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N-body Simulation
a standard method for simulations of self-
gravitating systems (galaxies, clusters of galaxies, 
the LSS) for more than 40 years.

the mass distribution is sampled by particles in 
the 6D phase-space volume (x, p) in a Monte-
Carlo manner.

need for a very large number of particles

sophisticated algorithms to treat large number 
of particles such as Tree and TreePM methods 
developed

Ishiyama 



  

Particle-In-Cell (PIC) Simulation
Particle-based approach to solve collisionless 
(astrophysical) plasma

3D PIC simulation of collisionless shock

Matsumoto et al. (2017)

E- and B-field are computed in the finite difference 
manner

particle acceleration in collisionless shock 

magnetic reconnection
(pCANS web page)

PIC simulation of magnetic reconnection



  

Drawbacks of Particle Simulations
intrinsic contamination of shot noise in physical quantities

not good at simulating kinetic physical processes 
in which the tail of the distribution function plays 
important roles

collisionless damping, two-stream instability

v

x

matter in the tail is not fairly sampled in particle 
simulations

magneto-rotational instability starting from high-beta plasmas

The grid spacing of PIC simulation should be less than the Debye length.

difficult to simulate phenomena in the macroscopic MHD scale

“sheet in phase space” approach can reduce such noise 
in the cold limit. 
(Shandarin et al. 2012, Abel et al. 2012, Oliver et al. 2013)



  

Vlasov Simulations
Directly solving the Vlasov equation

Vlasov-Poisson simulation Vlasov-Maxwell simulation

self-gravitating system
electro-static plasma

magnetized plasma



  

Vlasov-Poisson Simuation in 6D phase space

directional splitting method

numerical scheme for a one-dimensional advection equation

Positive and Flux Conservative (PFC) scheme Filbet, Sonnendrucker, Bertrand (2001)

Yoshikawa, Yoshida, Umemura (2013)

: advection along ℓ-direction



  

Merging of Two King Spheres

N-body simulationVlasov simulation

offset merging of two king spheres

comparison with a equivalent N-body 
simulations, in which each King sphere 
is represented with a million particles



  

Grav. Instablity and Collisionless Damping
Initial condition

The density fluctuation δ (x) is given so that it has a white noise power spectrum.

: gravitational instability

: collisionless damping

lines : theoretical prediction



  

New High-Order Scheme 
for Vlasov Simulation



  

Higher-Order Advection Schemes
curse of dimensionality in Vlasov simulations

huge memory consumption due to high dimensionality of phase space

size of numerical simulation is limited by the amount of available memory

how to overcome

adaptive mesh refinement (Deriaz et al 2015)

higher-order scheme for advection equation

mathematical and physical requirement

monotonicity

positivity

maximum principle

(c.f. The PFC scheme has a spatially third-order accuracy.)

spatially fifth- and seventh-order schemes with monotonicity- and 
positivity-preserving features.



  

Monotonicity and Positivity

numerical flux :

Higher-order interpolation usually violates the monotonicity after 
Godunov's theorem

5th-order interpolation of the boundary value

constraints to preserve the mononicity of numerical solutions

MP for monotonicity preservation



  

Positivity Preserving Limiter 
positivity of numerical solutions

monotonicity does not assure positivity 

positivity preserving boundary values can be computed in a flux limiter manner

monotonocity preserving boundary value

boundary value for the first-order upwind scheme

By setting a parameter θi+1/2(fi , fi+1) properly, we can construct the boundary 
value for the monotonicity- and positivity-preserving (MPP) scheme



  

TVD Runge-Kutta Time Integration
Accuracy of Time Integration

A spatially higher-order scheme needs higher-order time integration schemes 

Spatially fifth-order MPP5 scheme needs temporaly third-order scheme

3-stage 3rd-order TVD-Runge-Kutta scheme

Spatially higher-order scheme (e.g. MPP7 or MPP9) needs temporaly 
even higher-order scheme.

4-stage 4th-order TVD-RK scheme for MPP7

6-stage 6th-order TVD-RK scheme for MPP9

computationally too expensive!!

RK-MPP5 scheme



  

Semi-Lagrange Time Integration
Conservative Semi-Lagrange scheme

boundary values of spatially fifth-order conservative SL scheme

Qiu, J.-M., Christlieb, A., 2010, JCP,  229, 1130-1149



  

Semi-Lagrange Schemes
boundary values with conservative SL schemes do not preserve the 
monotonicity and the positivity of numerical solutions.

monotonicity-preserving schemes by applying MP constraints to Φ i+1/2 

SL-MP5 / SL-MP7 scheme：

monotonicity- and positivity-preserving schemes by futher applying PP 
limiter 

SL-MPP5 / SL-MPP7 scheme：

These schemes perform  single-stage time integration irrespetive of 
the spatial order of accuracy



  

Linear Advection
linear advection of 

The result of PFC scheme is severely 
smeared.

Schemes w/o PP limiter yield significant 
negative value around the minima.

7th-order scheme (SL-MPP7) can 
reproduce the maxima.



  

1D Self-Gravitating System
one-dimensional space with periodic boundary condition

initial condition

critical Jeans wave number

gravitational instability 

collisionless damping 



  

1D Self-Gravitating System
Nx = Nv =64

with PP limiter

w/o PP limiter

Negative regions in the lower panels 
disappear in the results with positivity 
preserving limiter.

As time proceeds, numerical diffusion 
takes place and smear small structures 
in the lower-order schemes.



