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Introduction

B There is a large literature on inference in partially identified (PI) models
defined by moment (in)equalities.

B We consider a model characterized by (θ∗,F )
• θ∗ ∈ Rdθ is a finite dimensional parameter of interest,
• F is the distribution of data, i.e., W ∼ F (Wi , i = 1, . . . , n, i.i.d.)

B The main prediction of the model is that the true parameter θ∗ satisfies

E[mj(W , θ)] 6 0, for j = 1, . . . , pI ,

E[mj(W , θ)] = 0, for j = pI + 1, . . . , pI + pE .
(1)

B key issue: θ∗ is not assumed to be point identified,
i.e., given F , there might be a set of θ that satisfy (1).

ΘI ≡
{
θ ∈ Θ s.t.

E[mj(W , θ)] 6 0 for j = 1, . . . , pI
E[mj(W , θ)] = 0 for j = pI + 1, . . . , pI + pE

}
.
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Motivating Examples

Interval-Outcome Linear Regression (e.g., Manski and Tamer 2002)

B let Y ∗i denote a latent dependent variable

Y ∗i = X ′i θ
∗ + εi , E[εi | Xi ] = 0 a.s.

B We only observe an interval s.t. Yi ∈ [Y l
i ,Y

u
i ]

which leads to

E[X ′i θ
∗ − Y u

i | Xi ] 6 0

E[Y l
i − X ′i θ

∗ | Xi ] 6 0

B We could use
E[X ′i θ

∗ − Y u
i ] 6 0

E[Y l
i − X ′i θ

∗] 6 0

E[(X ′i θ
∗ − Y u

i )Xij1{Xij > 0}] 6 0

E[(Y l
i − X ′i θ

∗)Xij1{Xij > 0}] 6 0

E[−(X ′i θ
∗ − Y u

i )Xij1{Xij 6 0}] 6 0

E[−(Y l
i − X ′i θ

∗)Xij1{Xij 6 0}] 6 0
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Motivating Examples

Discrete Choice Model with Multiple Equilibria (Ciliberto and Tamer, 2009)

B m firms play an entry game (Nash Equilibrium) on n independent markets

B On each market, a firm makes an entry decision dj ∈ {0, 1}

profit function πj(dj , d−j ,X , ε, θ
∗)

> πj(1− dj , d−j ,X , ε, θ
∗)

where X firm/market characteristics, and we would like to infer θ∗

B There are set-valued functions R1, R2 such that
• d is the unique equilibrium if ε ∈ R1(d ,X , θ)
• d is a possible equilibrium if ε ∈ R2(d ,X , θ)

B Conclude that

E[1{d = d ′} | X ] > E[1{ε ∈ R1(d ,X , θ0)} | X ]
E[1{d = d ′} | X ] 6 E[1{ε ∈ R1(d ,X , θ0) ∪ R2(d ,X , θ0)} | X ]

B If conditional distribution of ε given X is known (up to a subvector of θ0), we
can calculate numerically right-hand sides of both inequalities

B we have 2m+1 moment inequalities for each value of X ∈ X (a discrete set).
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where p = pI + 2pE .

B We formally deal with unconditional moments
but conditional moments can be approximated via

E[mj(W , θ∗) | zi ] 6 0⇒ E[mj(W , θ∗)1{zi ∈ [a, b]}] 6 0 for all [a, b]
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Introduction (ctd.)

B The literature focuses on inference on PI parameter vector θ∗ ∈ Θ

, i.e.,

H0 : θ∗ = θ0 vs. H1 : θ∗ 6= θ0.

B We are not interested on θ∗ but on h(θ∗) for a known fn. h : Θ→ Λ.
This is the problem addressed in this paper:

Hypothesis test (HT): For fixed h0, we want to test:

H0 : h(θ∗) = h0 vs. H1 : h(θ∗) 6= h0 (3)

Confidence set (CS) for h(θ∗): based on HT inversion of a test for (3).

B Main application: Subvector inference: For θ∗ ∈ Θ ⊂ Rdθ , dθ > 1,

H0 : θ∗1 = h0 vs. H1 : θ∗1 6= h0.

