Concentration of tempered posteriors and of their variational approximations

Pierre Alquier

Meeting in Mathematical Statistics - CIRM Dec. 22, 2017

Happy Birthday Sacha \& Oleg!

Talk based on the preprint :

P. Alquier \& J. Ridgway (2017). Concentration of tempered posteriors and of their variational approximations. Preprint arxiv :1706.09293.

Outline of the talk

(1) Introduction : tempered posteriors \& variational approx.

- Tempered posteriors
- Variational approximations
(2) Main results
- Concentration of the tempered posterior
- A result in expectation
- The misspecified case
(3) Application to matrix completion
- Introduction to matrix completion
- Bayesian matrix completion
- Application of our results

Notations

Assume that we observe X_{1}, \ldots, X_{n} i.i.d from $P_{\theta_{0}}$ in a model $\left\{P_{\theta}, \theta \in \Theta\right\}$ dominated by $Q: \frac{\mathrm{d} P_{\theta}}{\mathrm{d} Q}=p_{\theta}$. Prior π on Θ.

Notations

Assume that we observe X_{1}, \ldots, X_{n} i.i.d from $P_{\theta_{0}}$ in a model $\left\{P_{\theta}, \theta \in \Theta\right\}$ dominated by $Q: \frac{\mathrm{d} P_{\theta}}{\mathrm{d} Q}=p_{\theta}$. Prior π on Θ.

The likelihood

$$
L_{n}(\theta)=\prod_{i=1}^{n} p_{\theta}\left(X_{i}\right)
$$

Notations

Assume that we observe X_{1}, \ldots, X_{n} i.i.d from $P_{\theta_{0}}$ in a model $\left\{P_{\theta}, \theta \in \Theta\right\}$ dominated by $Q: \frac{\mathrm{d} P_{\theta}}{\mathrm{d} Q}=p_{\theta}$. Prior π on Θ.

The likelihood

$$
L_{n}(\theta)=\prod_{i=1}^{n} p_{\theta}\left(X_{i}\right)
$$

The posterior

$$
\pi_{n}(\mathrm{~d} \theta) \propto L_{n}(\theta) \pi(\mathrm{d} \theta) .
$$

Notations

Assume that we observe X_{1}, \ldots, X_{n} i.i.d from $P_{\theta_{0}}$ in a model $\left\{P_{\theta}, \theta \in \Theta\right\}$ dominated by $Q: \frac{\mathrm{d} P_{\theta}}{\mathrm{d} Q}=p_{\theta}$. Prior π on Θ.

The likelihood

$$
L_{n}(\theta)=\prod_{i=1}^{n} p_{\theta}\left(X_{i}\right)
$$

The posterior

$$
\pi_{n}(\mathrm{~d} \theta) \propto L_{n}(\theta) \pi(\mathrm{d} \theta)
$$

The tempered posterior $-0<\alpha<1$

$$
\pi_{n, \alpha}(\mathrm{~d} \theta) \propto\left[L_{n}(\theta)\right]^{\alpha} \pi(\mathrm{d} \theta)
$$

Various reasons to use a tempered posterior

- easier to sample from.
G. Behrens, N. Friel \& M. Hurn. (2012). Tuning tempered transitions. Statistics and Computing.

Various reasons to use a tempered posterior

- easier to sample from.
\square G. Behrens, N. Friel \& M. Hurn. (2012). Tuning tempered transitions. Statistics and Computing.
- more robust to model misspecification (at least empirically)
P. Grünwald (2012). The Safe Bayesian: Learning the Learning Rate via the Mixability Gap ALT2012.

