Subvector Inference in Partially Identified Models with Many Moment Inequalities

Alexandre Belloni Duke
joint work with Federico Bugni (Duke) and Victor Chernozhukov (MIT)

Meeting in Mathematical Statistics
CIRM, December 20th, 2017

Happy Birthday

Luminy, December 12, 2013

Happy Birthday

Linear programming approach to high-dimensional errors-in-variables models

Alexandre Tsybakov, joint work with Mathieu Rosenbaum

Laboratoire de Statistique, CREST and
Laboratoire de Probabilités et Modèles Aléatoires, Université Paris 6

Luminy, December 10, 2013
(Mathieu: "Did you get the slides I sent? ... [send] my best to Sacha, I am feeling bad not having been able to make it to Luminy!")

Introduction

\triangleright There is a large literature on inference in partially identified (PI) models defined by moment (in)equalities.
\triangleright We consider a model characterized by $\left(\theta^{*}, F\right)$

- $\theta^{*} \in \mathbb{R}^{d_{\theta}}$ is a finite dimensional parameter of interest,
- F is the distribution of data, i.e., $W \sim F\left(W_{i}, i=1, \ldots, n\right.$, i.i.d. $)$

Introduction

\triangleright There is a large literature on inference in partially identified (PI) models defined by moment (in)equalities.
\triangleright We consider a model characterized by $\left(\theta^{*}, F\right)$

- $\theta^{*} \in \mathbb{R}^{d_{\theta}}$ is a finite dimensional parameter of interest,
- F is the distribution of data, i.e., $W \sim F\left(W_{i}, i=1, \ldots, n\right.$, i.i.d. $)$
\triangleright The main prediction of the model is that the true parameter θ^{*} satisfies

$$
\begin{align*}
& \mathbb{E}\left[m_{j}(W, \theta)\right] \leqslant 0, \text { for } j=1, \ldots, p_{I} \\
& \mathbb{E}\left[m_{j}(W, \theta)\right]=0, \text { for } j=p_{I}+1, \ldots, p_{I}+p_{E} \tag{1}
\end{align*}
$$

\triangleright key issue: θ^{*} is not assumed to be point identified, i.e., given F, there might be a set of θ that satisfy (1).

$$
\Theta_{I} \equiv\left\{\theta \in \Theta \text { s.t. } \begin{array}{l}
\mathbb{E}\left[m_{j}(W, \theta)\right] \leqslant 0 \text { for } j=1, \ldots, p_{I} \\
\mathbb{E}\left[m_{j}(W, \theta)\right]=0 \text { for } j=p_{I}+1, \ldots, p_{I}+p_{E}
\end{array}\right\}
$$

Motivating Examples

Interval-Outcome Linear Regression (e.g., Manski and Tamer 2002)
\triangleright let Y_{i}^{*} denote a latent dependent variable

$$
Y_{i}^{*}=X_{i}^{\prime} \theta^{*}+\varepsilon_{i}, \quad \mathbb{E}\left[\varepsilon_{i} \mid X_{i}\right]=0 \quad \text { a.s. }
$$

\triangleright We only observe an interval s.t. $Y_{i} \in\left[Y_{i}^{\prime}, Y_{i}^{u}\right]$

Motivating Examples

Interval-Outcome Linear Regression (e.g., Manski and Tamer 2002)
\triangleright let Y_{i}^{*} denote a latent dependent variable

$$
Y_{i}^{*}=X_{i}^{\prime} \theta^{*}+\varepsilon_{i}, \quad \mathbb{E}\left[\varepsilon_{i} \mid X_{i}\right]=0 \quad \text { a.s. }
$$

\triangleright We only observe an interval s.t. $Y_{i} \in\left[Y_{i}^{\prime}, Y_{i}^{\mu}\right]$ which leads to

$$
\begin{aligned}
& \mathbb{E}\left[X_{i}^{\prime} \theta^{*}-Y_{i}^{u} \mid X_{i}\right] \leqslant 0 \\
& \mathbb{E}\left[Y_{i}^{\prime}-X_{i}^{\prime} \theta^{*} \mid X_{i}\right] \leqslant 0
\end{aligned}
$$

\triangleright We could use

$$
\begin{gathered}
\mathbb{E}\left[X_{i}^{\prime} \theta^{*}-Y_{i}^{u}\right] \leqslant 0 \\
\mathbb{E}\left[Y_{i}^{\prime}-X_{i}^{\prime} \theta^{*}\right] \leqslant 0 \\
\mathbb{E}\left[\left(X_{i}^{\prime} \theta^{*}-Y_{i}^{u}\right) X_{i j} 1\left\{X_{i j} \geqslant 0\right\}\right] \leqslant 0 \\
\mathbb{E}\left[\left(Y_{i}^{\prime}-X_{i}^{\prime} \theta^{*}\right) X_{i j} 1\left\{X_{i j} \geqslant 0\right\}\right] \leqslant 0 \\
\mathbb{E}\left[-\left(X_{i}^{\prime} \theta^{*}-Y_{i}^{u}\right) X_{i j} 1\left\{X_{i j} \leqslant 0\right\}\right] \leqslant 0 \\
\mathbb{E}\left[-\left(Y_{i}^{\prime}-X_{i}^{\prime} \theta^{*}\right) X_{i j} 1\left\{X_{i j} \leqslant 0\right\}\right] \leqslant 0
\end{gathered}
$$

Motivating Examples

Discrete Choice Model with Multiple Equilibria (Ciliberto and Tamer, 2009)
$\triangleright m$ firms play an entry game (Nash Equilibrium) on n independent markets
\triangleright On each market, a firm makes an entry decision $d_{j} \in\{0,1\}$

$$
\text { profit function } \pi_{j}\left(d_{j}, d_{-j}, X, \varepsilon, \theta^{*}\right)
$$

Motivating Examples

Discrete Choice Model with Multiple Equilibria (Ciliberto and Tamer, 2009)
$\triangleright m$ firms play an entry game (Nash Equilibrium) on n independent markets
\triangleright On each market, a firm makes an entry decision $d_{j} \in\{0,1\}$

$$
\text { profit function } \pi_{j}\left(d_{j}, d_{-j}, X, \varepsilon, \theta^{*}\right) \geqslant \pi_{j}\left(1-d_{j}, d_{-j}, X, \varepsilon, \theta^{*}\right)
$$

where X firm/market characteristics, and we would like to infer θ^{*}

Motivating Examples

Discrete Choice Model with Multiple Equilibria (Ciliberto and Tamer, 2009)
$\triangleright m$ firms play an entry game (Nash Equilibrium) on n independent markets
\triangleright On each market, a firm makes an entry decision $d_{j} \in\{0,1\}$

$$
\text { profit function } \pi_{j}\left(d_{j}, d_{-j}, X, \varepsilon, \theta^{*}\right) \geqslant \pi_{j}\left(1-d_{j}, d_{-j}, X, \varepsilon, \theta^{*}\right)
$$

where X firm/market characteristics, and we would like to infer θ^{*}
\triangleright There are set-valued functions R_{1}, R_{2} such that

- d is the unique equilibrium if $\varepsilon \in R_{1}(d, X, \theta)$
- d is a possible equilibrium if $\varepsilon \in R_{2}(d, X, \theta)$

Motivating Examples

Discrete Choice Model with Multiple Equilibria (Ciliberto and Tamer, 2009)
$\triangleright m$ firms play an entry game (Nash Equilibrium) on n independent markets
\triangleright On each market, a firm makes an entry decision $d_{j} \in\{0,1\}$

$$
\text { profit function } \pi_{j}\left(d_{j}, d_{-j}, X, \varepsilon, \theta^{*}\right) \geqslant \pi_{j}\left(1-d_{j}, d_{-j}, X, \varepsilon, \theta^{*}\right)
$$

where X firm/market characteristics, and we would like to infer θ^{*}
\triangleright There are set-valued functions R_{1}, R_{2} such that

- d is the unique equilibrium if $\varepsilon \in R_{1}(d, X, \theta)$
- d is a possible equilibrium if $\varepsilon \in R_{2}(d, X, \theta)$
\triangleright Conclude that

$$
\begin{aligned}
& \mathbb{E}\left[1\left\{d=d^{\prime}\right\} \mid X\right] \geqslant \mathbb{E}\left[1\left\{\varepsilon \in R_{1}\left(d, X, \theta_{0}\right)\right\} \mid X\right] \\
& \mathbb{E}\left[1\left\{d=d^{\prime}\right\} \mid X\right] \leqslant \mathbb{E}\left[1\left\{\varepsilon \in R_{1}\left(d, X, \theta_{0}\right) \cup R_{2}\left(d, X, \theta_{0}\right)\right\} \mid X\right]
\end{aligned}
$$

Motivating Examples

Discrete Choice Model with Multiple Equilibria (Ciliberto and Tamer, 2009)
$\triangleright m$ firms play an entry game (Nash Equilibrium) on n independent markets
\triangleright On each market, a firm makes an entry decision $d_{j} \in\{0,1\}$

$$
\text { profit function } \pi_{j}\left(d_{j}, d_{-j}, X, \varepsilon, \theta^{*}\right) \geqslant \pi_{j}\left(1-d_{j}, d_{-j}, X, \varepsilon, \theta^{*}\right)
$$

where X firm/market characteristics, and we would like to infer θ^{*}
\triangleright There are set-valued functions R_{1}, R_{2} such that

- d is the unique equilibrium if $\varepsilon \in R_{1}(d, X, \theta)$
- d is a possible equilibrium if $\varepsilon \in R_{2}(d, X, \theta)$
\triangleright Conclude that

$$
\begin{aligned}
& \mathbb{E}\left[1\left\{d=d^{\prime}\right\} \mid X\right] \geqslant \mathbb{E}\left[1\left\{\varepsilon \in R_{1}\left(d, X, \theta_{0}\right)\right\} \mid X\right] \\
& \mathbb{E}\left[1\left\{d=d^{\prime}\right\} \mid X\right] \leqslant \mathbb{E}\left[1\left\{\varepsilon \in R_{1}\left(d, X, \theta_{0}\right) \cup R_{2}\left(d, X, \theta_{0}\right)\right\} \mid X\right]
\end{aligned}
$$

\triangleright If conditional distribution of ε given X is known (up to a subvector of θ_{0}), we can calculate numerically right-hand sides of both inequalities
\triangleright we have 2^{m+1} moment inequalities for each value of $X \in \mathcal{X}$ (a discrete set).

Introduction

\triangleright We consider a model characterized by $\left(\theta^{*}, F\right)$

- $\theta \in \mathbb{R}^{d_{\theta}}$ is a finite dimensional parameter of interest,
- F is the distribution of data, i.e., $W \sim F\left(W_{i}, i=1, \ldots, n\right.$, i.i.d. $)$
\triangleright The main prediction of the model is that the true parameter θ^{*} satisfies

$$
\begin{align*}
& \mathbb{E}\left[m_{j}(W, \theta)\right] \leqslant 0, \text { for } j=1, \ldots, p_{I} \\
& \mathbb{E}\left[m_{j}(W, \theta)\right]=0, \text { for } j=p_{I}+1, \ldots, p_{I}+p_{E} \tag{2}
\end{align*}
$$

\triangleright key issue: θ^{*} is not assumed to be point identified, i.e., given F, there might be a set of θ that satisfy (2).

$$
\Theta_{I} \equiv\left\{\theta \in \Theta \text { s.t. } \mathbb{E}\left[m_{j}(W, \theta)\right] \leqslant 0 \text { for } j=1, \ldots, p\right\}
$$

where $p=p_{I}+2 p_{E}$.

Introduction

\triangleright We consider a model characterized by $\left(\theta^{*}, F\right)$

- $\theta \in \mathbb{R}^{d_{\theta}}$ is a finite dimensional parameter of interest,
- F is the distribution of data, i.e., $W \sim F\left(W_{i}, i=1, \ldots, n\right.$, i.i.d. $)$
\triangleright The main prediction of the model is that the true parameter θ^{*} satisfies

$$
\begin{align*}
& \mathbb{E}\left[m_{j}(W, \theta)\right] \leqslant 0, \text { for } j=1, \ldots, p_{I} \\
& \mathbb{E}\left[m_{j}(W, \theta)\right]=0, \text { for } j=p_{I}+1, \ldots, p_{I}+p_{E} \tag{2}
\end{align*}
$$

\triangleright key issue: θ^{*} is not assumed to be point identified, i.e., given F, there might be a set of θ that satisfy (2).

$$
\Theta_{I} \equiv\left\{\theta \in \Theta \text { s.t. } \mathbb{E}\left[m_{j}(W, \theta)\right] \leqslant 0 \text { for } j=1, \ldots, p\right\}
$$

where $p=p_{I}+2 p_{E}$.
\triangleright We formally deal with unconditional moments

Introduction

\triangleright We consider a model characterized by $\left(\theta^{*}, F\right)$

- $\theta \in \mathbb{R}^{d_{\theta}}$ is a finite dimensional parameter of interest,
- F is the distribution of data, i.e., $W \sim F\left(W_{i}, i=1, \ldots, n\right.$, i.i.d. $)$
\triangleright The main prediction of the model is that the true parameter θ^{*} satisfies

$$
\begin{align*}
& \mathbb{E}\left[m_{j}(W, \theta)\right] \leqslant 0, \text { for } j=1, \ldots, p_{I} \\
& \mathbb{E}\left[m_{j}(W, \theta)\right]=0, \text { for } j=p_{I}+1, \ldots, p_{I}+p_{E} \tag{2}
\end{align*}
$$

\triangleright key issue: θ^{*} is not assumed to be point identified, i.e., given F, there might be a set of θ that satisfy (2).

$$
\Theta_{I} \equiv\left\{\theta \in \Theta \text { s.t. } \mathbb{E}\left[m_{j}(W, \theta)\right] \leqslant 0 \text { for } j=1, \ldots, p\right\}
$$

where $p=p_{I}+2 p_{E}$.
\triangleright We formally deal with unconditional moments but conditional moments can be approximated via

$$
\mathbb{E}\left[m_{j}\left(W, \theta^{*}\right) \mid z_{i}\right] \leqslant 0 \Rightarrow \mathbb{E}\left[m_{j}\left(W, \theta^{*}\right) 1\left\{z_{i} \in[a, b]\right\}\right] \leqslant 0 \text { for all }[a, b]
$$

Introduction (ctd.)

\triangleright The literature focuses on inference on PI parameter vector $\theta^{*} \in \Theta$

Introduction (ctd.)

\triangleright The literature focuses on inference on PI parameter vector $\theta^{*} \in \Theta$, i.e.,

$$
H_{0}: \theta^{*}=\theta_{0} \quad \text { vs. } \quad H_{1}: \theta^{*} \neq \theta_{0} .
$$

Introduction (ctd.)

\triangleright The literature focuses on inference on PI parameter vector $\theta^{*} \in \Theta$, i.e.,

$$
H_{0}: \theta^{*}=\theta_{0} \quad \text { vs. } \quad H_{1}: \theta^{*} \neq \theta_{0}
$$

\triangleright We are not interested on θ^{*} but on $h\left(\theta^{*}\right)$ for a known fn. $h: \Theta \rightarrow \Lambda$. This is the problem addressed in this paper:

Hypothesis test (HT): For fixed h_{0}, we want to test:

$$
\begin{equation*}
H_{0}: h\left(\theta^{*}\right)=h_{0} \quad \text { vs. } \quad H_{1}: h\left(\theta^{*}\right) \neq h_{0} \tag{3}
\end{equation*}
$$

Introduction (ctd.)

\triangleright The literature focuses on inference on PI parameter vector $\theta^{*} \in \Theta$, i.e.,

$$
H_{0}: \theta^{*}=\theta_{0} \quad \text { vs. } \quad H_{1}: \theta^{*} \neq \theta_{0} .
$$

\triangleright We are not interested on θ^{*} but on $h\left(\theta^{*}\right)$ for a known fn. $h: \Theta \rightarrow \Lambda$. This is the problem addressed in this paper:

Hypothesis test (HT): For fixed h_{0}, we want to test:

$$
\begin{equation*}
H_{0}: h\left(\theta^{*}\right)=h_{0} \quad \text { vs. } \quad H_{1}: h\left(\theta^{*}\right) \neq h_{0} \tag{3}
\end{equation*}
$$

Confidence set (CS) for $h\left(\theta^{*}\right)$: based on HT inversion of a test for (3).

