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Different nonlinearities:

The same equations for the characteristics:

Motion of ion guiding centers                       Motion of vorticity elements
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are found in these test particle 

trajectories
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The stochastic velocity is represented by a potential in 2d incompressible case
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 1. Trajectory trapping or eddying in stochastic potential fields

Hamiltonian system of equations
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 For static potential with
the trajectories are closed and periodic 

(situated on the contour lines of φ)

 For slow time variation of the potential, 
the trajectories are almost closed for long 
time intervals
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• V is the amplitude  

• λ is the correlation length 

• τ is the correlation time

The Eulerian correlations (EC) of the potential and of the velocity:



A typical trajectory in 2-d turbulence 
(incompressible fluids, magnetized plasmas)

is a stochastic sequence of trapping events and long jumps



Trapping is quasi-coherent motion.

The long jumps are random.
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Numerical simulations show that

o Trapping appears at             and the fraction of trapped trajectories increases with K
o Trapping is generic. It affects a part of the trajectories at small time and, in a along 

time, each trajectory is trapped during a fraction of this time.
o The trapping events are multi-size
o Trapping determines the coherent aspects in particle motion 

1K



Main requirements for the theoretical methods:

• To be in agreement with the statistical constraints imposed by the 
invariance of the potential 
(Corrsin approximation, DIA, renormalization group technique are not)

• To describe both the random and the quasi-coherent characteristics of 
the trajectories

Trapping is due to the 
Hamiltonian motion
determined by 2-dimensional, 
zero-divergence velocity fields.
The potential (stream function) 
is invariant for time independent 
fields.

 2. The statistical approach
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- long jumps appear when the trajectory is at
- trapping appears on the contour lines with large 

0)),(  ttx
)),( ttx

The segments of trajectories that correspond to similar values of the potential 
are not much different



Semi-analytical statistical methods

The decorrelation trajectory method (DTM)
M.Vlad, F. Spineanu, J. H. Misguich, R. Balescu, “Diffusion with intrinsic trapping in 2-d 
incompressible stochastic velocity fields”, Physical Review E 58 (1998) 7359

 The nested subensemble method (NSM)
M. Vlad, F. Spineanu, “Trajectory structures and transport”, Physical Review E 70 (2004) 
056304(14))

DTM and NSM are based on a set of simple trajectories determined from the 
Eulerian correlation EC of the stochastic potential, 
the decorrelation trajectories

The main idea of this approach is to determine the Lagrangian averages not on 
the whole set of trajectories but to group together trajectories that are similar, 
to average on them and then to perform averages of these averages. 



• Similar trajectories are obtained by imposing supplementary initial conditions 
besides the necessary one.
• Particularly important initial conditions are provided by the conserved 
quantities (the potential in this case). The value of the initial potential determines 
the average path of the trajectories.
• Subensembles S of realizations of the stochastic potential and conditional 
averages are used in order to impose the initial conditions

• The decorrelation trajectories (DT) are obtained from the conditional average 
potential by an equation with the same structure as the equation for trajectories

• The DT’s are determined from the EC of the stochastic fields and depend on 
the set of initial conditions
• The DT’s are smooth, simple trajectories much different from particle 
trajectories.
• Each DT has an associated probability (weighting factor).
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The averages of Lagrangian quantities are estimated by weighted averages on the 
decorrelation trajectories. The DTM is used fot transport studies while more 
complicated quantities are obtained with the NSM, which can provide more 
statistical information.

• The probability of the displacements
• the statistical characteristics of the distance at a time t between initialy 
neighbour trajectories

Trapping determines:

• non-Gaussian distribution of displacements
• Long time correlation of the Lagrangian velocity
• Micro-confinement effects
• high degree of coherence (very strong clump effect of the trapped traj.)

• quasi-coherent structures of trajectories
• Quasi-coherent flows (due to space variation of the confining magnetic 

field or of the amplitude of the turbulence)



The characteristics of the quasi-coherent structures 
(non-isotropic, time-dependent potential):

- the fraction of trapped trajectories       
- the average sizes of the trajectory structures     
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 3. The hidden drifts

• Hidden drifts (HDs) are a more subtle manifestation of the coherence of 
the stochastic trajectories

• HDs are ordered displacements that average to zero and do not drive flows 
• HDs appear in the presence of an average velocity and they are 

perpendicular to this velocity
ymV e
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The average perpendicular 
displacements at saturation for 
the positive and negative 
initial potential
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• Analytical study of test modes in turbulent plasmas that takes into account 
trajectory trapping 

• The frequency and the growth rate are determined as function of the statistical 
characteristics of the background turbulence.