Various reasons to use a tempered posterior

－easier to sample from．
\square G．Behrens，N．Friel \＆M．Hurn．（2012）．Tuning tempered transitions．Statistics and Computing．
－more robust to model misspecification（at least empirically）

围
P．Grünwald（2012）．The Safe Bayesian ：Learning the Learning Rate via the Mixability Gap ALT2012．
－theoretical analysis easier
\square A．Bhattacharya，D．Pati \＆Y．Yang（2016）．Bayesian fractional posteriors．Preprint arxiv ：1611．01125．

Bhattacharya, Pati \& Yang's approach (1/2)

The α-Rényi divergence for $\alpha \in(0,1)$

$$
D_{\alpha}(P, R)=\left\{\begin{array}{l}
\frac{1}{\alpha-1} \log \int\left(\frac{\mathrm{~d} P}{\mathrm{~d} R}\right)^{\alpha-1} \mathrm{~d} P \text { if } P \ll R \\
+\infty \text { otherwise. }
\end{array}\right.
$$

Bhattacharya, Pati \& Yang's approach (1/2)

The α-Rényi divergence for $\alpha \in(0,1)$

$$
D_{\alpha}(P, R)=\left\{\begin{array}{l}
\frac{1}{\alpha-1} \log \int\left(\frac{\mathrm{~d} P}{\mathrm{R}}\right)^{\alpha-1} \mathrm{~d} P \text { if } P \ll R \\
+\infty \text { otherwise. }
\end{array}\right.
$$

All the properties derived in :
T. Van Erven \& P. Harremos (2014). Rényi divergence and Kullback-Leibler divergence. IEEE Transactions on Information Theory.

Among others, for $1 / 2 \leq \alpha$, link with Hellinger and Kullback :

$$
\mathcal{H}^{2}(P, R) \leq D_{\alpha}(P, R) \underset{\alpha \nmid 1}{\longrightarrow} \mathcal{K}(P, R) .
$$

Bhattacharya, Pati \& Yang's approach (2/2)

$$
\mathcal{B}(r)=\left\{\theta \in \Theta: \mathcal{K}\left(P_{\theta_{0}}, P_{\theta}\right) \leq r \text { and } \operatorname{Var}\left[\log \frac{p_{\theta}\left(X_{i}\right)}{p_{\theta_{0}}\left(X_{i}\right)}\right] \leq r .\right\}
$$

Theorem (Bhattacharya, Pati \& Yang)

For any sequence $\left(r_{n}\right)$ such that

$$
-\log \pi\left[B\left(r_{n}\right)\right] \leq n r_{n}
$$

we have

$$
\mathbb{P}\left[\int D_{\alpha}\left(P_{\theta}, P_{\theta_{0}}\right) \pi_{n, \alpha}(\mathrm{~d} \theta) \leq \frac{2(1+\alpha)}{1-\alpha} r_{n}\right] \geq 1-\frac{2}{n r_{n}} .
$$

Computational issues

Popular methods to compute / sample from the (tempered) posterior:

Computational issues

Popular methods to compute / sample from the (tempered) posterior :

- Monte-Carlo methods : MCMC (Gibbs Sampler, Metropolis-Hastings), SMC, Langevin Monte-Carlo etc.

Computational issues

Popular methods to compute / sample from the (tempered) posterior:

- Monte-Carlo methods : MCMC (Gibbs Sampler, Metropolis-Hastings), SMC, Langevin Monte-Carlo etc.
- optimization methods : variational Bayes (VB) and expectation-propagation (EP).

Computational issues

Popular methods to compute / sample from the (tempered) posterior :

- Monte-Carlo methods: MCMC (Gibbs Sampler, Metropolis-Hastings), SMC, Langevin Monte-Carlo etc.
- optimization methods : variational Bayes (VB) and expectation-propagation (EP).
Principle of VB: chose a family \mathcal{F} of probability distributions on Θ and approximate $\pi_{n, \alpha}$ by a distribution in \mathcal{F} :

Computational issues

Popular methods to compute / sample from the (tempered) posterior :

- Monte-Carlo methods : MCMC (Gibbs Sampler, Metropolis-Hastings), SMC, Langevin Monte-Carlo etc.
- optimization methods : variational Bayes (VB) and expectation-propagation (EP).
Principle of VB: chose a family \mathcal{F} of probability distributions on Θ and approximate $\pi_{n, \alpha}$ by a distribution in \mathcal{F} :

$$
\tilde{\pi}_{n, \alpha}:=\arg \min _{\rho \in \mathcal{F}} \mathcal{K}\left(\rho, \pi_{n, \alpha}\right) .
$$