Introduction (ctd.)

\triangleright The literature focuses on inference on PI parameter vector $\theta^{*} \in \Theta$, i.e.,

$$
H_{0}: \theta^{*}=\theta_{0} \quad \text { vs. } \quad H_{1}: \theta^{*} \neq \theta_{0}
$$

\triangleright We are not interested on θ^{*} but on $h\left(\theta^{*}\right)$ for a known fn. $h: \Theta \rightarrow \Lambda$. This is the problem addressed in this paper:

Hypothesis test (HT): For fixed h_{0}, we want to test:

$$
\begin{equation*}
H_{0}: h\left(\theta^{*}\right)=h_{0} \quad \text { vs. } \quad H_{1}: h\left(\theta^{*}\right) \neq h_{0} \tag{3}
\end{equation*}
$$

Confidence set (CS) for $h\left(\theta^{*}\right)$: based on HT inversion of a test for (3).
\triangleright Main application: Subvector inference: For $\theta^{*} \in \Theta \subset \mathbb{R}^{d_{\theta}}, d_{\theta}>1$,

$$
H_{0}: \theta_{1}^{*}=h_{0} \quad \text { vs. } \quad H_{1}: \theta_{1}^{*} \neq h_{0} .
$$

\Rightarrow Special case of Eq. (3) with $h(\theta)=\theta_{1}$ and $h_{0} \in \Lambda \subseteq \mathbb{R}$.

Literature review

Most of literature on inference in PI moment (in)eq. is on "vector inference"

$$
H_{0}: \theta^{*}=\theta_{0} \text { vs. } H_{1}: \theta^{*} \neq \theta_{0}
$$

Literature review

Most of literature on inference in PI moment (in)eq. is on "vector inference"

$$
H_{0}: \theta^{*}=\theta_{0} \text { vs. } H_{1}: \theta^{*} \neq \theta_{0}
$$

\triangleright Testing unconditional moment inequalities: Chernozhukov, Hong, and Tamer (2007), Romano and Shaikh (2008), Andrews and Guggenberger (2009), Andrews and Soares (2010), Canay (2010), Bugni (2011), Andrews and Jia Barwick (2012), Romano, Shaikh, and Wolf (2012)
\triangleright Testing conditional moment inequalities: Andrews and Shi (2013), Chernozhukov, Lee, and Rosen (2013), Armstrong (2011), Chetverikov (2011), Armstrong and Chan (2012)

Literature review

Most of literature on inference in PI moment (in)eq. is on "vector inference"

$$
H_{0}: \theta^{*}=\theta_{0} \text { vs. } H_{1}: \theta^{*} \neq \theta_{0}
$$

\triangleright Testing unconditional moment inequalities: Chernozhukov, Hong, and Tamer (2007), Romano and Shaikh (2008), Andrews and Guggenberger (2009), Andrews and Soares (2010), Canay (2010), Bugni (2011), Andrews and Jia Barwick (2012), Romano, Shaikh, and Wolf (2012)
\triangleright Testing conditional moment inequalities: Andrews and Shi (2013), Chernozhukov, Lee, and Rosen (2013), Armstrong (2011), Chetverikov (2011), Armstrong and Chan (2012)

In both cases, the number of moments p is fixed (explicitly or due to the structure)
Testing unconditional moment inequalities with $p \rightarrow \infty$
\triangleright Menzel (2014), where $p \ll n$
\triangleright Chernozhukov, Chetverikov and Kato (WP 2013), where $p \gg n$

Literature review: subvector

Asymptotically uniformly valid inference for

$$
H_{0}: h\left(\theta^{*}\right)=h_{0} \quad \text { vs. } H_{1}: h\left(\theta^{*}\right) \neq h_{0}
$$

\triangleright Projections of CS: Project usual CS for θ onto space of H_{0}. Considered by Andrews et. al. (2009, 10).

- Related work improving projections: Kaido, Molinari \& Stoye (WP, 2015), Gafarov (affine models, WP 2017)
\triangleright Subsampling: Profile the criterion function and approximate critical value with subsampling. Proposed by Romano \& Shaikh (2008, 10).
\triangleright Project the Criterion Function: Bugni, Canay and Shi (2017)

Literature review: subvector

Asymptotically uniformly valid inference for

$$
H_{0}: h\left(\theta^{*}\right)=h_{0} \text { vs. } H_{1}: h\left(\theta^{*}\right) \neq h_{0}
$$

\triangleright Projections of CS: Project usual CS for θ onto space of H_{0}. Considered by Andrews et. al. (2009, 10).

- Related work improving projections: Kaido, Molinari \& Stoye (WP, 2015), Gafarov (affine models, WP 2017)
\triangleright Subsampling: Profile the criterion function and approximate critical value with subsampling. Proposed by Romano \& Shaikh (2008, 10).
\triangleright Project the Criterion Function: Bugni, Canay and Shi (2017)
In all cases, the number of moments inequalities p is fixed and asymptotic analysis (i.e., based on the limiting distribution of the process)

Positioning in the literature

	Donsker (e.g. p fixed)	non-Donsker (e.g. p growing)
Vector Inference	Chernozhukov et al (2007) Romano and Shaikh (2008) Andrews and Guggenberger (2009) Andrews and Soares (2010)	Menzel (2014, $p \ll n$) Chernozhukov et al (WP 2013, $p \gg n$)
Subvector Inference	```Andrews et. al. (2009, 10) Romano and Shaikh (2008, 10) Bugni, Canay and Shi (2017) Kaido et al (WP, 2015) Gafarov (WP 2017)```	

Positioning in the literature

	Donsker (e.g. p fixed)	non-Donsker (e.g. p growing)
Vector Inference	Chernozhukov et al (2007) Romano and Shaikh (2008) Andrews and Guggenberger (2009) Andrews and Soares (2010)	Menzel (2014, $p \ll n$) Chernozhukov et al (WP 2013, $p \gg n$)
Subvector Inference	```Andrews et. al. (2009, 10) Romano and Shaikh (2008, 10) Bugni, Canay and Shi (2017) Kaido et al (WP, 2015) Gafarov (WP 2017)```	

Starting point:
\triangleright the minimum resampling critical value in Bugni, Canay and Shi (2017); and
\triangleright CLTs for the max of high-dim vectors used in Chernozhukov et al (WP 2013)

Setting and Contributions

Profiled test statistics for $H_{0}: h\left(\theta^{*}\right)=h_{0}$ vs. $H_{1}: h\left(\theta^{*}\right) \neq h_{0}$

$$
T_{n}\left(h_{0}\right)=\inf _{\theta \in \Theta\left(h_{0}\right)} \max _{j \in[p]} \sqrt{n} \bar{m}_{\theta, j} / \widehat{\sigma}_{\theta, j}
$$

where $\Theta\left(h_{0}\right)=h^{-1}\left(h_{0}\right)=\left\{\theta \in \Theta: h(\theta)=h_{0}\right\}$ and

$$
\bar{m}_{\theta, j}=\frac{1}{n} \sum_{i=1}^{n} m_{j}\left(W_{i}, \theta\right) \quad \text { and } \quad \widehat{\sigma}_{\theta, j}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left\{m_{j}\left(W_{i}, \theta\right)-\bar{m}_{\theta, j}\right\}^{2}
$$

The test: reject if $T_{n}\left(h_{0}\right)>c_{n}\left(h_{0}, 1-\alpha\right)$ where $c_{n}\left(h_{0}, 1-\alpha\right)$ is a critical value.

Setting and Contributions

Profiled test statistics for $H_{0}: h\left(\theta^{*}\right)=h_{0}$ vs. $H_{1}: h\left(\theta^{*}\right) \neq h_{0}$

$$
T_{n}\left(h_{0}\right)=\inf _{\theta \in \Theta\left(h_{0}\right)} \max _{j \in[p]} \sqrt{n} \bar{m}_{\theta, j} / \widehat{\sigma}_{\theta, j}
$$

where $\Theta\left(h_{0}\right)=h^{-1}\left(h_{0}\right)=\left\{\theta \in \Theta: h(\theta)=h_{0}\right\}$ and

$$
\bar{m}_{\theta, j}=\frac{1}{n} \sum_{i=1}^{n} m_{j}\left(W_{i}, \theta\right) \quad \text { and } \quad \widehat{\sigma}_{\theta, j}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left\{m_{j}\left(W_{i}, \theta\right)-\bar{m}_{\theta, j}\right\}^{2}
$$

The test: reject if $T_{n}\left(h_{0}\right)>c_{n}\left(h_{0}, 1-\alpha\right)$ where $c_{n}\left(h_{0}, 1-\alpha\right)$ is a critical value.
Under H_{0} :

$$
P\left(T_{n}\left(h_{0}\right)>c_{n}\left(h_{0}, 1-\alpha\right)\right) \leqslant \alpha+o(1)
$$

Setting and Contributions

Profiled test statistics for $H_{0}: h\left(\theta^{*}\right)=h_{0}$ vs. $H_{1}: h\left(\theta^{*}\right) \neq h_{0}$

$$
T_{n}\left(h_{0}\right)=\inf _{\theta \in \Theta\left(h_{0}\right)} \max _{j \in[p]} \sqrt{n} \bar{m}_{\theta, j} / \widehat{\sigma}_{\theta, j}
$$

where $\Theta\left(h_{0}\right)=h^{-1}\left(h_{0}\right)=\left\{\theta \in \Theta: h(\theta)=h_{0}\right\}$ and

$$
\bar{m}_{\theta, j}=\frac{1}{n} \sum_{i=1}^{n} m_{j}\left(W_{i}, \theta\right) \quad \text { and } \quad \widehat{\sigma}_{\theta, j}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left\{m_{j}\left(W_{i}, \theta\right)-\bar{m}_{\theta, j}\right\}^{2}
$$

The test: reject if $T_{n}\left(h_{0}\right)>c_{n}\left(h_{0}, 1-\alpha\right)$ where $c_{n}\left(h_{0}, 1-\alpha\right)$ is a critical value.

$$
\text { Under } H_{0}: \quad P\left(T_{n}\left(h_{0}\right)>c_{n}\left(h_{0}, 1-\alpha\right)\right) \leqslant \alpha+o(1)
$$

Our contribution is to construct critical values $c_{n}\left(h_{0}, 1-\alpha\right)$ that
\triangleright uniformly controls asymptotic size over a large class of dgps $\left(F \in \mathcal{P}_{n}\right)$
\triangleright in the presence of many moment inequalities $(p \rightarrow \infty$ as $n \rightarrow \infty)$

Setting and Contributions

Profiled test statistics for $H_{0}: h\left(\theta^{*}\right)=h_{0}$ vs. $H_{1}: h\left(\theta^{*}\right) \neq h_{0}$

$$
T_{n}\left(h_{0}\right)=\inf _{\theta \in \Theta\left(h_{0}\right)} \max _{j \in[p]} \sqrt{n} \bar{m}_{\theta, j} / \widehat{\sigma}_{\theta, j}
$$

where $\Theta\left(h_{0}\right)=h^{-1}\left(h_{0}\right)=\left\{\theta \in \Theta: h(\theta)=h_{0}\right\}$ and

$$
\bar{m}_{\theta, j}=\frac{1}{n} \sum_{i=1}^{n} m_{j}\left(W_{i}, \theta\right) \quad \text { and } \quad \widehat{\sigma}_{\theta, j}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left\{m_{j}\left(W_{i}, \theta\right)-\bar{m}_{\theta, j}\right\}^{2}
$$

The test: reject if $T_{n}\left(h_{0}\right)>c_{n}\left(h_{0}, 1-\alpha\right)$ where $c_{n}\left(h_{0}, 1-\alpha\right)$ is a critical value.

$$
\text { Under } H_{0}: \quad P\left(T_{n}\left(h_{0}\right)>c_{n}\left(h_{0}, 1-\alpha\right)\right) \leqslant \alpha+o(1)
$$

Our contribution is to construct critical values $c_{n}\left(h_{0}, 1-\alpha\right)$ that
\triangleright uniformly controls asymptotic size over a large class of dgps $\left(F \in \mathcal{P}_{n}\right)$
\triangleright in the presence of many moment inequalities ($p \rightarrow \infty$ as $n \rightarrow \infty$)
\triangleright allow for $p \gg n$ (also $d_{\theta} \rightarrow \infty$ but not clear if empirically relevant)
\triangleright finite sample analysis, and rate for size error (e.g. polynomially in n)
\triangleright towards data-driven choice of parameters

Overview of Proposals

Profiled test statistics for $H_{0}: h\left(\theta^{*}\right)=h_{0}$ vs. $H_{1}: h\left(\theta^{*}\right) \neq h_{0}$

$$
T_{n}\left(h_{0}\right)=\inf _{\theta \in \Theta\left(h_{0}\right)} \max _{j \in[p]} \sqrt{n} \bar{m}_{\theta, j} / \widehat{\sigma}_{\theta, j}
$$

We consider different methods to calculate the critical value $c_{n}\left(h_{0}, 1-\alpha\right)$:
\triangleright Self-Normalized method (not covering today)

- fast
- works under very weak conditions
- potentially conservative
\triangleright Bootstrap-based methods
- slower (requires simulations)
- requires stronger conditions
- but less conservative
\triangleright Hybrids are possible (not covering today)
- potentially useful to speed up bootstrap-based methods

Proposal via Bootstrap-based methods

Profiled test statistics for $H_{0}: h\left(\theta^{*}\right)=h_{0}$ vs. $H_{1}: h\left(\theta^{*}\right) \neq h_{0}$

$$
T_{n}\left(h_{0}\right)=\inf _{\theta \in \Theta\left(h_{0}\right)} \max _{j \in[p]} \sqrt{n} \bar{m}_{\theta, j} / \widehat{\sigma}_{\theta, j}
$$

Proposal via Bootstrap-based methods

Profiled test statistics for $H_{0}: h\left(\theta^{*}\right)=h_{0}$ vs. $H_{1}: h\left(\theta^{*}\right) \neq h_{0}$

$$
T_{n}\left(h_{0}\right)=\inf _{\theta \in \Theta\left(h_{0}\right)} \max _{j \in[p]} \sqrt{n} \bar{m}_{\theta, j} / \widehat{\sigma}_{\theta, j}
$$

Letting $\widehat{v}_{\theta, j}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left\{m_{j}\left(W_{i}, \theta\right)-\mathbb{E}\left[m_{j}\left(W_{i}, \theta\right)\right]\right\} / \widehat{\sigma}_{\theta, j}$

Proposal via Bootstrap-based methods

Profiled test statistics for $H_{0}: h\left(\theta^{*}\right)=h_{0}$ vs. $H_{1}: h\left(\theta^{*}\right) \neq h_{0}$

$$
T_{n}\left(h_{0}\right)=\inf _{\theta \in \Theta\left(h_{0}\right)} \max _{j \in[p]} \sqrt{n} \bar{m}_{\theta, j} / \widehat{\sigma}_{\theta, j}
$$

Letting $\widehat{v}_{\theta, j}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left\{m_{j}\left(W_{i}, \theta\right)-\mathbb{E}\left[m_{j}\left(W_{i}, \theta\right)\right]\right\} / \widehat{\sigma}_{\theta, j}$ we can rewrite $T_{n}\left(h_{0}\right)$ as

$$
T_{n}\left(h_{0}\right)=\inf _{\theta \in \Theta\left(h_{0}\right)} \max _{j \in[p]} \widehat{v}_{\theta, j}+\sqrt{n} \mathbb{E}\left[m_{j}(W, \theta)\right] / \widehat{\sigma}_{\theta, j}
$$

bootstrap: $\quad \widehat{v}_{\theta, j}^{*}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \xi_{i} \frac{m_{j}\left(W_{i}, \theta\right)-\bar{m}_{\theta, j}}{\widehat{\sigma}_{\theta, j}} \quad$ where ξ_{i} 's are i.i.d. $N(0,1)$.

