Collisionless Boltzmann (Vlasov) Equation and Modeling of Self-Gravitating Systems and Plasmas 2017/10/30-11/03[10/30]@CIRM,Marseille,France

Relaxation and long-time correlation of finite-size fluctuation in thermal equilibrium

Yoshiyuki Y. YAMAGUCHI (Kyoto University, Japan)

Main message

• Vlasov equation has inf. Casimir invariants

• Finite-size fluctuation becomes strange even in thermal equilibrium

What is Casimir invariants?

Vlasov equation $(N \to \infty)$

$$\frac{\partial f}{\partial t} + \frac{\partial \mathcal{H}[f]}{\partial q} \frac{\partial f}{\partial q} - \frac{\partial \mathcal{H}[f]}{\partial p} \frac{\partial f}{\partial p} = 0$$

 \downarrow

Casimir invariant

$$\mathcal{C}[f](t) = \int c(f(q, p, t)) dq dp, \qquad \forall c : \mathbb{R} \to \mathbb{R} : C^1$$

Examples

$$\int f dq dp, \quad \int f^2 dq dp, \quad , \cdots, - \int f \log f dq dp$$

What is Casimir invariants?

Vlasov equation $(N \to \infty)$

$$\frac{\partial f}{\partial t} + \frac{\partial \mathcal{H}[f]}{\partial q} \frac{\partial f}{\partial q} - \frac{\partial \mathcal{H}[f]}{\partial p} \frac{\partial f}{\partial p} = 0$$

 \downarrow

Casimir invariant

$$\mathcal{C}[f](t) = \int c(f(q, p, t)) dq dp, \qquad \forall c : \mathbb{R} \to \mathbb{R} : C^1$$

Note

- Essential block is symplectic structure of Vlasov eq.
- Casimirs are invariants even $\mathcal{H}[f]$ is time-dependent

Finite-size effect

Vlasov equation + Finite-size effect

$$\frac{\partial f}{\partial t} + \frac{\partial \mathcal{H}[f]}{\partial q} \frac{\partial f}{\partial q} - \frac{\partial \mathcal{H}[f]}{\partial p} \frac{\partial f}{\partial p} = \frac{1}{N} \operatorname{Col}[f, f]$$

$$\Downarrow$$

Casimirs \longrightarrow Pseudo Casimirs Effective time scale: O(N)

Strange behaviours by pseudo Casimir invariants

Hamiltonian Mean-Field (HMF) model

$$H = \sum_{j=1}^{N} \frac{p_j^2}{2} + \frac{1}{2N} \sum_{j=1}^{N} \sum_{k=1}^{N} \sum_{k=1}^{N} [1 - \cos(q_j - q_k)]$$

Order parameter (mean-field)

$$\mathbf{M} = (M_x, M_y) = \frac{1}{N} \sum_{k=1}^{N} (\cos q_k, \sin q_k)$$

Canonical eq. of motion

$$\frac{\mathrm{d}q_j}{\mathrm{d}t} = \frac{\partial H}{\partial p_j}, \quad \frac{\mathrm{d}p_j}{\mathrm{d}t} = -\frac{\partial H}{\partial q_j}$$

without thermal noise!

Relaxation TO thermal equilibrium

Applying external force in thermal equilibrium

$$H_h = \sum_{j=1}^N \frac{p_j^2}{2} + \frac{1}{2N} \sum_{j=1}^N \sum_{k=1}^N \sum_{k=1}^N [1 - \cos(q_j - q_k)] - h \sum_{j=1}^N \cos q_j$$

Initial conditions:

Randomly draw $\{(q_j, p_j)\}_{j=1}^N$ from

$$f_0(q,p) \propto \exp(-\mathcal{H}_0(q,p)/T)$$

Relaxation TO forced thermal equilibrium

Linear response theory in Vlasov eq.

Linear response theory based on Vlasov eq.

Ogawa-YYY, PRE 85, 061115 (2012); 91, 062108 (2015); 92, 042131 (2015)

$$f_{\text{QSS}} = f_0 + \delta f_{\text{SM}} - \delta f_{\text{Vlasov}}$$

Responsed Ini. Stat. Mech. Vlasov
state (QSS) state prediction correction

• Casimirs hold up to the leading order

 $\mathcal{C}[f_{\text{QSS}}] = \mathcal{C}[f_0] + (\delta f^2)$

Relaxation TO forced thermal equilibrium

Two step relaxations in Nonequilibrium

Two step relaxations in Equilibrium ?

Time-dependent variance

Relaxation of variance IN thermal equilibrium

Relaxation of variance IN thermal equilibrium

Time correlation?

1/f spectrum (T = 0.45)

YYY-Kaneko, In preparation

Long-time correlation

1/f spectrum (T = 0.45)

YYY-Kaneko, In preparation

 $\tau = 100N$

Link with Casimirs

Summary

Pseudo Casimir induces two time-scales

Effective Pseudo Casimirs Non-Effective ↓
2 step dynamics in relaxation and response
2 step relax of fluctuation amplitude (in EQ.)

t

• 1/f fluctuation (in EQ.)

Remarks:

- "Thermal eq." is not essential for \exists pseudo Casimirs
- Several strange things may happen in meta-stable states (Quasi-Stationary States)

Thank you for your attention