⇒ Special case of Eq. (3) with h(θ) = θ1 and h0 ∈ Λ ⊆ R.
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Literature review

Most of literature on inference in PI moment (in)eq. is on “vector inference”

H0 : θ∗ = θ0 vs. H1 : θ∗ 6= θ0

B Testing unconditional moment inequalities: Chernozhukov, Hong, and
Tamer (2007), Romano and Shaikh (2008), Andrews and Guggenberger
(2009), Andrews and Soares (2010), Canay (2010), Bugni (2011), Andrews
and Jia Barwick (2012), Romano, Shaikh, and Wolf (2012)

B Testing conditional moment inequalities: Andrews and Shi (2013),
Chernozhukov, Lee, and Rosen (2013), Armstrong (2011), Chetverikov
(2011), Armstrong and Chan (2012)

In both cases, the number of moments p is fixed (explicitly or due to the structure)

Testing unconditional moment inequalities with p →∞
B Menzel (2014), where p � n

B Chernozhukov, Chetverikov and Kato (WP 2013), where p � n
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Literature review: subvector

Asymptotically uniformly valid inference for

H0 : h(θ∗) = h0 vs. H1 : h(θ∗) 6= h0

B Projections of CS: Project usual CS for θ onto space of H0. Considered by
Andrews et. al. (2009, 10).

• Related work improving projections:
Kaido, Molinari & Stoye (WP, 2015), Gafarov (affine models, WP 2017)

B Subsampling: Profile the criterion function and approximate critical value
with subsampling. Proposed by Romano & Shaikh (2008, 10).

B Project the Criterion Function: Bugni, Canay and Shi (2017)

In all cases, the number of moments inequalities p is fixed and asymptotic analysis
(i.e., based on the limiting distribution of the process)
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Positioning in the literature

Donsker non-Donsker
(e.g. p fixed) (e.g. p growing)

Chernozhukov et al (2007)
Romano and Shaikh (2008) Menzel (2014, p � n)

Vector Andrews and Guggenberger (2009) Chernozhukov et al
Inference Andrews and Soares (2010) (WP 2013, p � n)

· · ·
Andrews et. al. (2009, 10)

Romano and Shaikh (2008, 10)
Subvector Bugni, Canay and Shi (2017)
Inference Kaido et al (WP, 2015)

Gafarov (WP 2017)

Starting point:

B the minimum resampling critical value in Bugni et al (2017); and

B CLTs for the max of high-dim vectors in Chernozhukov et al (2013)

B however the “subvector+non-Donsker” setting turns out to be quite different
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Setting and Contributions

Profiled test statistics for H0 : h(θ∗) = h0 vs. H1 : h(θ∗) 6= h0

Tn(h0) = inf
θ∈Θ(h0)

max
j∈[p]

√
nm̄θ,j/σ̂θ,j

where Θ(h0) = h−1(h0) = {θ ∈ Θ : h(θ) = h0} and

m̄θ,j =
1

n

n∑
i=1

mj(Wi , θ) and σ̂2
θ,j =

1

n

n∑
i=1

{mj(Wi , θ)− m̄θ,j}2

The test: reject if Tn(h0) > cn(h0, 1− α) where cn(h0, 1− α) is a critical value.

Under H0: P(Tn(h0) > cn(h0, 1− α)) 6 α + o(1)

Our contribution is to construct critical values cn(h0, 1− α) that

B uniformly controls asymptotic size over a large class of dgps (F ∈ Pn)

B in the presence of many moment inequalities (p →∞ as n→∞)

B allow for p � n (also dθ →∞ but not clear if empirically relevant)

B finite sample analysis, and rate for size error (e.g. polynomially in n)

B towards data-driven choice of parameters
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Profiled test statistics for H0 : h(θ∗) = h0 vs. H1 : h(θ∗) 6= h0

Tn(h0) = inf
θ∈Θ(h0)

max
j∈[p]

√
nm̄θ,j/σ̂θ,j
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m̄θ,j =
1

n
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B in the presence of many moment inequalities (p →∞ as n→∞)

B allow for p � n (also dθ →∞ but not clear if empirically relevant)

B finite sample analysis, and rate for size error (e.g. polynomially in n)

B towards data-driven choice of parameters



Overview of Proposals

Profiled test statistics for H0 : h(θ∗) = h0 vs. H1 : h(θ∗) 6= h0

Tn(h0) = inf
θ∈Θ(h0)

max
j∈[p]

√
nm̄θ,j/σ̂θ,j

We consider different methods to calculate the critical value cn(h0, 1− α):

B Self-Normalized method (not covering today)
• fast
• works under very weak conditions
• potentially conservative