Proposal via Bootstrap-based methods

Profiled test statistics for $H_{0}: h\left(\theta^{*}\right)=h_{0}$ vs. $H_{1}: h\left(\theta^{*}\right) \neq h_{0}$

$$
T_{n}\left(h_{0}\right)=\inf _{\theta \in \Theta\left(h_{0}\right)} \max _{j \in[p]} \sqrt{n} \bar{m}_{\theta, j} / \widehat{\sigma}_{\theta, j}
$$

Letting $\widehat{v}_{\theta, j}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left\{m_{j}\left(W_{i}, \theta\right)-\mathbb{E}\left[m_{j}\left(W_{i}, \theta\right)\right]\right\} / \widehat{\sigma}_{\theta, j}$ we can rewrite $T_{n}\left(h_{0}\right)$ as

$$
T_{n}\left(h_{0}\right)=\inf _{\theta \in \Theta\left(h_{0}\right)} \max _{j \in[p]} \widehat{v}_{\theta, j}+\sqrt{n} \mathbb{E}\left[m_{j}(W, \theta)\right] / \widehat{\sigma}_{\theta, j}
$$

$$
\text { bootstrap: } \quad \widehat{v}_{\theta, j}^{*}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \xi_{i} \frac{m_{j}\left(W_{i}, \theta\right)-\bar{m}_{\theta, j}}{\widehat{\sigma}_{\theta, j}} \quad \text { where } \xi_{i} \text { 's are i.i.d. } N(0,1) \text {. }
$$

Remark: It has been shown that although we can suitably approximate

$$
\widehat{v}_{\theta, j} \text { by } \widehat{v}_{\theta, j}^{*}
$$

Proposal via Bootstrap-based methods

Profiled test statistics for $H_{0}: h\left(\theta^{*}\right)=h_{0}$ vs. $H_{1}: h\left(\theta^{*}\right) \neq h_{0}$

$$
T_{n}\left(h_{0}\right)=\inf _{\theta \in \Theta\left(h_{0}\right)} \max _{j \in[p]} \sqrt{n} \bar{m}_{\theta, j} / \widehat{\sigma}_{\theta, j}
$$

Letting $\widehat{v}_{\theta, j}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left\{m_{j}\left(W_{i}, \theta\right)-\mathbb{E}\left[m_{j}\left(W_{i}, \theta\right)\right]\right\} / \widehat{\sigma}_{\theta, j}$ we can rewrite $T_{n}\left(h_{0}\right)$ as

$$
T_{n}\left(h_{0}\right)=\inf _{\theta \in \Theta\left(h_{0}\right)} \max _{j \in[p]} \widehat{v}_{\theta, j}+\sqrt{n} \mathbb{E}\left[m_{j}(W, \theta)\right] / \widehat{\sigma}_{\theta, j}
$$

bootstrap: $\quad \widehat{v}_{\theta, j}^{*}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \xi_{i} \frac{m_{j}\left(W_{i}, \theta\right)-\bar{m}_{\theta, j}}{\widehat{\sigma}_{\theta, j}} \quad$ where ξ_{i} 's are i.i.d. $N(0,1)$.
Remark: It has been shown that although we can suitably approximate

$$
\widehat{v}_{\theta, j} \text { by } \widehat{v}_{\theta, j}^{*}
$$

Andrews and Soares (2010) show it is more delicate to approximate

$$
\sqrt{n} \mathbb{E}\left[m_{j}(W, \theta)\right] / \widehat{\sigma}_{\theta, j} \quad \text { by } \quad \sqrt{n} \bar{m}_{\theta, j} / \widehat{\sigma}_{\theta, j}
$$

as there is a non-vanishing noise due to the scaling by \sqrt{n}.

Standard Bootstrap-based methods via GMS

Profiled test statistics for $H_{0}: h\left(\theta^{*}\right)=h_{0}$ vs. $H_{1}: h\left(\theta^{*}\right) \neq h_{0}$

$$
T_{n}\left(h_{0}\right)=\inf _{\theta \in \Theta\left(h_{0}\right)} \max _{j \in[p]} \widehat{v}_{\theta, j}+\sqrt{n} \mathbb{E}\left[m_{j}(W, \theta)\right] / \widehat{\sigma}_{\theta, j}
$$

Standard Bootstrap-based methods via GMS

Profiled test statistics for $H_{0}: h\left(\theta^{*}\right)=h_{0}$ vs. $H_{1}: h\left(\theta^{*}\right) \neq h_{0}$

$$
T_{n}\left(h_{0}\right)=\inf _{\theta \in \Theta\left(h_{0}\right)} \max _{j \in[p]} \widehat{v}_{\theta, j}+\sqrt{n} \mathbb{E}\left[m_{j}(W, \theta)\right] / \widehat{\sigma}_{\theta, j}
$$

A standard way to proceed is to use Generalized Moment Selection (GMS)

$$
\varphi_{\theta, j}=\left\{\begin{array}{l}
0, \text { if } \sqrt{n} \bar{m}_{\theta, j} / \widehat{\sigma}_{\theta, j} \geqslant-\kappa_{n}, \\
-\infty, \text { otherwise } \text { (i.e., inequality will not be used) }
\end{array}\right.
$$

for a tuning parameter $\kappa_{n} \rightarrow \infty$

Standard Bootstrap-based methods via GMS

Profiled test statistics for $H_{0}: h\left(\theta^{*}\right)=h_{0}$ vs. $H_{1}: h\left(\theta^{*}\right) \neq h_{0}$

$$
T_{n}\left(h_{0}\right)=\inf _{\theta \in \Theta\left(h_{0}\right)} \max _{j \in[p]} \widehat{v}_{\theta, j}+\sqrt{n} \mathbb{E}\left[m_{j}(W, \theta)\right] / \widehat{\sigma}_{\theta, j}
$$

A standard way to proceed is to use Generalized Moment Selection (GMS)

$$
\varphi_{\theta, j}=\left\{\begin{array}{l}
0, \text { if } \sqrt{n} \bar{m}_{\theta, j} / \widehat{\sigma}_{\theta, j} \geqslant-\kappa_{n}, \\
-\infty, \text { otherwise } \text { (i.e., inequality will not be used) }
\end{array}\right.
$$

for a tuning parameter $\kappa_{n} \rightarrow \infty \quad$ (recommendation $\sim\{\log n\}^{1 / 2}$ when p is fixed)
Then set

$$
T_{n}^{G M S *}\left(h_{0}\right):=\inf _{\theta \in \Theta\left(h_{0}\right)} \max _{j \in[p]} \widehat{v}_{\theta, j}^{*}+\varphi_{\theta, j}
$$

and compute the critical values based on the quantile of $T_{n}^{G M S_{*}}\left(h_{0}\right)$.

Standard Bootstrap-based methods via GMS

Example: $d_{\theta}=2$, and $\Theta=[-1,1]^{2}$. Let $p=2$, and consider

$$
\begin{aligned}
\mathbb{E}\left[m_{1}\left(W_{i}, \theta\right)\right] & =\mathbb{E}\left[\theta_{1}+\theta_{2}-W_{i, 1}\right] \leqslant 0 \\
\mathbb{E}\left[m_{2}\left(W_{i}, \theta\right)\right] & =\mathbb{E}\left[W_{i, 2}-\theta_{1}-\theta_{2}\right] \leqslant 0
\end{aligned}
$$

where $W_{i} \in \mathbb{R}^{p}, W_{i} \sim N(0, I)$ and we are interest on testing

$$
H_{0}: \theta_{1}=0 \text { vs. } H_{1}: \theta_{1} \neq 0
$$

Standard Bootstrap-based methods via GMS

Example: $d_{\theta}=2$, and $\Theta=[-1,1]^{2}$. Let $p=2$, and consider

$$
\begin{aligned}
\mathbb{E}\left[m_{1}\left(W_{i}, \theta\right)\right] & =\mathbb{E}\left[\theta_{1}+\theta_{2}-W_{i, 1}\right] \leqslant 0 \\
\mathbb{E}\left[m_{2}\left(W_{i}, \theta\right)\right] & =\mathbb{E}\left[W_{i, 2}-\theta_{1}-\theta_{2}\right] \leqslant 0
\end{aligned}
$$

where $W_{i} \in \mathbb{R}^{p}, W_{i} \sim N(0, I)$ and we are interest on testing

$$
\begin{gathered}
H_{0}: \theta_{1}=0 \text { vs. } H_{1}: \theta_{1} \neq 0 \text { so that } \\
\Theta\left(h_{0}\right)=\left\{\theta \in \Theta: \theta_{1}=0\right\} \text { and } \Theta_{I}=\left\{\theta \in \Theta: \theta_{1}+\theta_{2}=0\right\}
\end{gathered}
$$

Standard Bootstrap-based methods via GMS

Example: $d_{\theta}=2$, and $\Theta=[-1,1]^{2}$. Let $p=2$, and consider

$$
\begin{aligned}
\mathbb{E}\left[m_{1}\left(W_{i}, \theta\right)\right] & =\mathbb{E}\left[\theta_{1}+\theta_{2}-W_{i, 1}\right] \leqslant 0 \\
\mathbb{E}\left[m_{2}\left(W_{i}, \theta\right)\right] & =\mathbb{E}\left[W_{i, 2}-\theta_{1}-\theta_{2}\right] \leqslant 0
\end{aligned}
$$

where $W_{i} \in \mathbb{R}^{p}, W_{i} \sim N(0, I)$ and we are interest on testing

$$
\begin{gathered}
H_{0}: \theta_{1}=0 \text { vs. } H_{1}: \theta_{1} \neq 0 \text { so that } \\
\Theta\left(h_{0}\right)=\left\{\theta \in \Theta: \theta_{1}=0\right\} \text { and } \Theta_{I}=\left\{\theta \in \Theta: \theta_{1}+\theta_{2}=0\right\}
\end{gathered}
$$

It follows that for $\left(Z_{1}, Z_{2}\right) \sim N(0, I)$ we have

$$
T_{n}(0)=\inf _{-1 \leqslant \theta_{2} \leqslant 1} \max \left\{\frac{\sqrt{n} \theta_{2}-\bar{W}_{1}}{\widehat{\sigma}_{1}}, \frac{\bar{W}_{2}-\sqrt{n} \theta_{2}}{\widehat{\sigma}_{2}}\right\}
$$

Standard Bootstrap-based methods via GMS

Example: $d_{\theta}=2$, and $\Theta=[-1,1]^{2}$. Let $p=2$, and consider

$$
\begin{aligned}
\mathbb{E}\left[m_{1}\left(W_{i}, \theta\right)\right] & =\mathbb{E}\left[\theta_{1}+\theta_{2}-W_{i, 1}\right] \leqslant 0 \\
\mathbb{E}\left[m_{2}\left(W_{i}, \theta\right)\right] & =\mathbb{E}\left[W_{i, 2}-\theta_{1}-\theta_{2}\right] \leqslant 0
\end{aligned}
$$

where $W_{i} \in \mathbb{R}^{p}, W_{i} \sim N(0, I)$ and we are interest on testing

$$
\begin{gathered}
H_{0}: \theta_{1}=0 \text { vs. } H_{1}: \theta_{1} \neq 0 \text { so that } \\
\Theta\left(h_{0}\right)=\left\{\theta \in \Theta: \theta_{1}=0\right\} \text { and } \Theta_{I}=\left\{\theta \in \Theta: \theta_{1}+\theta_{2}=0\right\}
\end{gathered}
$$

It follows that for $\left(Z_{1}, Z_{2}\right) \sim N(0, I)$ we have

$$
T_{n}(0)=\inf _{-1 \leqslant \theta_{2} \leqslant 1} \max \left\{\frac{\sqrt{n} \theta_{2}-\bar{W}_{1}}{\widehat{\sigma}_{1}}, \frac{\bar{W}_{2}-\sqrt{n} \theta_{2}}{\widehat{\sigma}_{2}}\right\} \rightarrow_{d} \frac{Z_{2}-Z_{1}}{2} \sim N(0,1 / 2)
$$

Standard Bootstrap-based methods via GMS

Example: $d_{\theta}=2$, and $\Theta=[-1,1]^{2}$. Let $p=2$, and consider

$$
\begin{aligned}
\mathbb{E}\left[m_{1}\left(W_{i}, \theta\right)\right] & =\mathbb{E}\left[\theta_{1}+\theta_{2}-W_{i, 1}\right] \leqslant 0 \\
\mathbb{E}\left[m_{2}\left(W_{i}, \theta\right)\right] & =\mathbb{E}\left[W_{i, 2}-\theta_{1}-\theta_{2}\right] \leqslant 0
\end{aligned}
$$

where $W_{i} \in \mathbb{R}^{p}, W_{i} \sim N(0, I)$ and we are interest on testing

$$
\begin{gathered}
H_{0}: \theta_{1}=0 \text { vs. } H_{1}: \theta_{1} \neq 0 \text { so that } \\
\Theta\left(h_{0}\right)=\left\{\theta \in \Theta: \theta_{1}=0\right\} \text { and } \Theta_{I}=\left\{\theta \in \Theta: \theta_{1}+\theta_{2}=0\right\}
\end{gathered}
$$

It follows that for $\left(Z_{1}, Z_{2}\right) \sim N(0, I)$ we have

$$
T_{n}(0)=\inf _{-1 \leqslant \theta_{2} \leqslant 1} \max \left\{\frac{\sqrt{n} \theta_{2}-\bar{W}_{1}}{\widehat{\sigma}_{1}}, \frac{\bar{W}_{2}-\sqrt{n} \theta_{2}}{\widehat{\sigma}_{2}}\right\} \rightarrow_{d} \frac{Z_{2}-Z_{1}}{2} \sim N(0,1 / 2)
$$

In turn, for GMS, using $\kappa_{n}=\sqrt{\log n}$ we select both inequalities whp and

$$
T_{n}^{G M S_{*}}(0) \mid\left(W_{i}\right)_{i=1}^{n} \approx \inf _{-1 \leqslant \theta_{2} \leqslant 1} \max \left\{-Z_{1}+\varphi_{\theta_{2}, 1}, Z_{2}+\varphi_{\theta_{2}, 2}\right\}
$$

Standard Bootstrap-based methods via GMS

Example: $d_{\theta}=2$, and $\Theta=[-1,1]^{2}$. Let $p=2$, and consider

$$
\begin{aligned}
\mathbb{E}\left[m_{1}\left(W_{i}, \theta\right)\right] & =\mathbb{E}\left[\theta_{1}+\theta_{2}-W_{i, 1}\right] \leqslant 0 \\
\mathbb{E}\left[m_{2}\left(W_{i}, \theta\right)\right] & =\mathbb{E}\left[W_{i, 2}-\theta_{1}-\theta_{2}\right] \leqslant 0
\end{aligned}
$$

where $W_{i} \in \mathbb{R}^{p}, W_{i} \sim N(0, I)$ and we are interest on testing

$$
\begin{gathered}
H_{0}: \theta_{1}=0 \text { vs. } H_{1}: \theta_{1} \neq 0 \text { so that } \\
\Theta\left(h_{0}\right)=\left\{\theta \in \Theta: \theta_{1}=0\right\} \text { and } \Theta_{I}=\left\{\theta \in \Theta: \theta_{1}+\theta_{2}=0\right\}
\end{gathered}
$$

It follows that for $\left(Z_{1}, Z_{2}\right) \sim N(0, I)$ we have

$$
T_{n}(0)=\inf _{-1 \leqslant \theta_{2} \leqslant 1} \max \left\{\frac{\sqrt{n} \theta_{2}-\bar{W}_{1}}{\widehat{\sigma}_{1}}, \frac{\bar{W}_{2}-\sqrt{n} \theta_{2}}{\widehat{\sigma}_{2}}\right\} \rightarrow_{d} \frac{Z_{2}-Z_{1}}{2} \sim N(0,1 / 2)
$$

In turn, for GMS, using $\kappa_{n}=\sqrt{\log n}$ we select both inequalities whp and

$$
T_{n}^{G M S *}(0) \mid\left(W_{i}\right)_{i=1}^{n} \rightarrow_{d} \min \left\{-Z_{1}, Z_{2}\right\} \text { whp }
$$

Standard Bootstrap-based methods via GMS

Example: $d_{\theta}=2$, and $\Theta=[-1,1]^{2}$. Let $p=2$, and consider

$$
\begin{aligned}
\mathbb{E}\left[m_{1}\left(W_{i}, \theta\right)\right] & =\mathbb{E}\left[\theta_{1}+\theta_{2}-W_{i, 1}\right] \leqslant 0 \\
\mathbb{E}\left[m_{2}\left(W_{i}, \theta\right)\right] & =\mathbb{E}\left[W_{i, 2}-\theta_{1}-\theta_{2}\right] \leqslant 0
\end{aligned}
$$

where $W_{i} \in \mathbb{R}^{p}, W_{i} \sim N(0, I)$ and we are interest on testing

$$
\begin{gathered}
H_{0}: \theta_{1}=0 \text { vs. } H_{1}: \theta_{1} \neq 0 \text { so that } \\
\Theta\left(h_{0}\right)=\left\{\theta \in \Theta: \theta_{1}=0\right\} \text { and } \Theta_{I}=\left\{\theta \in \Theta: \theta_{1}+\theta_{2}=0\right\}
\end{gathered}
$$

It follows that for $\left(Z_{1}, Z_{2}\right) \sim N(0, I)$ we have

$$
T_{n}(0)=\inf _{-1 \leqslant \theta_{2} \leqslant 1} \max \left\{\frac{\sqrt{n} \theta_{2}-\bar{W}_{1}}{\widehat{\sigma}_{1}}, \frac{\bar{W}_{2}-\sqrt{n} \theta_{2}}{\widehat{\sigma}_{2}}\right\} \rightarrow_{d} \frac{Z_{2}-Z_{1}}{2} \sim N(0,1 / 2)
$$

In turn, for GMS, using $\kappa_{n}=\sqrt{\log n}$ we select both inequalities whp and

$$
T_{n}^{G M S *}(0) \mid\left(W_{i}\right)_{i=1}^{n} \rightarrow_{d} \min \left\{-Z_{1}, Z_{2}\right\} \text { whp }
$$

Critical values based on $T_{n}^{G M S *}(0)$ fail to control size.

Standard Bootstrap-based methods via GMS

Example: $d_{\theta}=2$, and $\Theta=[-1,1]^{2}$. Let $p=2$, and consider

$$
\begin{aligned}
\mathbb{E}\left[m_{1}\left(W_{i}, \theta\right)\right] & =\mathbb{E}\left[\theta_{1}+\theta_{2}-W_{i, 1}\right] \leqslant 0 \\
\mathbb{E}\left[m_{2}\left(W_{i}, \theta\right)\right] & =\mathbb{E}\left[W_{i, 2}-\theta_{1}-\theta_{2}\right] \leqslant 0
\end{aligned}
$$

where $W_{i} \in \mathbb{R}^{p}, W_{i} \sim N(0, I)$ and we are interest on testing

$$
\begin{gathered}
H_{0}: \theta_{1}=0 \text { vs. } H_{1}: \theta_{1} \neq 0 \text { so that } \\
\Theta\left(h_{0}\right)=\left\{\theta \in \Theta: \theta_{1}=0\right\} \text { and } \Theta_{I}=\left\{\theta \in \Theta: \theta_{1}+\theta_{2}=0\right\}
\end{gathered}
$$

It follows that for $\left(Z_{1}, Z_{2}\right) \sim N(0, I)$ we have

$$
T_{n}(0)=\inf _{-1 \leqslant \theta_{2} \leqslant 1} \max \left\{\frac{\sqrt{n} \theta_{2}-\bar{W}_{1}}{\widehat{\sigma}_{1}}, \frac{\bar{W}_{2}-\sqrt{n} \theta_{2}}{\widehat{\sigma}_{2}}\right\} \rightarrow_{d} \frac{Z_{2}-Z_{1}}{2} \sim N(0,1 / 2)
$$

In turn, for GMS, using $\kappa_{n}=\sqrt{\log n}$ we select both inequalities whp and

$$
T_{n}^{G M S *}(0) \mid\left(W_{i}\right)_{i=1}^{n} \rightarrow_{d} \min \left\{-Z_{1}, Z_{2}\right\} \text { whp }
$$

Critical values based on $T_{n}^{G M S *}(0)$ fail to control size. Indeed, for $\alpha=0.1$

- $c_{n}^{G M S}(0,1-\alpha) \approx 0.5$ and $P\left(T_{n}(0)>c_{n}^{G M S}(0,1-\alpha)\right) \approx 0.24$.
- $c_{n}(0,1-\alpha) \approx 0.86$
- GMS quantiles are "too" small

Bootstrap-based methods for subvector inference

Bootstrap-based methods for subvector inference

1) "Discard Resampling" (DR):

$$
T_{n}^{D R *}\left(h_{0}\right) \equiv \inf _{\theta \in \widehat{\Theta}_{1}\left(h_{0}\right)} \max _{j \in[p]} \widehat{v}_{\theta, j}^{*}+\varphi_{\theta, j}
$$

where $\widehat{\Theta}_{l}\left(h_{0}\right) \subseteq " \arg \min "{ }_{\theta \in \Theta\left(h_{0}\right)} \max _{j \in[p]} \sqrt{n} \bar{m}_{\theta, j} / \widehat{\sigma}_{\theta, j}$

$$
\varphi_{\theta, j}=\left\{\begin{array}{l}
0, \text { if } \sqrt{n} \bar{m}_{\theta, j} / \widehat{\sigma}_{\theta, j} \geqslant \max _{\ell \in[p]} \sqrt{n} \bar{m}_{\theta, \ell} / \widehat{\sigma}_{\theta, \ell}-\kappa_{n}, \\
-\infty, \text { otherwise } \text { (i.e., inequality will not be used) }
\end{array}\right.
$$

Bootstrap-based methods for subvector inference

1) "Discard Resampling" (DR):

$$
T_{n}^{D R *}\left(h_{0}\right) \equiv \inf _{\theta \in \hat{\Theta}_{1}\left(h_{0}\right)} \max _{j \in[p]} \widehat{v}_{\theta, j}^{*}+\varphi_{\theta, j}
$$

where $\widehat{\Theta}_{l}\left(h_{0}\right) \subseteq " \arg \min "{ }_{\theta \in \Theta\left(h_{0}\right)} \max _{j \in[p]} \sqrt{n} \bar{m}_{\theta, j} / \widehat{\sigma}_{\theta, j}$

$$
\varphi_{\theta, j}=\left\{\begin{array}{l}
0, \text { if } \sqrt{n} \bar{m}_{\theta, j} / \widehat{\sigma}_{\theta, j} \geqslant \max _{\ell \in[p]} \sqrt{n} \bar{m}_{\theta, \ell} / \widehat{\sigma}_{\theta, \ell}-\kappa_{n}, \\
-\infty, \text { otherwise } \text { (i.e., inequality will not be used) }
\end{array}\right.
$$

2) "Penalized Resampling" (PR):

$$
T_{n}^{P R *}\left(h_{0}\right) \equiv \inf _{\theta \in \Theta\left(h_{0}\right)} \max _{j \in[p]} \widehat{v}_{\theta, j}^{*}+\kappa_{n}^{-1} \sqrt{n} \bar{m}_{\theta, j} / \widehat{\sigma}_{\theta, j}
$$

where $\kappa_{n} \geqslant 1$ is a penalty parameter

Bootstrap-based methods for subvector inference

1) "Discard Resampling" (DR):

$$
T_{n}^{D R *}\left(h_{0}\right) \equiv \inf _{\theta \in \hat{\Theta}_{(}\left(h_{0}\right)} \max _{j \in[p]} \widehat{v}_{\theta, j}^{*}+\varphi_{\theta, j}
$$

where $\widehat{\Theta}_{l}\left(h_{0}\right) \subseteq " \arg \min "{ }_{\theta \in \Theta\left(h_{0}\right)} \max _{j \in[p]} \sqrt{n} \bar{m}_{\theta, j} / \widehat{\sigma}_{\theta, j}$

$$
\varphi_{\theta, j}=\left\{\begin{array}{l}
0, \text { if } \sqrt{n} \bar{m}_{\theta, j} / \widehat{\sigma}_{\theta, j} \geqslant \max _{\ell \in[p]} \sqrt{n} \bar{m}_{\theta, \ell} / \widehat{\sigma}_{\theta, \ell}-\kappa_{n}, \\
-\infty, \text { otherwise } \quad \text { (i.e., inequality will not be used) }
\end{array}\right.
$$

2) "Penalized Resampling" (PR):

$$
T_{n}^{P R *}\left(h_{0}\right) \equiv \inf _{\theta \in \Theta\left(h_{0}\right)} \max _{j \in[p]} \widehat{v}_{\theta, j}^{*}+\kappa_{n}^{-1} \sqrt{n} \bar{m}_{\theta, j} / \widehat{\sigma}_{\theta, j}
$$

where $\kappa_{n} \geqslant 1$ is a penalty parameter
3) "Minimum Resampling" (MR):

$$
T_{n}^{M R *}\left(h_{0}\right) \equiv \min \left\{T_{n}^{D R *}\left(h_{0}\right), T_{n}^{P R *}\left(h_{0}\right)\right\}
$$

The impact of many moment inequalities, $p \gg n$

\triangleright lack of a Donsker property for the whole process $\left\{v_{\theta, j}: \theta \in \Theta\left(h_{0}\right), j \in[p]\right\}$

- no limiting distributions guaranteed to exist
- cannot invoke Donsker's functional CLT to establish the convergence in distribution of $T_{n}\left(h_{0}\right)$
\triangleright restriction on the criterion functions
- we use $Q(\theta)=\max _{j \in[p]} \sqrt{n} \bar{m}_{\theta, j} / \widehat{\sigma}_{\theta, j}$
- do not use (MMM): $Q(\theta)=\sum_{j=1}^{p}\left\{\sqrt{n} \bar{m}_{\theta, j} / \widehat{\sigma}_{\theta, j}\right\}_{+}^{2}$
- do not use (AQLR): $Q(\theta)=\min _{t \in \mathbb{R}^{p}}\left(\sqrt{n} \bar{m}_{\theta, j} / \widehat{\sigma}_{\theta, j}-t\right)^{\prime} \widetilde{\Sigma}_{\theta}^{-1}\left(\sqrt{n} \bar{m}_{\theta, j} / \widehat{\sigma}_{\theta, j}-t\right)$
\triangleright tuning parameters need to account for growing entropy

Assumptions for Hypothesis Testing

Condition M.

Assumptions for Hypothesis Testing

Condition M.
(i) $\Theta\left(h_{0}\right)=\left\{\theta \in \Theta: h(\theta)=h_{0}\right\}$ is well behaved

Assumptions for Hypothesis Testing

Condition M.

(i) $\Theta\left(h_{0}\right)=\left\{\theta \in \Theta: h(\theta)=h_{0}\right\}$ is well behaved
(ii) $\left\{\tilde{m}_{j}(\cdot, \theta):=\sigma_{\theta, j}^{-1} m_{j}(\cdot, \theta): \theta \in \Theta\left(h_{0}\right), j \in[p]\right\}$ is well behaved

Assumptions for Hypothesis Testing

Condition M.

(i) $\Theta\left(h_{0}\right)=\left\{\theta \in \Theta: h(\theta)=h_{0}\right\}$ is well behaved
(ii) $\left\{\tilde{m}_{j}(\cdot, \theta):=\sigma_{\theta, j}^{-1} m_{j}(\cdot, \theta): \theta \in \Theta\left(h_{0}\right), j \in[p]\right\}$ is well behaved
(iii) Polynomial Minorant condition away from the identified set

Assumptions for Hypothesis Testing

Condition M. The following conditions hold:
(i) set $\Theta\left(h_{0}\right)$ is convex and $\sup _{\theta \in \Theta\left(h_{0}\right)}\|\theta\|_{\infty} \leqslant C \sqrt{n}$

Assumptions for Hypothesis Testing

Condition M. The following conditions hold:
(i) set $\Theta\left(h_{0}\right)$ is convex and $\sup _{\theta \in \Theta\left(h_{0}\right)}\|\theta\|_{\infty} \leqslant C \sqrt{n}$
(ii) $\left\{\widetilde{m}_{j}(\cdot, \theta): \theta \in \Theta\left(h_{0}\right), j \in[p]\right\}$ is VC type class of functions

- with constants \bar{A} and $v \geqslant 1$ and envelope F (i.e. $\left.F(W) \geqslant\left|\widetilde{m}_{j}(W, \theta)\right|\right)$
- for some $b>0, q \geqslant 4$, we have

$$
E p\left[F^{q}\right]^{1 / q} \leqslant b \text { and } \mathbb{E}\left[\left|\widetilde{m}_{j}(W, \theta)\right|^{k}\right] \leqslant b^{k-2}, \quad k=3,4
$$

Assumptions for Hypothesis Testing

Condition M. The following conditions hold:
(i) set $\Theta\left(h_{0}\right)$ is convex and $\sup _{\theta \in \Theta\left(h_{0}\right)}\|\theta\|_{\infty} \leqslant C \sqrt{n}$
(ii) $\left\{\widetilde{m}_{j}(\cdot, \theta): \theta \in \Theta\left(h_{0}\right), j \in[p]\right\}$ is VC type class of functions

- with constants \bar{A} and $v \geqslant 1$ and envelope F (i.e. $\left.F(W) \geqslant\left|\widetilde{m}_{j}(W, \theta)\right|\right)$
- for some $b>0, q \geqslant 4$, we have

$$
E p\left[F^{q}\right]^{1 / q} \leqslant b \text { and } \mathbb{E}\left[\left|\widetilde{m}_{j}(W, \theta)\right|^{k}\right] \leqslant b^{k-2}, \quad k=3,4
$$

- $\mathbb{E}\left[\left\{\widetilde{m}_{j}(W, \theta)-\widetilde{m}_{j}(W, \tilde{\theta})\right\}^{2}\right] \leqslant L_{C}\|\theta-\tilde{\theta}\|^{\chi}$ for some $\chi \geqslant 1$.
- $\max _{j \in[p]}\left\|\nabla_{\theta} \mathbb{E}\left[\tilde{m}_{j}(W, \theta)\right]\right\| \leqslant L_{G}$ for every $\theta \in \Theta\left(h_{0}\right)$

Assumptions for Hypothesis Testing

Condition M. The following conditions hold:
(i) set $\Theta\left(h_{0}\right)$ is convex and $\sup _{\theta \in \Theta\left(h_{0}\right)}\|\theta\|_{\infty} \leqslant C \sqrt{n}$
(ii) $\left\{\widetilde{m}_{j}(\cdot, \theta): \theta \in \Theta\left(h_{0}\right), j \in[p]\right\}$ is VC type class of functions

- with constants \bar{A} and $v \geqslant 1$ and envelope F (i.e. $\left.F(W) \geqslant\left|\widetilde{m}_{j}(W, \theta)\right|\right)$
- for some $b>0, q \geqslant 4$, we have

$$
E p\left[F^{q}\right]^{1 / q} \leqslant b \text { and } \mathbb{E}\left[\left|\widetilde{m}_{j}(W, \theta)\right|^{k}\right] \leqslant b^{k-2}, \quad k=3,4
$$

- $\mathbb{E}\left[\left\{\widetilde{m}_{j}(W, \theta)-\widetilde{m}_{j}(W, \tilde{\theta})\right\}^{2}\right] \leqslant L_{C}\|\theta-\tilde{\theta}\|^{\chi}$ for some $\chi \geqslant 1$.
- $\max _{j \in[p]}\left\|\nabla_{\theta} \mathbb{E}\left[\tilde{m}_{j}(W, \theta)\right]\right\| \leqslant L_{G}$ for every $\theta \in \Theta\left(h_{0}\right)$
(iii) For every $\theta \in \Theta\left(h_{0}\right) \backslash \Theta$, we have

$$
\max _{j \in[p]} \mathbb{E}\left[\widetilde{m}_{j}(W, \theta)\right] \geqslant \vartheta_{n} \min \left\{\delta, \inf _{\tilde{\theta} \in \Theta\left(h_{0}\right) \cap \Theta_{1}}\|\theta-\tilde{\theta}\|\right\}
$$

Assumptions for Hypothesis Testing

Condition M. The following conditions hold:
(i) set $\Theta\left(h_{0}\right)$ is convex and $\sup _{\theta \in \Theta\left(h_{0}\right)}\|\theta\|_{\infty} \leqslant C \sqrt{n}$
(ii) $\left\{\widetilde{m}_{j}(\cdot, \theta): \theta \in \Theta\left(h_{0}\right), j \in[p]\right\}$ is VC type class of functions

- with constants \bar{A} and $v \geqslant 1$ and envelope F (i.e. $\left.F(W) \geqslant\left|\widetilde{m}_{j}(W, \theta)\right|\right)$
- for some $b>0, q \geqslant 4$, we have

$$
E p\left[F^{q}\right]^{1 / q} \leqslant b \text { and } \mathbb{E}\left[\left|\widetilde{m}_{j}(W, \theta)\right|^{k}\right] \leqslant b^{k-2}, \quad k=3,4
$$

- $\mathbb{E}\left[\left\{\widetilde{m}_{j}(W, \theta)-\widetilde{m}_{j}(W, \tilde{\theta})\right\}^{2}\right] \leqslant L_{C}\|\theta-\tilde{\theta}\|^{\chi}$ for some $\chi \geqslant 1$.
- $\max _{j \in[p]}\left\|\nabla_{\theta} \mathbb{E}\left[\widetilde{m}_{j}(W, \theta)\right]\right\| \leqslant L_{G}$ for every $\theta \in \Theta\left(h_{0}\right)$
(iii) For every $\theta \in \Theta\left(h_{0}\right) \backslash \Theta$, we have

$$
\max _{j \in[p]} \mathbb{E}\left[\widetilde{m}_{j}(W, \theta)\right] \geqslant \vartheta_{n} \min \left\{\delta, \inf _{\tilde{\theta} \in \Theta\left(h_{0}\right) \cap \Theta_{1}}\|\theta-\tilde{\theta}\|\right\}
$$

Define $\gamma=o(1)$, in particular $\gamma \ll \alpha$
$\triangleright \bar{w}_{n}=(1-\gamma)$-quantile of $\sup _{\theta \in \Theta\left(h_{0}\right), j \in[p]}\left|\widehat{v}_{\theta, j}^{*}\right|$
$\triangleright K_{n}=v \log (n \bar{A} b)+d_{\theta} \log (n b)+\log p$

Assumptions for Hypothesis Testing

Condition M. The following conditions hold:
(i) set $\Theta\left(h_{0}\right)$ is convex and $\sup _{\theta \in \Theta\left(h_{0}\right)}\|\theta\|_{\infty} \leqslant C \sqrt{n}$
(ii) $\left\{\widetilde{m}_{j}(\cdot, \theta): \theta \in \Theta\left(h_{0}\right), j \in[p]\right\}$ is VC type class of functions

- with constants \bar{A} and $v \geqslant 1$ and envelope F (i.e. $\left.F(W) \geqslant\left|\widetilde{m}_{j}(W, \theta)\right|\right)$
- for some $b>0, q \geqslant 4$, we have

$$
E p\left[F^{q}\right]^{1 / q} \leqslant b \text { and } \mathbb{E}\left[\left|\widetilde{m}_{j}(W, \theta)\right|^{k}\right] \leqslant b^{k-2}, \quad k=3,4
$$

- $\mathbb{E}\left[\left\{\widetilde{m}_{j}(W, \theta)-\widetilde{m}_{j}(W, \tilde{\theta})\right\}^{2}\right] \leqslant L_{C}\|\theta-\tilde{\theta}\|^{\chi}$ for some $\chi \geqslant 1$.
- $\max _{j \in[p]}\left\|\nabla_{\theta} \mathbb{E}\left[\widetilde{m}_{j}(W, \theta)\right]\right\| \leqslant L_{G}$ for every $\theta \in \Theta\left(h_{0}\right)$
(iii) For every $\theta \in \Theta\left(h_{0}\right) \backslash \Theta$, we have

$$
\max _{j \in[p]} \mathbb{E}\left[\widetilde{m}_{j}(W, \theta)\right] \geqslant \vartheta_{n} \min \left\{\delta, \inf _{\tilde{\theta} \in \Theta\left(h_{0}\right) \cap \Theta_{1}}\|\theta-\tilde{\theta}\|\right\}
$$

Define $\gamma=o(1)$, in particular $\gamma \ll \alpha$

$$
\text { (e.g., } \gamma=n^{-c} \text { for some } c>0 \text {) }
$$

$\triangleright \bar{w}_{n}=(1-\gamma)$-quantile of $\sup _{\theta \in \Theta\left(h_{0}\right), j \in[p]}\left|\widehat{\widehat{v}}_{\theta, j}^{*}\right| \lesssim \sqrt{d_{\theta} \log (p n)}$
$\triangleright K_{n}=v \log (n \bar{A} b)+d_{\theta} \log (n b)+\log p \quad \lesssim d_{\theta} \log (p n)$

Rates for Size Control

Rates for Size Control for Discard Resampling

$$
T_{n}^{D R *}\left(h_{0}\right) \equiv \inf _{\theta \in \widehat{\Theta}_{l}\left(h_{0}\right)} \max _{j \in[p]} \widehat{v}_{\theta, j}^{*}+\varphi_{\theta, j}
$$

where $\widehat{\Theta}_{l}\left(h_{0}\right) \subseteq " \arg \min "_{\theta \in \Theta\left(h_{0}\right)} \max _{j \in[p]} \sqrt{n} \bar{m}_{\theta, j} / \widehat{\sigma}_{\theta, j}$

$$
\varphi_{\theta, j}=\left\{\begin{array}{l}
0, \text { if } \sqrt{n} \bar{m}_{\theta, j} / \widehat{\sigma}_{\theta, j} \geqslant \max _{\ell \in[p]} \sqrt{n} \bar{m}_{\theta, \ell} / \widehat{\sigma}_{\theta, \ell}-\kappa_{n}, \\
-\infty, \text { otherwise } \text { (i.e., inequality will not be used) }
\end{array}\right.
$$

Rates for Size Control for Discard Resampling

$$
T_{n}^{D R *}\left(h_{0}\right) \equiv \inf _{\theta \in \widehat{\Theta}_{1}\left(h_{0}\right)} \max _{j \in[p]}{\widehat{\widehat{v}_{\theta, j}}}_{*}^{*}+\varphi_{\theta, j}
$$

where $\widehat{\Theta}_{l}\left(h_{0}\right) \subseteq " \arg \min "_{\theta \in \Theta\left(h_{0}\right)} \max _{j \in[p]} \sqrt{n} \bar{m}_{\theta, j} / \widehat{\sigma}_{\theta, j}$

$$
\varphi_{\theta, j}=\left\{\begin{array}{l}
0, \text { if } \sqrt{n} \bar{m}_{\theta, j} / \widehat{\sigma}_{\theta, j} \geqslant \max _{\ell \in[p]} \sqrt{n} \bar{m}_{\theta, \ell} / \widehat{\sigma}_{\theta, \ell}-\kappa_{n}, \\
-\infty, \text { otherwise } \text { (i.e., inequality will not be used) }
\end{array}\right.
$$

Issues to address:

- no functional min max CLT since $p \rightarrow \infty$ (and potentially $d_{\theta} \rightarrow \infty$)
- handle random set $\widehat{\Theta}_{l}\left(h_{0}\right)$
- handle random selection of inequalities
- penalty parameter κ_{n}

Rates for Size Control for Discard Resampling

$$
T_{n}^{D R *}\left(h_{0}\right) \equiv \inf _{\theta \in \widehat{\Theta}_{l}\left(h_{0}\right)} \max _{j \in[p]} \widehat{v}_{\theta, j}^{*}+\varphi_{\theta, j}
$$

where $\widehat{\Theta}_{l}\left(h_{0}\right) \subseteq " \arg \min "{ }_{\theta \in \Theta\left(h_{0}\right)} \max _{j \in[p]} \sqrt{n} \bar{m}_{\theta, j} / \widehat{\sigma}_{\theta, j}$

$$
\varphi_{\theta, j}=\left\{\begin{array}{l}
0, \text { if } \sqrt{n} \bar{m}_{\theta, j} / \widehat{\sigma}_{\theta, j} \geqslant \max _{\ell \in[p]} \sqrt{n} \bar{m}_{\theta, \ell} / \widehat{\sigma}_{\theta, \ell}-\kappa_{n} \\
-\infty, \text { otherwise (i.e., inequality will not be used) }
\end{array}\right.
$$

Theorem (Simplified)
Suppose Condition M is satisfied with $d_{\theta}+L_{G} / \vartheta_{n} \leqslant C$ and that H_{0} holds. Then

$$
P\left(T_{n}\left(h_{0}\right) \geqslant t\right) \leqslant P\left(T_{n}^{D S_{*}}\left(h_{0}\right) \geqslant t-C \delta_{n, \gamma}^{\prime}\right)+C\left\{\gamma+n^{-1}\right\}
$$

Rates for Size Control for Discard Resampling

$$
T_{n}^{D R *}\left(h_{0}\right) \equiv \inf _{\theta \in \widehat{\Theta}_{l}\left(h_{0}\right)} \max _{j \in[p]} \widehat{v}_{\theta, j}^{*}+\varphi_{\theta, j}
$$

where $\widehat{\Theta}_{l}\left(h_{0}\right) \subseteq " \arg \min "{ }_{\theta \in \Theta\left(h_{0}\right)} \max _{j \in[p]} \sqrt{n} \bar{m}_{\theta, j} / \widehat{\sigma}_{\theta, j}$

$$
\varphi_{\theta, j}=\left\{\begin{array}{l}
0, \text { if } \sqrt{n} \bar{m}_{\theta, j} / \widehat{\sigma}_{\theta, j} \geqslant \max _{\ell \in[p]} \sqrt{n} \bar{m}_{\theta, \ell} / \widehat{\sigma}_{\theta, \ell}-\kappa_{n} \\
-\infty, \text { otherwise (i.e., inequality will not be used) }
\end{array}\right.
$$

Theorem (Simplified)
Suppose Condition M is satisfied with $d_{\theta}+L_{G} / \vartheta_{n} \leqslant C$ and that H_{0} holds. Then

$$
P\left(T_{n}\left(h_{0}\right) \geqslant t\right) \leqslant P\left(T_{n}^{D S_{*}}\left(h_{0}\right) \geqslant t-C \delta_{n, \gamma}^{\prime}\right)+C\left\{\gamma+n^{-1}\right\}
$$

where we have

$$
\delta_{n, \gamma}^{\prime} \lesssim \frac{\log ^{2 / 3}(n p)}{\gamma^{1 / 3} n^{1 / 6}}
$$

provided that $\kappa_{n} / \bar{w}_{n} \rightarrow \infty$.

Rates for Size Control for Discard Resampling

$$
T_{n}^{D R *}\left(h_{0}\right) \equiv \inf _{\theta \in \widehat{\Theta}_{l}\left(h_{0}\right)} \max _{j \in[p]} \widehat{v}_{\theta, j}^{*}+\varphi_{\theta, j}
$$

where $\widehat{\Theta}_{l}\left(h_{0}\right) \subseteq " \arg \min "{ }_{\theta \in \Theta\left(h_{0}\right)} \max _{j \in[p]} \sqrt{n} \bar{m}_{\theta, j} / \widehat{\sigma}_{\theta, j}$

$$
\varphi_{\theta, j}=\left\{\begin{array}{l}
0, \text { if } \sqrt{n} \bar{m}_{\theta, j} / \widehat{\sigma}_{\theta, j} \geqslant \max _{\ell \in[p]} \sqrt{n} \bar{m}_{\theta, \ell} / \widehat{\sigma}_{\theta, \ell}-\kappa_{n} \\
-\infty, \text { otherwise (i.e., inequality will not be used) }
\end{array}\right.
$$

Theorem (Simplified)
Suppose Condition M is satisfied with $d_{\theta}+L_{G} / \vartheta_{n} \leqslant C$ and that H_{0} holds. Then

$$
P\left(T_{n}\left(h_{0}\right) \geqslant t\right) \leqslant P\left(T_{n}^{D S *}\left(h_{0}\right) \geqslant t-C \delta_{n, \gamma}^{\prime}\right)+C n^{-c}
$$

for some $0<c<1 / 6$

$$
\delta_{n, \gamma}^{\prime} \lesssim \frac{\log ^{2 / 3}(n p)}{n^{1 / 6-c}}
$$

provided that $\kappa_{n} / \sqrt{\log p} \rightarrow \infty$.

Rates for Size Control for Discard Resampling

$$
T_{n}^{D R *}\left(h_{0}\right) \equiv \inf _{\theta \in \widehat{\Theta}_{l}\left(h_{0}\right)} \max _{j \in[p]} \widehat{v}_{\theta, j}^{*}+\varphi_{\theta, j}
$$

where $\widehat{\Theta}_{l}\left(h_{0}\right) \subseteq " \arg \min "_{\theta \in \Theta\left(h_{0}\right)} \max _{j \in[p]} \sqrt{n} \bar{m}_{\theta, j} / \widehat{\sigma}_{\theta, j}$

$$
\varphi_{\theta, j}=\left\{\begin{array}{l}
0, \text { if } \sqrt{n} \bar{m}_{\theta, j} / \widehat{\sigma}_{\theta, j} \geqslant \max _{\ell \in[p]} \sqrt{n} \bar{m}_{\theta, \ell} / \widehat{\sigma}_{\theta, \ell}-\kappa_{n} \\
-\infty, \text { otherwise (i.e., inequality will not be used) }
\end{array}\right.
$$

Theorem
Assume that Condition M is satisfied and that H_{0} holds. Then

$$
P\left(T_{n}\left(h_{0}\right) \geqslant t\right) \leqslant P\left(T_{n}^{D S *}\left(h_{0}\right) \geqslant t-C \delta_{n, \gamma}^{\prime}\right)+C\left\{\gamma+n^{-1}\right\}
$$

where we have

$$
\delta_{n, \gamma}^{\prime} \quad:=\frac{C b K_{n}}{\gamma^{3 / q} n^{1 / 2}}+\frac{C\left(b K_{n}^{2}\right)^{1 / 3}}{\gamma^{1 / 3} n^{1 / 6}}+C L_{C}^{1 / 2}\left(\frac{C K_{n}^{1 / 2}}{\gamma^{1 / q} n^{1 / 2} \vartheta_{n}}\right)^{\chi / 2} \frac{K_{n}^{1 / 2}}{\gamma^{1 / q}}+\frac{C b K_{n}}{\gamma^{1 / q} n^{1 / 2-1 / q}}
$$

provided that $\kappa_{n} \geqslant \bar{w}_{n}\left\{6+2 L_{G} / \vartheta_{n}\right\}$

Rates for Size Control for Penalized Resampling

$$
T_{n}^{P R *}\left(h_{0}\right)=\inf _{\theta \in \Theta\left(h_{0}\right)} \max _{j \in[p]} \widehat{v}_{\theta, j}^{*}+\kappa_{n}^{-1} \sqrt{n} \bar{m}_{\theta, j} / \widehat{\sigma}_{\theta, j}
$$

Rates for Size Control for Penalized Resampling

$$
T_{n}^{P R *}\left(h_{0}\right)=\inf _{\theta \in \Theta\left(h_{0}\right)} \max _{j \in[p]} \widehat{v}_{\theta, j}^{*}+\kappa_{n}^{-1} \sqrt{n} \bar{m}_{\theta, j} / \widehat{\sigma}_{\theta, j}
$$

Issues to address:

- no functional CLT for min max since $p \rightarrow \infty$ (and potentially $d_{\theta} \rightarrow \infty$)
- need to handle random centering $\kappa_{n}^{-1} \sqrt{n} \bar{m}_{\theta, j} / \widehat{\sigma}_{\theta, j}$
- penalty parameter κ_{n}

Rates for Size Control for Penalized Resampling

$$
T_{n}^{P R *}\left(h_{0}\right)=\inf _{\theta \in \Theta\left(h_{0}\right)} \max _{j \in[p]} \widehat{v}_{\theta, j}^{*}+\kappa_{n}^{-1} \sqrt{n} \bar{m}_{\theta, j} / \widehat{\sigma}_{\theta, j}
$$

Theorem (Simplified)
Suppose Condition M is satisfied with $d_{\theta}+L_{G} / \vartheta_{n} \leqslant C, \chi=2$, and that H_{0} holds. Then

$$
P\left(T_{n}\left(h_{0}\right) \geqslant t\right) \leqslant P\left(T_{n}^{P R *}\left(h_{0}\right) \geqslant t-C \delta_{n, \gamma}^{\prime \prime}\right)+C\left\{\gamma+n^{-1}\right\}
$$

where we have

$$
\delta_{n, \gamma}^{\prime \prime}:=\frac{\log ^{2 / 3}(n p)}{\gamma^{1 / 3} n^{1 / 6}}+\kappa_{n} \frac{\log ^{3 / 2}(n p)}{n^{1 / 2}}+\frac{\bar{w}_{n}}{\kappa_{n}}
$$

Rates for Size Control for Penalized Resampling

$$
T_{n}^{P R *}\left(h_{0}\right)=\inf _{\theta \in \Theta\left(h_{0}\right)} \max _{j \in[p]} \widehat{v}_{\theta, j}^{*}+\kappa_{n}^{-1} \sqrt{n} \bar{m}_{\theta, j} / \widehat{\sigma}_{\theta, j}
$$

Theorem
Assume that Condition M is satisfied and that H_{0} holds. Then

$$
P\left(T_{n}\left(h_{0}\right) \geqslant t\right) \leqslant P\left(T_{n}^{P R *}\left(h_{0}\right) \geqslant t-C \delta_{n, \gamma}^{\prime}\right)+C\left\{\gamma+n^{-1}\right\}
$$

where we have

$$
\begin{gathered}
\delta_{n, \gamma}^{\prime}:=\frac{L_{G} \kappa_{n} K_{n}}{\gamma^{2 / q} n^{1 / 2} \vartheta_{n}^{2}}+\frac{\left(b K_{n}^{2}\right)^{1 / 3}}{\gamma^{1 / 3} n^{1 / 6}}+\frac{(b)^{1 / 2} K_{n}^{3 / 4}}{\gamma^{1 / q} n^{1 / 4}}+\frac{b K_{n}}{\gamma^{1 / q} n^{1 / 2-1 / q}} \\
+\frac{\bar{w}_{n}}{\kappa_{n}}+L_{C}^{1 / 2}\left(\frac{\kappa_{n} K_{n}^{1 / 2}}{n^{1 / 2} \vartheta_{n} \gamma^{1 / q}}\right)^{\chi / 2} \frac{K_{n}^{1 / 2}}{\gamma^{1 / q}}
\end{gathered}
$$

Rates for Size Control for Minimum Resampling

$$
T_{n}^{M R *}\left(h_{0}\right)=\min \left\{T_{n}^{D R *}\left(h_{0}\right), T_{n}^{M R *}\left(h_{0}\right)\right\}
$$

Rates for Size Control for Minimum Resampling

$$
T_{n}^{M R *}\left(h_{0}\right)=\min \left\{T_{n}^{D R *}\left(h_{0}\right), T_{n}^{M R *}\left(h_{0}\right)\right\}
$$

Issues:

\triangleright note that $T_{n}^{M R *}$ is also a MinMax statistics

- as it is the minimum of two MinMax statistics
- need to handle random set in the minimization
- need to handle random centering
\triangleright clearly need to couple the statistics (use the same $\xi_{i} \sim N(0,1)$ for both)
\triangleright no functional CLT for MinMax as $p \rightarrow \infty$ (and potentially $d_{\theta} \rightarrow \infty$)

Rates for Size Control for Minimum Resampling

$$
T_{n}^{M R *}\left(h_{0}\right)=\min \left\{T_{n}^{D R *}\left(h_{0}\right), T_{n}^{M R *}\left(h_{0}\right)\right\}
$$

Issues:

\triangleright note that $T_{n}^{M R *}$ is also a MinMax statistics

- as it is the minimum of two MinMax statistics
- need to handle random set in the minimization
- need to handle random centering
\triangleright clearly need to couple the statistics (use the same $\xi_{i} \sim N(0,1)$ for both)
\triangleright no functional CLT for MinMax as $p \rightarrow \infty$ (and potentially $d_{\theta} \rightarrow \infty$)

Theorem

Assume that Condition M is satisfied and that H_{0} holds. Then

$$
P\left(T_{n}\left(h_{0}\right) \geqslant t\right) \leqslant P\left(T_{n}^{M R *}\left(h_{0}\right) \geqslant t-C \delta_{n, \gamma}\right)+C\left\{\gamma+n^{-1}\right\}
$$

where we have

$$
\delta_{n, \gamma}:=\delta_{n, \gamma}^{\prime}+\delta_{n, \gamma}^{\prime \prime}
$$

Key New Coupling Result

Theorem. Let X_{1}, \ldots, X_{n} be independent random matrices in $\mathbb{R}^{N \times p}(N p \geqslant 2)$, Y_{1}, \ldots, Y_{n} be independent random matrices in $\mathbb{R}^{N \times p}$ with $Y_{i} \sim N\left(\mathbb{E}\left[X_{i}\right], \operatorname{Var} X_{i}\right)$.

$$
\text { Define } T=\min _{k \in[N]} \max _{j \in[p]} \sum_{i=1}^{n} \frac{X_{i k j}}{\sqrt{n}} \text {, and } \widetilde{T}=\min _{k \in[N]} \max _{j \in[p]} \sum_{i=1}^{n} \frac{Y_{i k j}}{\sqrt{n}}
$$

Key New Coupling Result

Theorem. Let X_{1}, \ldots, X_{n} be independent random matrices in $\mathbb{R}^{N \times p}(N p \geqslant 2)$, Y_{1}, \ldots, Y_{n} be independent random matrices in $\mathbb{R}^{N \times p}$ with $Y_{i} \sim N\left(\mathbb{E}\left[X_{i}\right], \operatorname{Var} X_{i}\right)$.

$$
\text { Define } T=\min _{k \in[N]} \max _{j \in[p]} \sum_{i=1}^{n} \frac{X_{i k j}}{\sqrt{n}} \text {, and } \widetilde{T}=\min _{k \in[N]} \max _{j \in[p]} \sum_{i=1}^{n} \frac{Y_{i k j}}{\sqrt{n}}
$$

Then for every $\delta>0$ and every Borel subset A of \mathbb{R} we have

$$
P(T \in A) \leqslant P\left(\widetilde{T} \in A^{C \delta}\right)+\frac{C \log ^{2}(N p)}{\delta^{3} n^{1 / 2}}\left\{L_{n}+M_{n, X}(\delta)+M_{n, Y}(\delta)\right\}
$$

where C is a universal positive constant

Key New Coupling Result

Theorem. Let X_{1}, \ldots, X_{n} be independent random matrices in $\mathbb{R}^{N \times p}(N p \geqslant 2)$, Y_{1}, \ldots, Y_{n} be independent random matrices in $\mathbb{R}^{N \times p}$ with $Y_{i} \sim N\left(\mathbb{E}\left[X_{i}\right], \operatorname{Var} X_{i}\right)$.

$$
\text { Define } T=\min _{k \in[N]} \max _{j \in[p]} \sum_{i=1}^{n} \frac{X_{i k j}}{\sqrt{n}} \text {, and } \widetilde{T}=\min _{k \in[N]} \max _{j \in[p]} \sum_{i=1}^{n} \frac{Y_{i k j}}{\sqrt{n}}
$$

Then for every $\delta>0$ and every Borel subset A of \mathbb{R} we have

$$
P(T \in A) \leqslant P\left(\widetilde{T} \in A^{C \delta}\right)+\frac{C \log ^{2}(N p)}{\delta^{3} n^{1 / 2}}\left\{L_{n}+M_{n, X}(\delta)+M_{n, Y}(\delta)\right\}
$$

where C is a universal positive constant, and

$$
\begin{aligned}
& L_{n}=\max _{k \in N, j \in[p]} \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[\left|\widetilde{X}_{i k j}\right|^{3}\right], \\
& M_{n, W}(\delta)=\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[\max _{k \in N, j \in[p]}\left|\widetilde{W}_{i k j}\right|^{3} \cdot 1\left\{\max _{k \in N, j \in[p]}\left|\widetilde{W}_{i k j}\right|>\delta \sqrt{n} / \log (N p)\right\}\right],
\end{aligned}
$$

for $\widetilde{W}_{i}=W_{i}-\mathbb{E}\left[W_{i}\right]$

Key New Coupling Result

Theorem. Let X_{1}, \ldots, X_{n} be independent random matrices in $\mathbb{R}^{N \times p}(N p \geqslant 2)$, Y_{1}, \ldots, Y_{n} be independent random matrices in $\mathbb{R}^{N \times p}$ with $Y_{i} \sim N\left(\mathbb{E}\left[X_{i}\right], \operatorname{Var} X_{i}\right)$.

$$
\text { Define } T=\min _{k \in[N]} \max _{j \in[p]} \sum_{i=1}^{n} \frac{X_{i k j}}{\sqrt{n}} \text {, and } \widetilde{T}=\min _{k \in[N]} \max _{j \in[p]} \sum_{i=1}^{n} \frac{Y_{i k j}}{\sqrt{n}}
$$

Then for every $\delta>0$ and every Borel subset A of \mathbb{R} we have

$$
P(T \in A) \leqslant P\left(\widetilde{T} \in A^{C \delta}\right)+\frac{C \log ^{2}(N p)}{\delta^{3} n^{1 / 2}}\left\{L_{n}+M_{n, X}(\delta)+M_{n, Y}(\delta)\right\}
$$

where C is a universal positive constant. In many settings

$$
L_{n}+M_{n, X}(\delta)+M_{n, Y}(\delta) \leqslant C
$$

Key New Coupling Result

Theorem. Let X_{1}, \ldots, X_{n} be independent random matrices in $\mathbb{R}^{N \times p}(N p \geqslant 2)$, Y_{1}, \ldots, Y_{n} be independent random matrices in $\mathbb{R}^{N \times p}$ with $Y_{i} \sim N\left(\mathbb{E}\left[X_{i}\right], \operatorname{Var} X_{i}\right)$.

$$
\text { Define } T=\min _{k \in[N]} \max _{j \in[p]} \sum_{i=1}^{n} \frac{X_{i k j}}{\sqrt{n}} \text {, and } \widetilde{T}=\min _{k \in[N]} \max _{j \in[p]} \sum_{i=1}^{n} \frac{Y_{i k j}}{\sqrt{n}}
$$

Then for every $\delta>0$ and every Borel subset A of \mathbb{R} we have

$$
P(T \in A) \leqslant P\left(\widetilde{T} \in A^{C \delta}\right)+\frac{C \log ^{2}(N p)}{\delta^{3} n^{1 / 2}}\left\{L_{n}+M_{n, X}(\delta)+M_{n, Y}(\delta)\right\}
$$

where C is a universal positive constant. In many settings

$$
L_{n}+M_{n, X}(\delta)+M_{n, Y}(\delta) \leqslant C
$$

We apply with $A=[t, \infty)$, so $A^{C \delta}=[t-C \delta, \infty)$

Key New Coupling Result

Theorem. Let X_{1}, \ldots, X_{n} be independent random matrices in $\mathbb{R}^{N \times p}(N p \geqslant 2)$, Y_{1}, \ldots, Y_{n} be independent random matrices in $\mathbb{R}^{N \times p}$ with $Y_{i} \sim N\left(\mathbb{E}\left[X_{i}\right], \operatorname{Var} X_{i}\right)$.

$$
\text { Define } T=\min _{k \in[N]} \max _{j \in[p]} \sum_{i=1}^{n} \frac{X_{i k j}}{\sqrt{n}} \text {, and } \widetilde{T}=\min _{k \in[N]} \max _{j \in[p]} \sum_{i=1}^{n} \frac{Y_{i k j}}{\sqrt{n}}
$$

Then for every $\delta>0$ and every Borel subset A of \mathbb{R} we have

$$
P(T \in A) \leqslant P\left(\widetilde{T} \in A^{C \delta}\right)+\frac{C \log ^{2}(N p)}{\delta^{3} n^{1 / 2}}\left\{L_{n}+M_{n, X}(\delta)+M_{n, Y}(\delta)\right\}
$$

where C is a universal positive constant. In many settings

$$
L_{n}+M_{n, X}(\delta)+M_{n, Y}(\delta) \leqslant C
$$

We apply with $A=[t, \infty)$, so $A^{C \delta}=[t-C \delta, \infty)$, and for some $\gamma \rightarrow 0$

$$
\frac{C \log ^{2}(N p)}{\delta^{3} n^{1 / 2}} \leqslant \gamma
$$

Key New Coupling Result

Theorem. Let X_{1}, \ldots, X_{n} be independent random matrices in $\mathbb{R}^{N \times p}(N p \geqslant 2)$, Y_{1}, \ldots, Y_{n} be independent random matrices in $\mathbb{R}^{N \times p}$ with $Y_{i} \sim N\left(\mathbb{E}\left[X_{i}\right], \operatorname{Var} X_{i}\right)$.

$$
\text { Define } T=\min _{k \in[N]} \max _{j \in[p]} \sum_{i=1}^{n} \frac{X_{i k j}}{\sqrt{n}} \text {, and } \widetilde{T}=\min _{k \in[N]} \max _{j \in[p]} \sum_{i=1}^{n} \frac{Y_{i k j}}{\sqrt{n}}
$$

Then for every $\delta>0$ and every Borel subset A of \mathbb{R} we have

$$
P(T \in A) \leqslant P\left(\widetilde{T} \in A^{C \delta}\right)+\frac{C \log ^{2}(N p)}{\delta^{3} n^{1 / 2}}\left\{L_{n}+M_{n, X}(\delta)+M_{n, Y}(\delta)\right\}
$$

where C is a universal positive constant. In many settings

$$
L_{n}+M_{n, X}(\delta)+M_{n, Y}(\delta) \leqslant C
$$

We apply with $A=[t, \infty)$, so $A^{C \delta}=[t-C \delta, \infty)$, and for some $\gamma \rightarrow 0$

$$
\frac{C \log ^{2}(N p)}{\delta^{3} n^{1 / 2}} \leqslant \gamma
$$

which makes the error

$$
\delta=\frac{C \log ^{2 / 3}(N p)}{\gamma^{1 / 3} n^{1 / 6}}
$$

Key New Coupling Result

Theorem. Let X_{1}, \ldots, X_{n} be independent random matrices in $\mathbb{R}^{N \times p}(N p \geqslant 2)$, Y_{1}, \ldots, Y_{n} be independent random matrices in $\mathbb{R}^{N \times p}$ with $Y_{i} \sim N\left(\mathbb{E}\left[X_{i}\right], \operatorname{Var} X_{i}\right)$.

$$
\text { Define } T=\min _{k \in[N]} \max _{j \in[p]} \sum_{i=1}^{n} \frac{X_{i k j}}{\sqrt{n}} \text {, and } \widetilde{T}=\min _{k \in[N]} \max _{j \in[p]} \sum_{i=1}^{n} \frac{Y_{i k j}}{\sqrt{n}}
$$

Then for every $\delta>0$ and every Borel subset A of \mathbb{R} we have

$$
P(T \in A) \leqslant P\left(\widetilde{T} \in A^{C \delta}\right)+\frac{C \log ^{2}(N p)}{\delta^{3} n^{1 / 2}}\left\{L_{n}+M_{n, X}(\delta)+M_{n, Y}(\delta)\right\}
$$

where C is a universal positive constant. In many settings

$$
L_{n}+M_{n, X}(\delta)+M_{n, Y}(\delta) \leqslant C
$$

We apply with $A=[t, \infty)$, so $A^{C \delta}=[t-C \delta, \infty)$, and for some $\gamma \rightarrow 0$

$$
\frac{C \log ^{2}(N p)}{\delta^{3} n^{1 / 2}} \leqslant \gamma
$$

which makes the error

$$
\delta=\frac{C \log ^{2 / 3}(N p)}{\gamma^{1 / 3} n^{1 / 6}} \quad \text { in our case } N \leqslant n^{C d_{\theta}} \quad(N=1 \text { recovers the case of max })
$$

Key New Technical Result

Proof is based on Stein's method.
(Extends to processes, Empirical Bootstrap as in Deng and Zhang, 2017)
One key new step is a smooth approximation of the MinMax.

Key New Technical Result

Proof is based on Stein's method.
(Extends to processes, Empirical Bootstrap as in Deng and Zhang, 2017)
One key new step is a smooth approximation of the MinMax. Recall the LSE function that approximates the \max. For $X_{k} \in \mathbb{R}^{p}$

$$
F_{\beta}\left(X_{k}\right)=\beta^{-1} \log \left(\sum_{j=1}^{p} \exp \left(\beta X_{k j}\right)\right)
$$

Key New Technical Result

Proof is based on Stein's method.
(Extends to processes, Empirical Bootstrap as in Deng and Zhang, 2017)
One key new step is a smooth approximation of the MinMax. Recall the LSE function that approximates the max. For $X_{k} \in \mathbb{R}^{p}$

$$
F_{\beta}\left(X_{k}\right)=\beta^{-1} \log \left(\sum_{j=1}^{p} \exp \left(\beta X_{k j}\right)\right)
$$

In order to approximate min max

Key New Technical Result

Proof is based on Stein's method.
(Extends to processes, Empirical Bootstrap as in Deng and Zhang, 2017)
One key new step is a smooth approximation of the MinMax. Recall the LSE function that approximates the max. For $X_{k} \in \mathbb{R}^{p}$

$$
F_{\beta}\left(X_{k}\right)=\beta^{-1} \log \left(\sum_{j=1}^{p} \exp \left(\beta X_{k j}\right)\right)
$$

In order to approximate $\min \max =-\max \{-\max \}$

Key New Technical Result

Proof is based on Stein's method.
(Extends to processes, Empirical Bootstrap as in Deng and Zhang, 2017)
One key new step is a smooth approximation of the MinMax. Recall the LSE function that approximates the max. For $X_{k} \in \mathbb{R}^{p}$

$$
F_{\beta}\left(X_{k}\right)=\beta^{-1} \log \left(\sum_{j=1}^{p} \exp \left(\beta X_{k j}\right)\right)
$$

In order to approximate $\min \max =-\max \{-\max \}$ and proceed to use

$$
G_{\beta}(X)=-F_{\beta}\left(-\left\{F_{\beta}\left(X_{k}\right)\right\}_{k=1}^{N}\right)
$$

Key New Technical Result

Proof is based on Stein's method.
(Extends to processes, Empirical Bootstrap as in Deng and Zhang, 2017) One key new step is a smooth approximation of the MinMax. Recall the LSE function that approximates the max. For $X_{k} \in \mathbb{R}^{p}$

$$
F_{\beta}\left(X_{k}\right)=\beta^{-1} \log \left(\sum_{j=1}^{p} \exp \left(\beta X_{k j}\right)\right)
$$

In order to approximate $\min \max =-\max \{-\max \}$ and proceed to use

$$
G_{\beta}(X)=-F_{\beta}\left(-\left\{F_{\beta}\left(X_{k}\right)\right\}_{k=1}^{N}\right)
$$

that satisfies:

$$
\begin{gathered}
-\beta^{-1} \log N \leqslant G_{\beta}(X)-\min _{k \in[N]} \max _{j \in[p]} X_{k j} \leqslant \beta^{-1} \log p \\
\left\|\nabla G_{\beta}(X)\right\|_{1} \leqslant 1 \\
\left\|\nabla^{2} G_{\beta}(X)\right\|_{1} \leqslant 4 \beta \\
\left\|\nabla^{3} G_{\beta}(X)\right\|_{1} \leqslant 24 \beta^{2}
\end{gathered}
$$

Key New Coupling Result

Lemma 11. Consider $m(X)=g \circ G_{\beta}(X)$. Then we have (1) for $(k, j) \in[N] \times[p]$

$$
m_{k j}^{\prime}(X)=g^{\prime}\left(G_{\beta}(X)\right) \pi_{k}\left(-F_{\beta}(X)\right) \pi_{j}^{\mu_{k}}\left(X_{k}\right)
$$

(2) for $(k, j) \in([N] \times[p])^{2}$, we have

$$
\begin{aligned}
m_{(k, j)}^{\prime \prime}(X) & =g^{\prime \prime}\left(G_{\beta}(X)\right) \pi_{k_{2}}\left(-F_{\beta}(X)\right) \pi_{j 2}^{\mu_{k_{2}}}\left(X_{k_{2} \cdot}\right) \pi_{k_{1}}\left(-F_{\beta}(X)\right) \pi_{j_{1}}^{\beta_{k_{1}}}\left(X_{k_{1}}\right) \\
& -g^{\prime}\left(G_{\beta}(X)\right) \beta w_{k_{1} k_{2}}\left(-F_{\beta}(X)\right) \pi_{j_{2}}^{\mu_{k_{2}}}\left(X_{k_{2}}\right) \pi_{j_{1}}^{\mu_{k_{1}}}\left(X_{k_{1}} .\right) \\
& +g^{\prime}\left(G_{\beta}(X)\right) \pi_{k_{1}}\left(-F_{\beta}(X)\right) \delta_{k_{1} k_{2}} \beta w_{j_{1} j_{2}}\left(X_{k_{1} \cdot}\right)
\end{aligned}
$$

(3) for $(k, j) \in([N] \times[p])^{3}$, we have

$$
\begin{aligned}
& m_{(k, j)}^{\prime \prime \prime}(X)=g^{\prime \prime \prime}\left(G_{\beta}(X)\right) \prod_{\ell=1}^{3} \pi_{k_{\ell}}\left(-F_{\beta}(X)\right) \pi_{j_{\ell}}^{\mu_{k_{\ell}}}\left(X_{k_{\ell}}\right) \\
& -g^{\prime \prime}\left(G_{\beta}(X)\right) \beta w_{k_{2} k_{3}}\left(-F_{\beta}(X)\right) \pi_{k_{1}}\left(-F_{\beta}(X)\right) \prod_{\ell=1}^{3} \pi_{j \ell}^{\bar{\mu}_{\ell}}\left(X_{k_{\ell}}\right) \\
& +g^{\prime \prime}\left(G_{\beta}(X)\right) \pi_{k_{2}}\left(-F_{\beta}(X)\right) \delta_{k_{2} k_{3}} \beta w_{j 2 j 3}{ }_{j k_{2}}\left(X_{k_{2}}\right) \pi_{k_{1}}\left(-F_{\beta}(X)\right) \pi_{j 1}^{\mu_{k_{1}}}\left(X_{k_{1}}\right) \\
& -g^{\prime \prime}\left(G_{\beta}(X)\right) \pi_{k_{2}}\left(-F_{\beta}(X)\right) \beta w_{k_{1} k_{3}}\left(-F_{\beta}(X)\right) \prod_{\ell=1}^{3} \pi_{j_{\ell}}^{\mu_{k_{\ell}}}\left(X_{k_{\ell}} .\right) \\
& +g^{\prime \prime}\left(G_{\beta}(X)\right) \pi_{k_{2}}\left(-F_{\beta}(X)\right) \pi_{j 2}^{\mu_{k_{2}}}\left(X_{k_{2}}\right) \pi_{k_{1}}\left(-F_{\beta}(X)\right) \delta_{k_{1} k_{3}} \beta w_{j_{1} j_{1}}^{\mu_{k_{1}}}\left(X_{k_{1}}\right) \\
& -g^{\prime \prime}\left(G_{\beta}(X)\right) \pi k_{3}\left(-F_{\beta}(X)\right) \beta w_{k_{1} k_{2}}\left(-F_{\beta}(X)\right) \prod_{\ell=1}^{3} \pi_{j \ell}^{\mu_{k_{\ell}}}\left(X_{k_{\ell}}\right) \\
& +g^{\prime}\left(G_{\beta}(X)\right) \beta^{2} q_{k_{1} k_{2} k_{3}}\left(-F_{\beta}(X)\right) \prod_{\ell=1}^{3} \pi_{j \ell}^{\mu_{k} k_{\ell}}\left(X_{k_{\ell}}\right) \\
& -g^{\prime}\left(G_{\beta}(X)\right) \beta w_{k_{1} k_{2}}\left(-F_{\beta}(X)\right) \delta_{k_{2} k_{3}} \beta w_{j j_{3}}^{\mu \mu_{2}}\left(X_{k_{2}}\right) \pi_{j_{1} k_{1}}^{\mu_{k_{1}}}\left(X_{k_{1}} .\right) \\
& -g^{\prime}\left(G_{\beta}(X)\right) \beta w_{k_{1} k_{2}}\left(-F_{\beta}(X)\right) \pi_{j_{2}}^{\mu k_{2}}\left(X_{k_{2}} \cdot\right) \delta_{k_{1} k_{3}} \beta w_{j_{1} j_{3}}^{\mu k_{1}}\left(X_{k_{1}}\right) \\
& +g^{\prime \prime}\left(G_{\beta}(X)\right) \pi k_{3}\left(-F_{\beta}(X)\right) \pi_{j 3}^{\mu_{k_{3}}}\left(X_{k_{3}}\right) \pi_{k_{1}}\left(-F_{\beta}(X)\right) \delta_{k_{1} k_{2}} \beta w_{j_{1} j_{2}}\left(X_{k_{1}}\right) \\
& -g^{\prime}\left(G_{\beta}(X)\right) \beta w_{k_{1} k_{3}}\left(-F_{\beta}(X)\right) \pi_{j_{3}}^{\mu_{k_{3}}}\left(X_{k_{3} \cdot}\right) \delta_{k_{1} k_{2}} \beta w_{j_{1} j_{2}}^{\mu_{k_{1}}}\left(X_{k_{1}} .\right) \\
& +g^{\prime}\left(G_{\beta}(X)\right) \pi_{k_{1}}\left(-F_{\beta}(X)\right) \delta_{k_{1} k_{2} k_{3}} \beta^{2} q_{j_{1} j_{2} j_{3}}^{\bar{\mu}_{k_{3}}}\left(X_{k_{1}} .\right)
\end{aligned}
$$

Back to the Size Control Bound

We obtained

$$
P\left(T_{n}\left(h_{0}\right) \geqslant t\right) \leqslant P\left(T_{n}^{M R *}\left(h_{0}\right) \geqslant t-C \delta_{n, \gamma}\right)+C\left\{\gamma+n^{-1}\right\}
$$

where we can take $\gamma \rightarrow 0$, and $\delta_{n, \gamma}=o(1)$.

Back to the Size Control Bound

We obtained

$$
P\left(T_{n}\left(h_{0}\right) \geqslant t\right) \leqslant P\left(T_{n}^{M R *}\left(h_{0}\right) \geqslant t-C \delta_{n, \gamma}\right)+C\left\{\gamma+n^{-1}\right\}
$$

where we can take $\gamma \rightarrow 0$, and $\delta_{n, \gamma}=o(1)$.
Use a critical value $c_{n, 1-\alpha}:=c_{n}^{M R}\left(h_{0}, 1-\alpha\right)$ based on $T_{n}^{M R *}\left(h_{0}\right)$ for HT

Back to the Size Control Bound

We obtained

$$
P\left(T_{n}\left(h_{0}\right) \geqslant t\right) \leqslant P\left(T_{n}^{M R *}\left(h_{0}\right) \geqslant t-C \delta_{n, \gamma}\right)+C\left\{\gamma+n^{-1}\right\}
$$

where we can take $\gamma \rightarrow 0$, and $\delta_{n, \gamma}=o(1)$.
Use a critical value $c_{n, 1-\alpha}:=c_{n}^{M R}\left(h_{0}, 1-\alpha\right)$ based on $T_{n}^{M R *}\left(h_{0}\right)$ for HT. Then

$$
P\left(T_{n}\left(h_{0}\right) \geqslant c_{n, 1-\alpha}\right)
$$

Back to the Size Control Bound

We obtained

$$
P\left(T_{n}\left(h_{0}\right) \geqslant t\right) \leqslant P\left(T_{n}^{M R *}\left(h_{0}\right) \geqslant t-C \delta_{n, \gamma}\right)+C\left\{\gamma+n^{-1}\right\}
$$

where we can take $\gamma \rightarrow 0$, and $\delta_{n, \gamma}=o(1)$.
Use a critical value $c_{n, 1-\alpha}:=c_{n}^{M R}\left(h_{0}, 1-\alpha\right)$ based on $T_{n}^{M R *}\left(h_{0}\right)$ for HT. Then

$$
\begin{aligned}
P\left(T_{n}\left(h_{0}\right) \geqslant c_{n, 1-\alpha}\right) & \leqslant P\left(T_{n}^{M R *}\left(h_{0}\right) \geqslant c_{n, 1-\alpha}-C \delta_{n, \gamma}\right)+o(1) \\
& \leqslant \alpha+P\left(\left|T_{n}^{M R *}\left(h_{0}\right)-c_{n, 1-\alpha}\right| \leqslant C \delta_{n, \gamma}\right)+o(1)
\end{aligned}
$$

Back to the Size Control Bound

We obtained

$$
P\left(T_{n}\left(h_{0}\right) \geqslant t\right) \leqslant P\left(T_{n}^{M R *}\left(h_{0}\right) \geqslant t-C \delta_{n, \gamma}\right)+C\left\{\gamma+n^{-1}\right\}
$$

where we can take $\gamma \rightarrow 0$, and $\delta_{n, \gamma}=o(1)$.
Use a critical value $c_{n, 1-\alpha}:=c_{n}^{M R}\left(h_{0}, 1-\alpha\right)$ based on $T_{n}^{M R *}\left(h_{0}\right)$ for HT. Then

$$
\begin{aligned}
P\left(T_{n}\left(h_{0}\right) \geqslant c_{n, 1-\alpha}\right) & \leqslant P\left(T_{n}^{M R *}\left(h_{0}\right) \geqslant c_{n, 1-\alpha}-C \delta_{n, \gamma}\right)+o(1) \\
& \leqslant \alpha+P\left(\left|T_{n}^{M R *}\left(h_{0}\right)-c_{n, 1-\alpha}\right| \leqslant C \delta_{n, \gamma}\right)+o(1)
\end{aligned}
$$

We need to ensure that

$$
P\left(\left|T_{n}^{M R *}\left(h_{0}\right)-c_{n, 1-\alpha}\right| \leqslant C \delta_{n, \gamma}\right) \quad \text { is small }
$$

Back to the Size Control Bound

We obtained

$$
P\left(T_{n}\left(h_{0}\right) \geqslant t\right) \leqslant P\left(T_{n}^{M R *}\left(h_{0}\right) \geqslant t-C \delta_{n, \gamma}\right)+C\left\{\gamma+n^{-1}\right\}
$$

where we can take $\gamma \rightarrow 0$, and $\delta_{n, \gamma}=o(1)$.
Use a critical value $c_{n, 1-\alpha}:=c_{n}^{M R}\left(h_{0}, 1-\alpha\right)$ based on $T_{n}^{M R *}\left(h_{0}\right)$ for HT. Then

$$
\begin{aligned}
P\left(T_{n}\left(h_{0}\right) \geqslant c_{n, 1-\alpha}\right) & \leqslant P\left(T_{n}^{M R *}\left(h_{0}\right) \geqslant c_{n, 1-\alpha}-C \delta_{n, \gamma}\right)+o(1) \\
& \leqslant \alpha+P\left(\left|T_{n}^{M R *}\left(h_{0}\right)-c_{n, 1-\alpha}\right| \leqslant C \delta_{n, \gamma}\right)+o(1)
\end{aligned}
$$

We need to ensure that

$$
P\left(\left|T_{n}^{M R *}\left(h_{0}\right)-c_{n, 1-\alpha}\right| \leqslant C \delta_{n, \gamma}\right) \quad \text { is small }
$$

i.e., that $T_{n}^{M R *}\left(h_{0}\right)$ does not concentrate too fast around $c_{n, 1-\alpha}$ as $p \rightarrow \infty$.

Anti-Concentration

Anti-Concentration: Max

Anti-Concentration: Max

Anti-concentration essentially bounds the probability density function

Anti-Concentration: Max

Anti-concentration essentially bounds the probability density function
Theorem (Chernozhukov, Chetverikov and Kato (2011))
Let $X \in \mathbb{R}^{p}$ be a vector of Gaussian random variables such that $\operatorname{Var}\left(X_{j}\right) \geqslant 1$. Let $Z=\max _{j \in[p]} X_{j}$. Then for any $\epsilon>0$ and $x \in \mathbb{R}$

$$
\mathbb{P}(|Z-x| \leqslant \epsilon) \leqslant C \epsilon \sqrt{\log p}
$$

In particular the probability density function of Z satisfies $\max _{t \in \mathbb{R}} f_{Z}(t) \leqslant C \sqrt{\log p}$

- allows for non-central and arbitrary correlation structure

Anti-Concentration: Max

Anti-concentration essentially bounds the probability density function
Theorem (Chernozhukov, Chetverikov and Kato (2011))
Let $X \in \mathbb{R}^{p}$ be a vector of Gaussian random variables such that $\operatorname{Var}\left(X_{j}\right) \geqslant 1$. Let $Z=\max _{j \in[p]} X_{j}$. Then for any $\epsilon>0$ and $x \in \mathbb{R}$

$$
\mathbb{P}(|Z-x| \leqslant \epsilon) \leqslant C \epsilon \sqrt{\log p}
$$

In particular the probability density function of Z satisfies $\max _{t \in \mathbb{R}} f_{Z}(t) \leqslant C \sqrt{\log p}$

- allows for non-central and arbitrary correlation structure For coupling between Max statistics $(N=1)$, say T and Z, we have

$$
P\left(T \geqslant c_{1-\alpha}\right) \leqslant P\left(Z \geqslant c_{1-\alpha}-\delta_{n, \gamma}\right)+C \gamma
$$

Anti-Concentration: Max

Anti-concentration essentially bounds the probability density function
Theorem (Chernozhukov, Chetverikov and Kato (2011))
Let $X \in \mathbb{R}^{p}$ be a vector of Gaussian random variables such that $\operatorname{Var}\left(X_{j}\right) \geqslant 1$. Let $Z=\max _{j \in[p]} X_{j}$. Then for any $\epsilon>0$ and $x \in \mathbb{R}$

$$
\mathbb{P}(|Z-x| \leqslant \epsilon) \leqslant C \epsilon \sqrt{\log p}
$$

In particular the probability density function of Z satisfies $\max _{t \in \mathbb{R}} f_{Z}(t) \leqslant C \sqrt{\log p}$

- allows for non-central and arbitrary correlation structure For coupling between Max statistics $(N=1)$, say T and Z, we have

$$
P\left(T \geqslant c_{1-\alpha}\right) \leqslant P\left(Z \geqslant c_{1-\alpha}-\delta_{n, \gamma}\right)+C \gamma \leqslant \alpha+P\left(\left|Z-c_{1-\alpha}\right| \leqslant \delta_{n, \gamma}\right)+\gamma
$$

Anti-Concentration: Max

Anti-concentration essentially bounds the probability density function
Theorem (CCK (2011))
Let $X \in \mathbb{R}^{p}$ be a vector of Gaussian random variables such that $\operatorname{Var}\left(X_{j}\right) \geqslant 1$. Let $Z=\max _{j \in[p]} X_{j}$. Then for any $\epsilon>0$ and $x \in \mathbb{R}$

$$
\mathbb{P}(|Z-x| \leqslant \epsilon) \leqslant C \epsilon \sqrt{\log p}
$$

In particular the probability density function of Z satisfies $\max _{t \in \mathbb{R}} f_{Z}(t) \leqslant C \sqrt{\log p}$

- allows for non-central and arbitrary correlation structure

For coupling between Max statistics $(N=1)$, say T and Z,

$$
\text { we need } \delta_{n, \gamma} \sqrt{\log p}+\gamma \rightarrow 0
$$

Anti-Concentration: Max

Anti-concentration essentially bounds the probability density function

Theorem (CCK (2011))

Let $X \in \mathbb{R}^{p}$ be a vector of Gaussian random variables such that $\operatorname{Var}\left(X_{j}\right) \geqslant 1$. Let $Z=\max _{j \in[p]} X_{j}$. Then for any $\epsilon>0$ and $x \in \mathbb{R}$

$$
\mathbb{P}(|Z-x| \leqslant \epsilon) \leqslant C \epsilon \sqrt{\log p}
$$

In particular the probability density function of Z satisfies $\max _{t \in \mathbb{R}} f_{Z}(t) \leqslant C \sqrt{\log p}$

- allows for non-central and arbitrary correlation structure

For coupling between Max statistics ($N=1$), say T and Z,
we need $\delta_{n, \gamma} \sqrt{\log p}+\gamma \rightarrow 0$ implied by $\delta_{n, \gamma}=\frac{\log ^{2 / 3}(p)}{\gamma^{1 / 3} n^{1 / 6}}=o\left(\frac{1}{\sqrt{\log p}}\right)$
That is, $\log ^{7 / 6}(p)=o\left(n^{1 / 6}\right)$.

Anti-Concentration: MinMax

Anti-Concentration: MinMax

Anti-concentration essentially bounds the probability density function Lemma
For $X_{k j} \sim N(0,1)$, i.i.d., $k \in[N], j \in[p]$, let

$$
Z=\min _{k \in[N]} \max _{j \in[p]} X_{k j} .
$$

Anti-Concentration: MinMax

Anti-concentration essentially bounds the probability density function Lemma
For $X_{k j} \sim N(0,1)$, i.i.d., $k \in[N], j \in[p]$, let

$$
Z=\min _{k \in[N]} \max _{j \in[p]} X_{k j} .
$$

If $p / \sqrt{2 \pi}>\log (N p) \geqslant 3$, the probability density function f_{Z} satisfies

$$
\left\{\sqrt{2} \log ^{1 / 2}\left(\frac{p / \sqrt{2 \pi}}{\log N}\right)-2\right\} \frac{\log (N)}{e} \leqslant \max _{t \in \mathbb{R}} f_{Z}(t) \leqslant 4 \sqrt{2} \log ^{3 / 2}(N p)
$$

Anti-Concentration: MinMax

Anti-concentration essentially bounds the probability density function

Lemma

For $X_{k j} \sim N(0,1)$, i.i.d., $k \in[N], j \in[p]$, let

$$
Z=\min _{k \in[N]} \max _{j \in[p]} X_{k j} .
$$

If $p / \sqrt{2 \pi}>\log (N p) \geqslant 3$, the probability density function f_{Z} satisfies

$$
\left\{\sqrt{2} \log ^{1 / 2}\left(\frac{p / \sqrt{2 \pi}}{\log N}\right)-2\right\} \frac{\log (N)}{e} \leqslant \max _{t \in \mathbb{R}} f_{Z}(t) \leqslant 4 \sqrt{2} \log ^{3 / 2}(N p)
$$

That is, if $p=N$, for some universal constants $0<c<C$ we have

$$
c \log ^{3 / 2} p \leqslant \max _{t \in \mathbb{R}} f_{Z}(t) \leqslant C \log ^{3 / 2}(p)
$$

Anti-Concentration: MinMax

Anti-concentration essentially bounds the probability density function

Lemma

For $X_{k j} \sim N(0,1)$, i.i.d., $k \in[N], j \in[p]$, let

$$
Z=\min _{k \in[N]} \max _{j \in[p]} X_{k j} .
$$

If $p / \sqrt{2 \pi}>\log (N p) \geqslant 3$, the probability density function f_{Z} satisfies

$$
\left\{\sqrt{2} \log ^{1 / 2}\left(\frac{p / \sqrt{2 \pi}}{\log N}\right)-2\right\} \frac{\log (N)}{e} \leqslant \max _{t \in \mathbb{R}} f_{Z}(t) \leqslant 4 \sqrt{2} \log ^{3 / 2}(N p)
$$

That is, if $p=N$, for some universal constants $0<c<C$ we have

$$
c \log ^{3 / 2} p \leqslant \max _{t \in \mathbb{R}} f_{Z}(t) \leqslant C \log ^{3 / 2}(p)
$$

\triangleright suggests anti-concentration of MinMax is quite different from the Max
\triangleright currently only partial results for arbitrary correlation structures

Anti-Concentration

However note that our bounds are

$$
P\left(T_{n}\left(h_{0}\right) \geqslant t\right) \leqslant P\left(T_{n}^{M R *}\left(h_{0}\right) \geqslant t-C \delta_{n, \gamma}\right)+C\left\{\gamma+n^{-1}\right\}
$$

It suffices to control the concentration of the bootstrapped statistics

- not of the original statistics

Anti-Concentration

However note that our bounds are

$$
P\left(T_{n}\left(h_{0}\right) \geqslant t\right) \leqslant P\left(T_{n}^{M R *}\left(h_{0}\right) \geqslant t-C \delta_{n, \gamma}\right)+C\left\{\gamma+n^{-1}\right\}
$$

It suffices to control the concentration of the bootstrapped statistics

- not of the original statistics

We can estimate

$$
P\left(\left|T_{n}^{M R *}\left(h_{0}\right)-t\right| \leqslant 2 C \delta_{n, \gamma}\right)
$$

via bootstrap for $t=c_{n}\left(h_{0}, 1-\alpha\right)$ and bound the anti-concentration factor
\triangleright adaptive to the setting (in contrast to analytical bounds)
\triangleright can be estimated using the same bootstrap that computed $c_{n}\left(h_{0}, 1-\alpha\right)$
Let $\mathcal{A}_{1-\alpha}^{*}:=\frac{P\left(\left|T_{n}^{M R *}\left(h_{0}\right)-t\right| \leqslant 2 C \delta_{n, \gamma}\right)}{2 C \delta_{n, \gamma}}$ denote the anti-concentration rate.

Examples of Simple Conditions for "Penalized Resampling"

Suppose Condition M, m_{j} and its derivatives are uniformly bounded, $\sigma_{\theta, j} \geqslant c$, $L_{G} / \vartheta_{n}+L_{C} \leqslant C$. Then, letting $\mathcal{A}_{1-\alpha}^{*}$ denote the anti-concentration rate, provided

$$
\begin{equation*}
\frac{K_{n}^{2 / 3}}{n^{1 / 6}}+\kappa_{n} \frac{d_{\theta}^{1 / 2} K_{n}}{n^{1 / 2}}+\frac{\bar{w}}{\kappa_{n}}=o\left(\frac{1}{\mathcal{A}_{1-\alpha}^{*}}\right) \tag{4}
\end{equation*}
$$

where $K_{n}=\log p+d_{\theta} \log n$, we have $P\left(T_{n}\left(h_{0}\right) \geqslant c_{n}\left(h_{0}, 1-\alpha\right)\right) \leqslant \alpha+o(1)$

Examples of Simple Conditions for "Penalized Resampling"

Suppose Condition M, m_{j} and its derivatives are uniformly bounded, $\sigma_{\theta, j} \geqslant c$, $L_{G} / \vartheta_{n}+L_{C} \leqslant C$. Then, letting $\mathcal{A}_{1-\alpha}^{*}$ denote the anti-concentration rate, provided

$$
\begin{equation*}
\frac{K_{n}^{2 / 3}}{n^{1 / 6}}+\kappa_{n} \frac{d_{\theta}^{1 / 2} K_{n}}{n^{1 / 2}}+\frac{\bar{w}}{\kappa_{n}}=o\left(\frac{1}{\mathcal{A}_{1-\alpha}^{*}}\right) \tag{4}
\end{equation*}
$$

where $K_{n}=\log p+d_{\theta} \log n$, we have $P\left(T_{n}\left(h_{0}\right) \geqslant c_{n}\left(h_{0}, 1-\alpha\right)\right) \leqslant \alpha+o(1)$
Remark: we can simulate \bar{w} and bound $\mathcal{A}_{1-\alpha}^{*}$
\triangleright yields a data-driven choice of κ_{n}

Examples of Simple Conditions for "Penalized Resampling"

Suppose Condition M, m_{j} and its derivatives are uniformly bounded, $\sigma_{\theta, j} \geqslant c$, $L_{G} / \vartheta_{n}+L_{C} \leqslant C$. Then, letting $\mathcal{A}_{1-\alpha}^{*}$ denote the anti-concentration rate, provided

$$
\begin{equation*}
\frac{K_{n}^{2 / 3}}{n^{1 / 6}}+\kappa_{n} \frac{d_{\theta}^{1 / 2} K_{n}}{n^{1 / 2}}+\frac{\bar{w}}{\kappa_{n}}=o\left(\frac{1}{\mathcal{A}_{1-\alpha}^{*}}\right) \tag{4}
\end{equation*}
$$

where $K_{n}=\log p+d_{\theta} \log n$, we have $P\left(T_{n}\left(h_{0}\right) \geqslant c_{n}\left(h_{0}, 1-\alpha\right)\right) \leqslant \alpha+o(1)$
Remark: we can simulate \bar{w} and bound $\mathcal{A}_{1-\alpha}^{*}$
\triangleright yields a data-driven choice of κ_{n}
For the traditional setting, e.g., fixed p and d_{θ}
$\triangleright \mathcal{A}_{1-\alpha}^{*} \leqslant C$
$\triangleright K_{n} \leqslant C$
$\triangleright \kappa_{n} \rightarrow \infty$ and $\kappa_{n} / n^{1 / 2} \rightarrow 0$

Examples of Simple Conditions for "Penalized Resampling"

For non-Donsker cases:
Example (Many inequalities and fixed d_{θ})
Let $p=n^{C}$ for some fixed $C>1, d_{\theta} \leqslant C$, and the anti-concentration $\mathcal{A}_{1-\alpha}^{*} \leqslant C \log ^{3 / 2} n$. It suffices $\kappa_{n} \in\left[\log ^{5 / 2} n, n^{\frac{1}{2}} \log ^{-3} n\right]$.

Examples of Simple Conditions for "Penalized Resampling"

For non-Donsker cases:
Example (Many inequalities and fixed d_{θ})
Let $p=n^{C}$ for some fixed $C>1, d_{\theta} \leqslant C$, and the anti-concentration $\mathcal{A}_{1-\alpha}^{*} \leqslant C \log ^{3 / 2} n$. It suffices $\kappa_{n} \in\left[\log ^{5 / 2} n, \quad n^{\frac{1}{2}} \log ^{-3} n\right]$.

Example (Polynomially many inequalities and large d_{θ})
Let $p=n^{C}$ for some fixed $C>1, d_{\theta}=n^{a}$ for some $a<1 / 4$, and the anti-concentration $\mathcal{A}_{1-\alpha}^{*} \leqslant C \log ^{3 / 2} n$. It suffices $\kappa_{n} \in\left[n^{a / 2} \log ^{5 / 2} n, \quad n^{\frac{1}{2}-\frac{3}{2} a} \log ^{-3} n\right]$.

Examples of Simple Conditions for "Penalized Resampling"

For non-Donsker cases:
Example (Many inequalities and fixed d_{θ})
Let $p=n^{C}$ for some fixed $C>1, d_{\theta} \leqslant C$, and the anti-concentration $\mathcal{A}_{1-\alpha}^{*} \leqslant C \log ^{3 / 2} n$. It suffices $\kappa_{n} \in\left[\log ^{5 / 2} n, \quad n^{\frac{1}{2}} \log ^{-3} n\right]$.

Example (Polynomially many inequalities and large d_{θ})
Let $p=n^{C}$ for some fixed $C>1, d_{\theta}=n^{a}$ for some $a<1 / 4$, and the anti-concentration $\mathcal{A}_{1-\alpha}^{*} \leqslant C \log ^{3 / 2} n$. It suffices $\kappa_{n} \in\left[n^{a / 2} \log ^{5 / 2} n, \quad n^{\frac{1}{2}-\frac{3}{2} a} \log ^{-3} n\right]$.

Example (Exponentially many inequalities)
Suppose that $d_{\theta} \leqslant C \log n, p \geqslant n^{\log n}$ and the anti-concentration $\mathcal{A}_{1-\alpha}^{*} \leqslant C \log ^{3 / 2} p$. It suffices $\kappa_{n} \in\left[\log ^{2} p \log n, \quad n^{1 / 2} \log ^{-5 / 2} p \log ^{-1} n\right]$, provided that $n^{-1 / 6} \log ^{13 / 6} p \log n=o(1)$.

Conclusion

\triangleright subvector inference in PI models with many moment restrictions

- allow for non-Donsker classes
- finite sample analysis
- need more than $\kappa_{n} \rightarrow \infty$ and $\kappa_{n} / \sqrt{n} \rightarrow 0$ when $p \rightarrow \infty$
- valid data-driven choice of penalty parameters (via additional bootstrap)
\triangleright new CLTs for $\min _{k \in[N]} \max _{j \in[p]} W_{k j}$
- results parallel results for $\max _{j \in[p]} W_{j}$
- approximation based on composition of smooth maximum (LSE)
\triangleright new anti-concentration pattern
- does not parallel results for $\max _{j \in[p]} W_{j}$ (counter example)
- estimate anti-concentration via bootstrap
\triangleright Future (ongoing) work
- sharper constants
- hybrid methods
- power comparisons
- analytical bounds for anti-concentration
- orthogonal moment conditions

