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Luminy, Marseille, France

vittot@cpt.univ-mrs.fr
http://www.cpt.univ-mrs.fr/˜vittot/Home.htm

Philip J. MORRISON
Department of Physics and Institute for Fusion Studies

University of Texas at Austin, Austin, USA
morrison@physics.utexas.edu

http://www.ph.utexas.edu/˜morrison/

Collisionless Boltzmann (Vlasov) Equation
Modeling of Self-Gravitating Systems & Plasmas

CIRM, Luminy, Marseille

2017 October, 30



We look for a geometrical version of the Maxwell-Vlasov
Hamiltonian structure of Morrison (1980) and Marsden-Weinstein
(1982). This Poisson structure was indeed written with a “nabla”
operator ∇ and a cross product (×), which are complicated to use
in an arbitrary coordinate system or in a curved space.

Here we start with a 3-d manifold Q (with a Riemanian structure g)
as our configuration space: for instance, the interior of a Tokamak,
or some stellar medium
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Its cotangent bundle (“phase space”) T := T ∗Q, has a natural
symplectic structure σ0 viewed as a 2-form, or a linear map from
1-vector fields to 1-forms.
σ0 is invertible, and dσ0 = 0. The exterior derivative d here acts
on the 6-d manifold T . We use the same symbol for the exterior
derivative acting on T ∗Q and on Q: no ambiguities.
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Hence q ∈ Q, p ∈ T ∗q Q.
These variables will now be viewed as “fixed labels” in a
“Lagrangian-Eulerian” duality. And the actual dynamics takes
place on the (“Vlasov”) distribution function f defined on T , which
describes the matter, as well as on the electromagnetic fields E,B
defined on Q.
More precisely f(q, p) is the (positive) density of matter at the point
q ∈ Q with momentum p ∈ T ∗q Q.
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So our actual phase space will be the set Φ of the electromagnetic
fields E and B (defined on the whole configuration space Q) along
with the (“Vlasov”) distribution functions f , defined on:

T := T ∗Q

But instead of considering E and B as vectorial functions on Q,
we will consider them as differential forms of order 2:

E , B ