}}{n^{1/6}} + \kappa_n \frac{d_{\theta}^{1/2} K_n}{n^{1/2}} + \frac{\bar{w}}{\kappa_n} = o\left(\frac{1}{\mathcal{A}_{1-\alpha}^*}\right),\tag{4}$$

where $K_n = \log p + d_\theta \log n$, we have $P(T_n(h_0) \ge c_n(h_0, 1 - \alpha)) \le \alpha + o(1)$

Suppose Condition M, m_j and its derivatives are uniformly bounded, $\sigma_{\theta,j} \ge c$, $L_G/\vartheta_n + L_C \le C$. Then, letting $\mathcal{A}^*_{1-\alpha}$ denote the anti-concentration rate, provided

$$\frac{K_n^{2/3}}{n^{1/6}} + \kappa_n \frac{d_{\theta}^{1/2} K_n}{n^{1/2}} + \frac{\bar{w}}{\kappa_n} = o\left(\frac{1}{\mathcal{A}_{1-\alpha}^*}\right),\tag{4}$$

where $K_n = \log p + d_\theta \log n$, we have $P(T_n(h_0) \ge c_n(h_0, 1 - \alpha)) \le \alpha + o(1)$

Remark: we can simulate $ar{w}$ and bound \mathcal{A}^*_{1-lpha}

 \triangleright yields a data-driven choice of κ_n

Suppose Condition M, m_j and its derivatives are uniformly bounded, $\sigma_{\theta,j} \ge c$, $L_G/\vartheta_n + L_C \le C$. Then, letting $\mathcal{A}^*_{1-\alpha}$ denote the anti-concentration rate, provided

$$\frac{K_n^{2/3}}{n^{1/6}} + \kappa_n \frac{d_{\theta}^{1/2} K_n}{n^{1/2}} + \frac{\bar{w}}{\kappa_n} = o\left(\frac{1}{\mathcal{A}_{1-\alpha}^*}\right),\tag{4}$$

where $K_n = \log p + d_\theta \log n$, we have $P(T_n(h_0) \ge c_n(h_0, 1 - \alpha)) \le \alpha + o(1)$

Remark: we can simulate $ar{w}$ and bound \mathcal{A}^*_{1-lpha}

 \triangleright yields a data-driven choice of κ_n

For the traditional setting, e.g., fixed p and d_{θ}

 $\begin{array}{l} \triangleright \ \ \mathcal{A}_{1-\alpha}^* \leqslant C \\ \triangleright \ \ \mathcal{K}_n \leqslant C \\ \triangleright \ \ \kappa_n \to \infty \ \text{and} \ \ \kappa_n / n^{1/2} \to 0 \end{array}$

For non-Donsker cases:

Example (Many inequalities and fixed d_{θ})

Let $p = n^{C}$ for some fixed C > 1, $d_{\theta} \leq C$, and the anti-concentration $\mathcal{A}_{1-\alpha}^{*} \leq C \log^{3/2} n$. It suffices $\kappa_{n} \in [\log^{5/2} n, n^{\frac{1}{2}} \log^{-3} n]$.

For non-Donsker cases:

Example (Many inequalities and fixed d_{θ})

Let $p = n^C$ for some fixed C > 1, $d_\theta \leq C$, and the anti-concentration $\mathcal{A}_{1-\alpha}^* \leq C \log^{3/2} n$. It suffices $\kappa_n \in [\log^{5/2} n, n^{\frac{1}{2}} \log^{-3} n]$.

Example (Polynomially many inequalities and large d_{θ})

Let $p = n^{C}$ for some fixed C > 1, $d_{\theta} = n^{a}$ for some a < 1/4, and the anti-concentration $\mathcal{A}_{1-\alpha}^{*} \leq C \log^{3/2} n$. It suffices $\kappa_{n} \in [n^{a/2} \log^{5/2} n, n^{\frac{1}{2} - \frac{3}{2}a} \log^{-3} n]$.

For non-Donsker cases:

Example (Many inequalities and fixed d_{θ})

Let $p = n^C$ for some fixed C > 1, $d_{\theta} \leq C$, and the anti-concentration $\mathcal{A}_{1-\alpha}^* \leq C \log^{3/2} n$. It suffices $\kappa_n \in [\log^{5/2} n, n^{\frac{1}{2}} \log^{-3} n]$.

Example (Polynomially many inequalities and large d_{θ})

Let $p = n^{C}$ for some fixed C > 1, $d_{\theta} = n^{a}$ for some a < 1/4, and the anti-concentration $\mathcal{A}_{1-\alpha}^{*} \leq C \log^{3/2} n$. It suffices $\kappa_{n} \in [n^{a/2} \log^{5/2} n, n^{\frac{1}{2} - \frac{3}{2}a} \log^{-3} n]$.

Example (Exponentially many inequalities)

Suppose that $d_{\theta} \leq C \log n$, $p \geq n^{\log n}$ and the anti-concentration $\mathcal{A}_{1-\alpha}^* \leq C \log^{3/2} p$. It suffices $\kappa_n \in [\log^2 p \log n, n^{1/2} \log^{-5/2} p \log^{-1} n]$, provided that $n^{-1/6} \log^{13/6} p \log n = o(1)$.

Conclusion

> subvector inference in PI models with many moment restrictions

- allow for non-Donsker classes
- finite sample analysis
- need more than $\kappa_n \to \infty$ and $\kappa_n/\sqrt{n} \to 0$ when $p \to \infty$
- valid data-driven choice of penalty parameters (via additional bootstrap)
- ▷ new CLTs for $\min_{k \in [N]} \max_{j \in [p]} W_{kj}$
 - results parallel results for $\max_{j \in [p]} W_j$
 - approximation based on composition of smooth maximum (LSE)
- > new anti-concentration pattern
 - does not parallel results for $\max_{j \in [p]} W_j$ (counter example)
 - estimate anti-concentration via bootstrap
- ▷ Future (ongoing) work
 - sharper constants
 - hybrid methods
 - power comparisons
 - analytical bounds for anti-concentration
 - orthogonal moment conditions