Variational approximations

$$
\begin{aligned}
\tilde{\pi}_{n, \alpha} & =\arg \min _{\rho \in \mathcal{F}} \mathcal{K}\left(\rho, \pi_{n, \alpha}\right) \\
& =\arg \min _{\rho \in \mathcal{F}}\left\{-\alpha \int \frac{1}{n} \sum_{i=1}^{n} \log p_{\theta}\left(X_{i}\right) \rho(\mathrm{d} \theta)+\mathcal{K}(\rho, \pi)\right\} .
\end{aligned}
$$

Examples:

Variational approximations

$$
\begin{aligned}
\tilde{\pi}_{n, \alpha} & =\arg \min _{\rho \in \mathcal{F}} \mathcal{K}\left(\rho, \pi_{n, \alpha}\right) \\
& =\arg \min _{\rho \in \mathcal{F}}\left\{-\alpha \int \frac{1}{n} \sum_{i=1}^{n} \log p_{\theta}\left(X_{i}\right) \rho(\mathrm{d} \theta)+\mathcal{K}(\rho, \pi)\right\} .
\end{aligned}
$$

Examples:

- parametric approximation

$$
\mathcal{F}=\left\{\mathcal{N}(\mu, \Sigma): \mu \in \mathbb{R}^{d}, \Sigma \in \mathcal{S}_{d}^{+}\right\}
$$

Variational approximations

$$
\begin{aligned}
\tilde{\pi}_{n, \alpha} & =\arg \min _{\rho \in \mathcal{F}} \mathcal{K}\left(\rho, \pi_{n, \alpha}\right) \\
& =\arg \min _{\rho \in \mathcal{F}}\left\{-\alpha \int \frac{1}{n} \sum_{i=1}^{n} \log p_{\theta}\left(X_{i}\right) \rho(\mathrm{d} \theta)+\mathcal{K}(\rho, \pi)\right\} .
\end{aligned}
$$

Examples:

- parametric approximation

$$
\mathcal{F}=\left\{\mathcal{N}(\mu, \Sigma): \mu \in \mathbb{R}^{d}, \Sigma \in \mathcal{S}_{d}^{+}\right\}
$$

- mean-field approximation, $\Theta=\Theta_{1} \times \Theta_{2}$ and

$$
\mathcal{F}:\left\{\rho: \rho(\mathrm{d} \theta)=\rho_{1}\left(\mathrm{~d} \theta_{1}\right) \times \rho_{2}\left(\mathrm{~d} \theta_{2}\right)\right\}
$$

Extension of previous result to VB

Theorem

Assume that $\left(r_{n}\right)$ is such that there is a distribution $\rho_{n} \in \mathcal{F}$ with
$\int \mathcal{K}\left(P_{\theta_{0}}, P_{\theta}\right) \rho_{n}(\mathrm{~d} \theta) \leq r_{n}, \int \mathbb{E}\left[\log ^{2}\left(\frac{p_{\theta}\left(X_{i}\right)}{p_{\theta_{0}}\left(X_{i}\right)}\right)\right] \rho_{n}(\mathrm{~d} \theta) \leq r_{n}$
and

$$
\mathcal{K}\left(\rho_{n}, \pi\right) \leq n r_{n} .
$$

Then, for any $\alpha \in(0,1)$,

$$
\mathbb{P}\left[\int D_{\alpha}\left(P_{\theta}, P_{\theta_{0}}\right) \tilde{\pi}_{n, \alpha}(\mathrm{~d} \theta) \leq \frac{2(\alpha+1)}{1-\alpha} r_{n}\right] \geq 1-\frac{2}{n r_{n}}
$$

A simpler result in expectation

Theorem

If we only require that there is $\rho_{n} \in \mathcal{F}$ such that

$$
\int \mathcal{K}\left(P_{\theta_{0}}, P_{\theta}\right) \rho_{n}(\mathrm{~d} \theta) \leq r_{n}
$$

and

$$
\mathcal{K}\left(\rho_{n}, \pi\right) \leq n r_{n},
$$

then, for any $\alpha \in(0,1)$,

$$
\mathbb{E}\left[\int D_{\alpha}\left(P_{\theta}, P_{\theta_{0}}\right) \tilde{\pi}_{n, \alpha}(\mathrm{~d} \theta)\right] \leq \frac{1+\alpha}{1-\alpha} r_{n}
$$

Misspecified case

Assume now that X_{1}, \ldots, X_{n} i.i.d from $Q \notin\left\{P_{\theta}, \theta \in \Theta\right\}$. Put:

$$
\theta^{*}:=\arg \min _{\theta \in \Theta} \mathcal{K}\left(Q, P_{\theta}\right)
$$

Theorem

Assume that there is $\rho_{n} \in \mathcal{F}$ such that

$$
\int \mathbb{E}\left[\log \frac{\mathrm{d} P_{\theta^{*}}}{\mathrm{~d} P_{\theta}}\right] \rho_{n}(\mathrm{~d} \theta) \leq r_{n} \text { and } \mathcal{K}\left(\rho_{n}, \pi\right) \leq n r_{n}
$$

then, for any $\alpha \in(0,1)$,

$$
\mathbb{E}\left[\int D_{\alpha}\left(P_{\theta}, Q\right) \tilde{\pi}_{n, \alpha}(\mathrm{~d} \theta)\right] \leq \frac{\alpha}{1-\alpha} \mathcal{K}\left(Q, P_{\theta^{*}}\right)+\frac{1+\alpha}{1-\alpha} r_{n}
$$

Matrix completion : notations

The parameter θ is a matrix $M^{0} \in \mathbb{R}^{m \times p}$, with $m, p \geq 1$. Under P_{M}, the observations are random entries of this matrix with possible noise :

$$
Y_{i}=M_{i_{k}, j_{k}}^{0}+\varepsilon_{k}
$$

where the $\left(i_{k}, j_{k}\right)$ are i.i.d $\mathcal{U}(\{1, \ldots, m\} \times\{1, \ldots, p\})$. Assume that the ε_{k} are i.i.d $\mathcal{N}\left(0, \sigma^{2}\right), \sigma^{2}$ known. We have

$$
\mathcal{K}\left(P_{M}, P_{N}\right)=\frac{1}{m p} \sum_{i=1}^{m} \sum_{j=1}^{p} \frac{\left(M_{i, j}-N_{i, j}\right)^{2}}{2 \sigma^{2}}=\frac{\|M-N\|_{F}^{2}}{2 \sigma^{2} m p} .
$$

Matrix completion : notations

The parameter θ is a matrix $M^{0} \in \mathbb{R}^{m \times p}$, with $m, p \geq 1$. Under P_{M}, the observations are random entries of this matrix with possible noise :

$$
Y_{i}=M_{i_{k}, j_{k}}^{0}+\varepsilon_{k}
$$

where the $\left(i_{k}, j_{k}\right)$ are i.i.d $\mathcal{U}(\{1, \ldots, m\} \times\{1, \ldots, p\})$. Assume that the ε_{k} are i.i.d $\mathcal{N}\left(0, \sigma^{2}\right), \sigma^{2}$ known. We have

$$
\mathcal{K}\left(P_{M}, P_{N}\right)=\frac{1}{m p} \sum_{i=1}^{m} \sum_{j=1}^{p} \frac{\left(M_{i, j}-N_{i, j}\right)^{2}}{2 \sigma^{2}}=\frac{\|M-N\|_{F}^{2}}{2 \sigma^{2} m p} .
$$

Usual assumption : M^{0} is low-rank.

Prior specification - main idea

Define :

Prior specification - main idea

Define :

$$
\underbrace{M}_{p \times m}=\underbrace{U}_{p \times k} \underbrace{V^{T}}_{k \times m} .
$$

Let $U_{\cdot, \ell} \sim \mathcal{N}(0, \gamma I)$ denote the ℓ-th column of M, we have :

$$
M=\sum_{\ell=1}^{k} U_{\cdot, \ell}\left(V_{\cdot, \ell}\right)^{T} \quad \Rightarrow \quad \operatorname{rank}(M) \leq k
$$

Prior specification - adaptation

R. Salakhutdinov \& A. Mnih (2008). Bayesian probabilistic matrix factorization using MCMC. Proceedings of ICML'08.

Prior specification - adaptation

\square R. Salakhutdinov \& A. Mnih (2008). Bayesian probabilistic matrix factorization using MCMC. Proceedings of ICML'08.

$$
M=\sum_{\ell=1}^{k} U_{\cdot, \ell}\left(V_{\cdot, \ell}\right)^{T}
$$

with k large - e.g. $k=\min (p, m)$.

Prior specification - adaptation

\square R. Salakhutdinov \& A. Mnih (2008). Bayesian probabilistic matrix factorization using MCMC. Proceedings of ICML'08.

$$
M=\sum_{\ell=1}^{k} U_{\cdot, \ell}\left(V_{\cdot, \ell}\right)^{T}
$$

with k large - e.g. $k=\min (p, m)$.
Definition of π :

- $U_{\cdot, \ell}, V_{\cdot, \ell} \sim \mathcal{N}\left(0, \gamma_{\ell} I\right)$,
- γ_{ℓ} is itself random, such that most of the $\gamma_{\ell} \simeq 0$

$$
\frac{1}{\gamma_{\ell}} \sim \operatorname{Gamma}(a, b)
$$

Known results

T. Suzuki (2015). Convergence rate of Bayesian tensor estimator and its minimax optimality. ICML.
(truncation of the support of π : remove large values of $M_{i, j}$).

Known results

T. Suzuki (2015). Convergence rate of Bayesian tensor estimator and its minimax optimality. ICML.
(truncation of the support of π : remove large values of $M_{i, j}$).
\square T. T. Mai \& P. Alquier (2014). A Bayesian Approach for Noisy Matrix Completion : Optimal Rate under General Sampling Distribution. Electronic Journal of Statistics.
(truncation of the support of $\pi:$ remove large values of $U_{i, k}$ and $V_{j, k}$).

Known results

T. Suzuki (2015). Convergence rate of Bayesian tensor estimator and its minimax optimality. ICML.
(truncation of the support of π : remove large values of $M_{i, j}$).
\square T. T. Mai \& P. Alquier (2014). A Bayesian Approach for Noisy Matrix Completion : Optimal Rate under General Sampling Distribution. Electronic Journal of Statistics.
(truncation of the support of π : remove large values of $U_{i, k}$ and $V_{j, k}$).
In both cases, (in expectation or with large probability),

$$
\int \frac{\left\|M-M^{0}\right\|_{F}^{2}}{2 \sigma^{2} m p} \hat{\pi}_{n, \alpha}(\mathrm{~d} M) \lesssim \frac{\operatorname{rank}\left(M^{0}\right) \max (m, p) \log (\ldots)}{n}
$$

Variational approximation

Y. J. Lim \& Y. W. Teh (2007). Variational Bayesian approach to movie rating prediction. Proceedings of KDD cup and workshop.

Mean-field approximation, \mathcal{F} given by :

$$
\rho(\mathrm{d} U, \mathrm{~d} \boldsymbol{V}, \mathrm{~d} \gamma)=\bigotimes_{i=1}^{m} \rho_{U_{i}}\left(\mathrm{~d} U_{i,}\right) \bigotimes_{j=1}^{p} \rho_{V_{j}}\left(\mathrm{~d} V_{j,}\right) \bigotimes_{k=1}^{K} \rho_{\gamma_{k}}\left(\gamma_{k}\right) .
$$

Variational approximation

\square Y. J. Lim \& Y. W. Teh (2007). Variational Bayesian approach to movie rating prediction. Proceedings of KDD cup and workshop.

Mean-field approximation, \mathcal{F} given by :

$$
\rho(\mathrm{d} U, \mathrm{~d} V, \mathrm{~d} \gamma)=\bigotimes_{i=1}^{m} \rho_{U_{i}}\left(\mathrm{~d} U_{i,}\right) \bigotimes_{j=1}^{p} \rho_{V_{j}}\left(\mathrm{~d} V_{j, \cdot}\right) \bigotimes_{k=1}^{K} \rho_{\gamma_{k}}\left(\gamma_{k}\right) .
$$

It can be shown that
(1) $\rho_{U_{i}}$ is $\mathcal{N}\left(\mathbf{m}_{i,}^{T}, \mathcal{V}_{i}\right)$,
(2) $\rho_{V_{j}}$ is $\mathcal{N}\left(\mathbf{n}_{j,}^{T}, \mathcal{W}_{j}\right)$,
(3) $\rho_{\gamma_{k}}$ is $\Gamma\left(a+\left(m_{1}+m_{2}\right) / 2, \beta_{k}\right)$,
for some $m \times K$ matrix \mathbf{m} whose rows are denoted by $\mathbf{m}_{i, \text {, }}$, some $p \times K$ matrix \mathbf{n} and some vector $\beta=\left(\beta_{1}, \ldots, \beta_{K}\right)$.