  

Application To Cosmological Neutrinos



  

Cosmological Relic Neutrinos
massive neutrinos in the universe

Discovery of neutrino oscillation

currently non-relativistic and 
gravitationally interacting with 
cold dark matter (CDM)

lots of neutrinos in our universe 
decoupled at early stage of the 
universe when they are relativistic.

dynamical effect of massive neutrinos

free streaming (collisionless damping)

large velocity dispersion of neutrinos

absolute mass of neutrinos 
and its hierarchy are still 
unknown

growth of density fluctuation suppressed beyond the damping scale 



  

Collisionless Damping on LSS

density fluctuation suppressed at scales smaller than the damping scale.

the amount of suppression depends on the mass of neutrinos

the mass (and its hierarchy) of neutrinos can be estimated with such 
damping feature.

non-linear features should be investigated with numerical simulations.



  

Hybrid of N-body and Vlasov Simulation

Equation of motion in the cosmological comoving coordinate

Vlasov simulation for neutrinos to follow its kinetic behavior and 
collisionless damping

Poisson equation computes the gravitational potential contributed by both 
of CDM and nuetrinos.

Vlasov equation in the comoving coordinate

Two-component (CDM and neutrino) simulation of the large-scale 
structure formation 
N-body method for CDM since it is “cold”.



  

Initial Condition
cosmological parameters

PLANCK 2015 results：

curvature fluctuation： (pivot scale : k = 0.002 Mpc-1)

total neutrino mass

number of particles / number of mesh grids 

N-body simulation : 

Vlasov simulation：

initial condition created at redshift of zi = 10

computaional domain: Lbox = 20000h-1 Mpc, 2000h-1 Mpc, 200h-1 Mpc



  

CDM and neutrino distribution
CDM neutrino

200 h-1 Mpc 200 h-1 Mpc



  

Power Spectrum
: ratio of power spectra with massive and massless neutrinos

density fluctuation with k > 3x10-2 h/Mpc damps owing to collisionless damping

consistent with the perturbation theory (e.g. Saito et al. 2009) in the early stages

up turn at k>1 h-1Mpc, probably due to dynamical feedback by CDM

damping scale :



  

CDM and neutrino distribution
diffuse distribution of neutrinos 
owing to its large velocity 
dispersion

200 h-1 Mpc

contour : CDM color : neutrino

regions with similar CDM density 
can have significantly different 
neutrino density

remarkable offset in density peaks 
of CDM and neutrinos

40 h-1 Mpc 20 h-1 Mpc

neutrino wake / dynamical friction ?
Zhu et al. (2016)



  

Vlasov-Maxwell Simulation



  

Vlasov-Maxwell Simulation
solve the distribution functions 
for both of ions and electrons

difficulty to solve gyro-motion 
in the velocity space corrrectly 
correctly in the long term

Minoshima, Matsumoto, Amano (2011)

rigid-body rotation problem

rigid-body rotation of a 2D gaussian profile
temporal variation of dispersion 

CSL2 : CIP-CSL2
Takizawa et al. (2002)

BKSB : 
 backsubstitution method

Schmitz & Grauer (2006)



  

Rigid-Body Rotation with Our Scheme
initial condition SL-MPP7

100 rotations

PFC

PFC

SL-MPP5
SL-MPP7

rigid-body rotation of a gaussian profile in a 2D 
plane

SL-MPP5 and SL-MPP7 schemes yields only a few 
per cent  increase in velocity dispersion.

The lower-order scheme suffers from significant 
numerical heating.



  

Magnetic Reconnection

color : Jz

dissipation of magnetic field momentum transport to upstream region

Vlasov-Maxwell simulation in 5D phase space

Nx=432, Ny = 216

Nvx = Nvy = Nvz = 32

Hall effect to trigger the fast 
reconnection



  

Magnetic Reconnection
Vlasov-Maxwell simulation in 5D phase space

color : Jz

dissipation of magnetic field momentum transport to upstream region

Nx=432, Ny = 216

Nvx = Nvy = Nvz = 32

Hall effect to trigger the fast 
reconnection



  

Summary
Vlasov simulations in 6-dimensional phase space are now practical.

A new high-order advection scheme with monotonicity- and 
positivity-preservation and with single-stage time integration

Vlasov-Poisson simulation of cosmic neutrinos in the large-scale 
structure in the universe 



  

Neutrino Mass
Findings of the neutrino oscillation 

: masses of three eigen states mass normal inverted

Constraints on total neutrino mass

Lesgourgues & Pastor (2006)

constraints of tritium beta decay

mass hierarchy



  

Cosmological Relic Neutrino
thermal history of cosmological neutrinos

heating of photons by electron-positron  annhilation

epoch when neutrinos become non-relativistic

znr

103 102 101 1

0.05 eV1.7 eV

cosmic recombination

upper bound of total neutrino mass based on the Plack result 2015
Planck collaboration 2015



  

Cosmological Formulation of 
Vlasov-Poisson Equations

Vlasov-Poisson equation in canonical variables

Formulation suitable to Vlasov-Poisson simulations in cosmological coordinate.

peculiar velocity                  instead of canonical momentum.

Velocity extent exceeds the computational velocity domain as the 
universe expands

advection “velocity” in the velocity space depends on the “position” 
in the velocity space

px

py



  

Vlasov-Poisson Simulation of 
the Large-Scale Structure Formation
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