B Bootstrap-based methods
• slower (requires simulations)
• requires stronger conditions
• but less conservative

B Hybrids are possible (not covering today)
• potentially useful to speed up bootstrap-based methods



Proposal via Bootstrap-based methods

Profiled test statistics for H0 : h(θ∗) = h0 vs. H1 : h(θ∗) 6= h0

Tn(h0) = inf
θ∈Θ(h0)

max
j∈[p]

√
nm̄θ,j/σ̂θ,j

Letting v̂θ,j =
1√
n

n∑
i=1

{mj(Wi , θ)− E[mj(Wi , θ)]}/σ̂θ,j we can rewrite Tn(h0) as

Tn(h0) = inf
θ∈Θ(h0)

max
j∈[p]

v̂θ,j +
√
nE[mj(W , θ)]/σ̂θ,j

bootstrap: v̂∗θ,j =
1√
n

n∑
i=1

ξi
mj(Wi , θ)− m̄θ,j

σ̂θ,j
where ξi ’s are i.i.d. N(0, 1).

Remark: It has been shown that although we can suitably approximate

v̂θ,j by v̂∗θ,j

Andrews and Soares (2010) show it is more delicate to approximate
√
nE[mj(W , θ)]/σ̂θ,j by

√
nm̄θ,j/σ̂θ,j

as there is a non-vanishing noise due to the scaling by
√
n.
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Standard Bootstrap-based methods via GMS

Profiled test statistics for H0 : h(θ∗) = h0 vs. H1 : h(θ∗) 6= h0

Tn(h0) = inf
θ∈Θ(h0)

max
j∈[p]

v̂θ,j +
√
nE[mj(W , θ)]/σ̂θ,j

A standard way to proceed is to use Generalized Moment Selection (GMS)

ϕθ,j =

 0, if
√
nm̄θ,j/σ̂θ,j > −κn,

−∞, otherwise (i.e., inequality will not be used)

for a tuning parameter κn →∞ (recommendation ∼ {log n}1/2 when p is fixed)

Then set
TGMS∗
n (h0) := inf

θ∈Θ(h0)
max
j∈[p]

v̂∗θ,j + ϕθ,j

and compute the critical values based on the quantile of TGMS∗
n (h0).
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Standard Bootstrap-based methods via GMS

Example: dθ = 2, and Θ = [−1, 1]2. Let p = 2, and consider

E[m1(Wi , θ)] = E[θ1 + θ2 −Wi,1] 6 0
E[m2(Wi , θ)] = E[Wi,2 − θ1 − θ2] 6 0

where Wi ∈ Rp, Wi ∼ N(0, I ) and we are interest on testing

H0 : θ1 = 0 vs. H1 : θ1 6= 0

so that

Θ(h0) = {θ ∈ Θ : θ1 = 0} and ΘI = {θ ∈ Θ : θ1 + θ2 = 0}
It follows that for (Z1,Z2) ∼ N(0, I ) we have

Tn(0) = inf
−16θ261

max

{√
nθ2 − W̄1

σ̂1
,
W̄2 −

√
nθ2

σ̂2

}
→d

Z2 − Z1

2
∼ N(0, 1/2)

In turn, for GMS, using κn =
√

log n we select both inequalities whp and

TGMS∗
n (0) | (Wi )

n
i=1 ≈ inf

−16θ261
max {−Z1 + ϕθ2,1,Z2 + ϕθ2,2}

Critical values based on TGMS∗
n (0) fail to control size. Indeed, for α = 0.1

it follows cGMS
n (0) ≈ 0.5 and P(Tn(0) > cGMS

n (0)) ≈ 0.24.
instead of cn(0) ≈ 0.86
GMS quantiles are “too” small
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Bootstrap-based methods for subvector inference

1) “Discard Resampling” (DR):

TDR∗
n (h0) ≡ inf

θ∈Θ̂I (h0)
max
j∈[p]

v̂∗θ,j + ϕθ,j

where Θ̂I (h0) ⊆ “ arg min ”θ∈Θ(h0) maxj∈[p]

√
nm̄θ,j/σ̂θ,j

ϕθ,j =

 0, if
√
nm̄θ,j/σ̂θ,j > max`∈[p]

√
nm̄θ,`/σ̂θ,` − κn,

−∞, otherwise (i.e., inequality will not be used)

2) “Penalized Resampling” (PR):

TPR∗
n (h0) ≡ inf

θ∈Θ(h0)
max
j∈[p]

v̂∗θ,j + κ−1
n

√
nm̄θ,j/σ̂θ,j ,

where κn > 1 is a penalty parameter

3) “Minimum Resampling” (MR):

TMR∗
n (h0) ≡ min{TDR∗

n (h0),TPR∗
n (h0)}
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where κn > 1 is a penalty parameter

3) “Minimum Resampling” (MR):

TMR∗
n (h0) ≡ min{TDR∗

n (h0),TPR∗
n (h0)}



Bootstrap-based methods for subvector inference

1) “Discard Resampling” (DR):

TDR∗
n (h0) ≡ inf

θ∈Θ̂I (h0)
max
j∈[p]

v̂∗θ,j + ϕθ,j

where Θ̂I (h0) ⊆ “ arg min ”θ∈Θ(h0) maxj∈[p]

√
nm̄θ,j/σ̂θ,j

ϕθ,j =

 0, if
√
nm̄θ,j/σ̂θ,j > max`∈[p]

√
nm̄θ,`/σ̂θ,` − κn,

−∞, otherwise (i.e., inequality will not be used)

2) “Penalized Resampling” (PR):

TPR∗
n (h0) ≡ inf

θ∈Θ(h0)
max
j∈[p]

v̂∗θ,j + κ−1
n

√
nm̄θ,j/σ̂θ,j ,

where κn > 1 is a penalty parameter

3) “Minimum Resampling” (MR):

TMR∗
n (h0) ≡ min{TDR∗

n (h0),TPR∗
n (h0)}



The impact of many moment inequalities, p � n

B lack of a Donsker property for the whole process {vθ,j : θ ∈ Θ(h0), j ∈ [p]}
• no limiting distributions guaranteed to exist
• cannot invoke Donsker’s functional CLT to establish the convergence in

distribution of Tn(h0)

B restriction on the criterion functions
• we use Q(θ) = maxj∈[p]

√
nm̄θ,j/σ̂θ,j

• do not use (MMM): Q(θ) =
∑p

j=1{
√
nm̄θ,j/σ̂θ,j}2

+

• do not use (AQLR): Q(θ) = mint∈Rp (
√
nm̄θ,j/σ̂θ,j − t)′Σ̃−1

θ (
√
nm̄θ,j/σ̂θ,j − t)

B tuning parameters need to account for growing entropy



Assumptions for Hypothesis Testing

Condition M.

(i) Θ(h0) = {θ ∈ Θ : h(θ) = h0} is well behaved

(ii) {m̃j(·, θ) := σ−1
θ,j mj(·, θ) : θ ∈ Θ(h0), j ∈ [p]} is well behaved

(iii) Polynomial Minorant condition away from the identified set
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Assumptions for Hypothesis Testing

Condition M. The following conditions hold:
(i) set Θ(h0) is convex and supθ∈Θ(h0) ‖θ‖∞ 6 C

√
n

(ii) {m̃j(·, θ) : θ ∈ Θ(h0), j ∈ [p]} is VC type class of functions

• with constants Ā and v > 1 and envelope F (i.e. F (W ) > |m̃j(W , θ)|)
• for some b > 0, q > 4, we have

Ep[F q]1/q 6 b and E[|m̃j(W , θ)|k ] 6 bk−2, k = 3, 4

• E[{m̃j(W , θ)− m̃j(W , θ̃)}2] 6 LC‖θ − θ̃‖χ for some χ > 1.

• maxj∈[p] ‖∇θE[m̃j(W , θ)]‖ 6 LG for every θ ∈ Θ(h0)

(iii) For every θ ∈ Θ(h0) \ΘI we have

max
j∈[p]

E [m̃j (W , θ)] > ϑn min

{
δ, inf
θ̃∈Θ(h0)∩ΘI

‖θ − θ̃‖

}

Define γ = o(1), in particular γ � α

B w̄n = (1− γ)-quantile of supθ∈Θ(h0),j∈[p] |v̂∗θ,j |
B Kn = v log(nĀb) + dθ log(nb) + log p
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B Kn = v log(nĀb) + dθ log(nb) + log p . dθ log(pn)



Rates for Size Control



Rates for Size Control for Discard Resampling

TDR∗
n (h0) ≡ inf

θ∈Θ̂I (h0)
max
j∈[p]

v̂∗θ,j + ϕθ,j

where Θ̂I (h0) ⊆ “ arg min ”θ∈Θ(h0) maxj∈[p]

√
nm̄θ,j/σ̂θ,j

ϕθ,j =

 0, if
√
nm̄θ,j/σ̂θ,j > max`∈[p]

√
nm̄θ,`/σ̂θ,` − κn,

−∞, otherwise (i.e., inequality will not be used)

Issues to address:

• no functional min max CLT since p →∞ (and potentially dθ →∞)

• handle random set Θ̂I (h0)

• handle random selection of inequalities

• penalty parameter κn
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−∞, otherwise (i.e., inequality will not be used)

Theorem (Simplified)

Suppose Condition M is satisfied with dθ + LG/ϑn 6 C and that H0 holds. Then

P(Tn(h0) > t) 6 P(TDS∗
n (h0) > t − Cδ′n,γ) + C{γ + n−1}

where we have

δ′n,γ .
log2/3(np)

γ1/3n1/6

provided that κn/w̄n →∞.
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n (h0) > t − Cδ′n,γ) + Cn−c

for some 0 < c < 1/6

δ′n,γ .
log2/3(np)

n1/6−c

provided that κn/
√

log p →∞.



Rates for Size Control for Discard Resampling

TDR∗
n (h0) ≡ inf

θ∈Θ̂I (h0)
max
j∈[p]

v̂∗θ,j + ϕθ,j

where Θ̂I (h0) ⊆ “ arg min ”θ∈Θ(h0) maxj∈[p]
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 0, if
√
nm̄θ,j/σ̂θ,j > max`∈[p]

√
nm̄θ,`/σ̂θ,` − κn,

−∞, otherwise (i.e., inequality will not be used)

Theorem

Assume that Condition M is satisfied and that H0 holds. Then

P(Tn(h0) > t) 6 P(TDS∗
n (h0) > t − Cδ′n,γ) + C{γ + n−1}

where we have

δ′n,γ := CbKn

γ3/qn1/2 +
C(bK 2

n )1/3

γ1/3n1/6 + CL
1/2
C

(
CK 1/2

n

γ1/qn1/2ϑn

)χ/2
K 1/2

n

γ1/q + CbKn

γ1/qn1/2−1/q

provided that κn > w̄n{6 + 2LG/ϑn}



Rates for Size Control for Penalized Resampling

TPR∗
n (h0) = inf

θ∈Θ(h0)
max
j∈[p]

v̂∗θ,j + κ−1
n

√
nm̄θ,j/σ̂θ,j

Issues to address:

• no functional CLT for min max since p →∞ (and potentially dθ →∞)

• need to handle random centering κ−1
n

√
nm̄θ,j/σ̂θ,j

• penalty parameter κn
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Rates for Size Control for Penalized Resampling

TPR∗
n (h0) = inf

θ∈Θ(h0)
max
j∈[p]

v̂∗θ,j + κ−1
n

√
nm̄θ,j/σ̂θ,j

Theorem (Simplified)

Suppose Condition M is satisfied with dθ + LG/ϑn 6 C, χ = 2, and that H0 holds.
Then

P(Tn(h0) > t) 6 P(TPR∗
n (h0) > t − Cδ′′n,γ) + C{γ + n−1}

where we have

δ′′n,γ :=
log2/3(np)

γ1/3n1/6
+ κn

log3/2(np)

n1/2
+

w̄n

κn



Rates for Size Control for Penalized Resampling

TPR∗
n (h0) = inf

θ∈Θ(h0)
max
j∈[p]

v̂∗θ,j + κ−1
n

√
nm̄θ,j/σ̂θ,j

Theorem

Assume that Condition M is satisfied and that H0 holds. Then

P(Tn(h0) > t) 6 P(TPR∗
n (h0) > t − Cδ′n,γ) + C{γ + n−1}

where we have

δ′n,γ :=
LGκnKn

γ2/qn1/2ϑ2
n

+
(bK 2

n )1/3

γ1/3n1/6
+

(b)1/2K
3/4
n

γ1/qn1/4
+

bKn

γ1/qn1/2−1/q

+
w̄n

κn
+ L

1/2
C

(
κnK

1/2
n

n1/2ϑnγ1/q

)χ/2
K

1/2
n

γ1/q



Rates for Size Control for Minimum Resampling

TMR∗
n (h0) = min{TDR∗

n (h0),TMR∗
n (h0)}

Issues:
B note that TMR∗

n is also a MinMax statistics
• as it is the minimum of two MinMax statistics
• need to handle random set in the minimization
• need to handle random centering

B clearly need to couple the statistics (use the same ξi ∼ N(0, 1) for both)

B no functional CLT for MinMax as p →∞ (and potentially dθ →∞)

Theorem

Assume that Condition M is satisfied and that H0 holds. Then

P(Tn(h0) > t) 6 P(TMR∗
n (h0) > t − Cδn,γ) + C{γ + n−1}

where we have
δn,γ := δ′n,γ + δ′′n,γ
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Key New Coupling Result

Theorem. Let X1, . . . ,Xn be independent random matrices in RN×p (Np > 2),
Y1, . . . ,Yn be independent random matrices in RN×p with Yi ∼ N(E[Xi ],VarXi ).

Define T = min
k∈[N]

max
j∈[p]

n∑
i=1

Xikj√
n
, and T̃ = min

k∈[N]
max
j∈[p]

n∑
i=1

Yikj√
n

Then for every δ > 0 and every Borel subset A of R we have

P(T ∈ A) 6 P(T̃ ∈ ACδ) +
C log2(Np)

δ3n1/2
{Ln + Mn,X (δ) + Mn,Y (δ)}

where C is a universal positive constant, and

Ln = max
k∈N,j∈[p]

1

n

n∑
i=1

E[|X̃ikj |3],

Mn,W (δ) =
1

n

n∑
i=1

E
[

max
k∈N,j∈[p]

|W̃ikj |3 · 1
{

max
k∈N,j∈[p]

|W̃ikj | > δ
√
n/ log(Np)

}]
,

for W̃i = Wi − E[Wi ]
C

γ1/3
.
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Key New Technical Result

Proof is based on Stein’s method.
(Extends to processes, Empirical Bootstrap as in Deng and Zhang, 2017)
One key new step is a smooth approximation of the MinMax.

Recall the LSE function that approximates the max. For Xk ∈ Rp

Fβ(Xk) = β−1 log

 p∑
j=1

exp(βXkj)


In order to approximate min max = −max{−max} and proceed to use

Gβ(X ) = −Fβ(−{Fβ(Xk)}Nk=1)

that satisfies:

−β−1 logN 6 Gβ(X )− min
k∈[N]

max
j∈[p]

Xkj 6 β−1 log p

‖∇Gβ(X )‖1 6 1

‖∇2Gβ(X )‖1 6 4β

‖∇3Gβ(X )‖1 6 24β2
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Key New Coupling Result



Back to the Size Control Bound

We obtained

P(Tn(h0) > t) 6 P(TMR∗
n (h0) > t − Cδn,γ) + C{γ + n−1}

where we can take γ → 0, and δn,γ = o(1).

Use a critical value cn,1−α := cMR
n (h0, 1− α) based on TMR∗

n (h0) for HT. Then

P(Tn(h0) > cn,1−α) 6 P(TMR∗
n (h0) > cn,1−α − Cδn,γ) + o(1)

6 α + P(|TMR∗
n (h0)− cn,1−α| 6 Cδn,γ) + o(1)

We need to ensure that

P(|TMR∗
n (h0)− cn,1−α| 6 Cδn,γ) is small

i.e., that TMR∗
n (h0) does not concentrate too fast around cn,1−α as p →∞.
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Anti-Concentration



Anti-Concentration: Max

Anti-concentration essentially bounds the probability density function

Theorem (Chernozhukov, Chetverikov and Kato (2011))

Let X ∈ Rp be a vector of Gaussian random variables such that Var(Xj) > 1.
Let Z = maxj∈[p] Xj . Then for any ε > 0 and x ∈ R

P (|Z − x | 6 ε) 6 Cε
√

log p

In particular the probability density function of Z satisfies maxt∈R fZ (t) 6 C
√

log p

• allows for non-central and arbitrary correlation structure

For coupling between Max statistics (N = 1), say T and Z , we have

P(T > c1−α) 6 P(Z > c1−α − δn,γ) + Cγ 6 α + P(|Z − c1−α| 6 δn,γ) + γ
1√
l

to guarantee proper approximation. That is, log7/6(p) = o(n1/6).
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Anti-Concentration: Max

Anti-concentration essentially bounds the probability density function

Theorem (CCK (2011))

Let X ∈ Rp be a vector of Gaussian random variables such that Var(Xj) > 1.
Let Z = maxj∈[p] Xj . Then for any ε > 0 and x ∈ R

P (|Z − x | 6 ε) 6 Cε
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log p

In particular the probability density function of Z satisfies maxt∈R fZ (t) 6 C
√

log p

• allows for non-central and arbitrary correlation structure

For coupling between Max statistics (N = 1), say T and Z ,

we need δn,γ
√

log p + γ → 0

implied by δn,γ =
log2/3(p)

γ1/3n1/6
= o

(
1√

log p

)
That is, log7/6(p) = o(n1/6).
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Anti-Concentration: MinMax

Anti-concentration essentially bounds the probability density function

Lemma

For Xkj ∼ N(0, 1), i.i.d., k ∈ [N], j ∈ [p], let

Z = min
k∈[N]

max
j∈[p]

Xkj .

If p/
√

2π > log(Np) > 3, the probability density function fZ satisfies{
√

2 log1/2

(
p/
√

2π

logN

)
− 2

}
log(N)

e
6 max

t∈R
fZ (t) 6 4

√
2 log3/2(Np)

That is, if p = N, for some universal constants 0 < c < C we have

c log3/2 p 6 max
t∈R

fZ (t) 6 C log3/2(p)

B suggests anti-concentration of MinMax is quite different from the Max

B currently only partial results for arbitrary correlation structures
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Anti-Concentration

However note that our bounds are

P(Tn(h0) > t) 6 P(TMR∗
n (h0) > t − Cδn,γ) + C{γ + n−1}

It suffices to control the concentration of the bootstrapped statistics

• not of the original statistics

We can estimate
P(|TMR∗

n (h0)− t| 6 2Cδn,γ)

via bootstrap for t = cn(h0, 1− α) and bound the anti-concentration factor

B adaptive to the setting (in contrast to analytical bounds)

B can be estimated using the same bootstrap that computed cn(h0, 1− α)

Let A∗1−α :=
P(|TMR∗

n (h0)−t|62Cδn,γ)
2Cδn,γ

denote the anti-concentration rate.
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Examples of Simple Conditions for “Penalized Resampling”

Suppose Condition M, mj and its derivatives are uniformly bounded, σθ,j > c ,
LG/ϑn +LC 6 C . Then, letting A∗1−α denote the anti-concentration rate, provided

K
2/3
n

n1/6
+ κn

d
1/2
θ Kn

n1/2
+

w̄

κn
= o

(
1

A∗1−α

)
, (4)

where Kn = log p + dθ log n, we have P(Tn(h0) > cn(h0, 1− α)) 6 α + o(1)

Remark: we can simulate w̄ and bound A∗1−α
B yields a data-driven choice of κn

For the traditional setting, e.g., fixed p and dθ

B A∗1−α 6 C

B Kn 6 C

B κn →∞ and κn/n
1/2 → 0
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Examples of Simple Conditions for “Penalized Resampling”

For non-Donsker cases:

Example (Many inequalities and fixed dθ)

Let p = nC for some fixed C > 1, dθ 6 C , and the anti-concentration
A∗1−α 6 C log3/2 n. It suffices κn ∈ [log5/2 n, n

1
2 log−3 n].

Example (Polynomially many inequalities and large dθ)

Let p = nC for some fixed C > 1, dθ = na for some a < 1/4, and the

anti-concentration A∗1−α 6 C log3/2 n. It suffices

κn ∈ [na/2 log5/2 n, n
1
2−

3
2 a log−3 n].

Example (Exponentially many inequalities)

Suppose that dθ 6 C log n, p > nlog n and the anti-concentration
A∗1−α 6 C log3/2 p. It suffices κn ∈ [log2 p log n, n1/2 log−5/2 p log−1 n],

provided that n−1/6 log13/6 p log n = o(1).
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Conclusion

B subvector inference in PI models with many moment restrictions
• allow for non-Donsker classes
• finite sample analysis
• need more than κn →∞ and κn/

√
n→ 0 when p →∞

• valid data-driven choice of penalty parameters (via additional bootstrap)

B new CLTs for mink∈[N] maxj∈[p] Wkj

• results parallel results for maxj∈[p] Wj

• approximation based on composition of smooth maximum (LSE)

B new anti-concentration pattern
• does not parallel results for maxj∈[p] Wj (counter example)
• estimate anti-concentration via bootstrap

B Future (ongoing) work
• sharper constants
• hybrid methods
• power comparisons
• analytical bounds for anti-concentration
• orthogonal moment conditions