The VB algorithm

The parameters are updated iteratively through the formulae
(1) moments of U :

$$
\begin{gathered}
\mathbf{m}_{i, \cdot}^{T}:=\frac{2 \alpha}{n} \mathcal{V}_{i} \sum_{k: i_{k}=i} Y_{i_{k}, j_{k}} \mathbf{n}_{j_{k}, \cdot}^{T} \\
\mathcal{V}_{i}^{-\mathbf{1}}:=\frac{2 \alpha}{n} \sum_{k: i_{k}=i}\left[\mathcal{W}_{j_{k}}+\mathbf{n}_{j_{k}}, \cdot \mathbf{n}_{j_{k}, \cdot}^{T}\right]+\left(a+\frac{m_{\mathbf{1}}+m_{\mathbf{2}}}{2}\right) \operatorname{diag}(\beta)^{-\mathbf{1}}
\end{gathered}
$$

(2) moments of V :

$$
\begin{gathered}
\mathbf{n}_{j, \cdot}^{T}:=\frac{2 \alpha}{n} \mathcal{W}_{j} \sum_{k: j_{k}=j} Y_{i_{k}, j_{k}} \mathbf{m}_{i_{k}, \cdot}^{T} \\
\mathcal{W}_{j}^{-\mathbf{1}}:=\frac{2 \alpha}{n} \sum_{k: j_{k}=j}\left[\mathcal{V}_{i_{k}}+\mathbf{m}_{i_{k}}, \cdot \mathbf{m}_{i_{k}, \cdot}^{T}\right]+\left(a+\frac{m_{\mathbf{1}}+m_{\mathbf{2}}}{2}\right) \operatorname{diag}(\beta)^{-\mathbf{1}}
\end{gathered}
$$

(3) moments of γ :

$$
\beta_{k}:=\frac{1}{2}\left[\sum_{i=1}^{m_{1}}\left(\mathbf{m}_{i, k}^{\mathbf{2}}+\left(\mathcal{V}_{i}\right)_{k, k}\right)+\sum_{j=1}^{m_{\mathbf{2}}}\left(\mathbf{n}_{j, k}^{\mathbf{2}}+\left(\mathcal{V}_{j}\right)_{k, k}\right)\right] .
$$

Application of our theorem

Theorem

Assume $M=\bar{U} \bar{V}^{\top}$ where

$$
\bar{U}=\left(\bar{U}_{1,},|\ldots| \bar{U}_{r,},|0| \ldots \mid 0\right) \text { and } \bar{V}=\left(\bar{V}_{1,},|\ldots| \overline{\bar{r}}_{r,},|0| \ldots \mid 0\right)
$$

and $\sup _{i, k}\left|U_{i, k}\right|, \sup _{j, k}\left|V_{j, k}\right| \leq B$. Take $a>0$ as any constant and $b=\frac{B^{2}}{512(n m p)^{4}[(m \vee p) K]^{2}}$. Then

$$
\mathbb{P}\left[\int D_{\alpha}\left(P_{M}, P_{M^{0}}\right) \tilde{\pi}_{n, \alpha}(\mathrm{~d} M) \leq \frac{2(\alpha+1)}{1-\alpha} r_{n}\right] \geq 1-\frac{2}{n r_{n}}
$$

$$
\text { where } r_{n}=\frac{\mathcal{C}\left(a, \sigma^{2}, B\right) r \max (m, p) \log (n m p)}{n} \text {. }
$$

The case $\alpha=1$

A preprint appeared a few days ago for the case $\alpha=1$:

F. Zhang \& C. Gao (2017). Convergence Rates of Variational Posterior Distributions. Preprint arxiv :1712.02519.

Thank you!