• Drift turbulence in a plasma slab, constant and uniform magnetic field
• The instability is produced by the combined effect of the non-adiabatic response of 

the electrons and of the finite Larmor radius (FLR) of the ions determined here by 
the polarization drift

 4. Effect of the hidden drifts on plasma turbulence evolution
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- stable drift waves 
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• We consider a turbulent plasma

• Small perturbation

• The collisionless Vlasov equation

- electrons – same response as in quiescent plasma

- ion response

- The linearized Vlasov equation in the perturbation of the potential:
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- The formal solution for ion density perturbation obtained with the method of the characteristics

The propagator :

The average on the trajectories:                                                                  

integrated backwards in time with the condition at  τ = t   x(t) =  x

-The dispersion relation for test modes in turbulent plasma  
(the same as in quiescent plasma, except for the function  M(τ)  that appears in the propagator )



Thus, all the effects of the background turbulence are contained in the function:

- Implicite dependence on the ion trajectories through the average
- Explicite dependence on the turbulence potential and polarization drift

 In the case of quiescent plasmas   M = 1
 In turbulent plasmas, M contains the correlation potential-displacement, which is 

determined by the hidden drifts
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• The hidden drift velocity modifies both frequency and growth rate of the 
drift modes
• The background turbulence also determines the factor F, which is due to the 
trajectory structures. 
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0yk

These unstable zonal flow modes appear when the amplitude of the drift turbulence 
is large enough      

The hidden drifts determine unstable modes with                  (zonal flow modes)
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Zonal flow modes are very important 
because: 
 they influence the saturation of the 

drift turbulence 
 They determine the decrease of the 

diffusion coefficient along density 
gradient (confinement quality)

 They strongly increase the 
perpendicular diffusion that has a 
damping effect on drift turbulence
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 5. Effect of the hidden drifts on fluid turbulence evolution
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Ideal fluid turbulence described by 2D Euler equation for the vorticity

• The same Vlasov equation as in plasma case, with exactly the same 
statistical properties of the characteristics (including the hidden drifts).

• The equation of motion of the vorticity elements are completely 
independent on the vorticity they carry.

• How occurs vorticity separation

We show that the different nonlinearities of Euler and plasma turbulence 
equations (and the different nature of the advected quantities) 
determines completely different effects of the hidden drifts

Process of vorticity separation according to its sign:
The relaxation of turbulent initial states clearly show the evolution toward order, and it 
can lead to coherent states that consists of two large vortices of system size.
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The Eulerian correlations (EC) of the potential and of the velocity:

correlation of the vorticity and stream function
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 Velocity difference between the hidden flows

• Consider small scale turbulence in the presence of a large scale vortex 
represented by an average velocity                      hidden drifts are generatedymV e



The velocity difference leads to vorticity separation, but only in the presence 
of trajectory structures

modifies the shapes of the structures (elongated along the average velocity), 
and eventually destroys all the structures when

ymV e
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The velocity difference between the hidden flows leads to vorticity separation 
only in the presence of trajectory structures

r = 4

r = 0.4
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Positive vorticity concentration

Negative vorticity concentration

Corresponds to a 
large scale 
negative vortex

The hidden drifts determine 
the attraction of the small 
scale vortices by a large 
vortex with the same sign



Conclusion

• Hidden drifts (HDs) appear as ordered motion in 2D turbulence in the 
presence of an average velocity

• HDs have strong effect on both plasma and fluid turbulence, but by 
different mechanisms that are imposed by the specific nonlinearity

Plasma turbulence:
• HDs lead to an average velocity perpendicular to the average velocity by 

correlation with the background turbulence
• This velocity directed along the gradient of the density generates zonal

flow modes; 
• This process of zonal flow generation appears from the quasilinear regime of the drift turbulence 

and adds to other physical mechanism (Reynolds stress, ion flows, etc.)

Fluid turbulence:
• HDs contribute to the vorticity separation according to its sign


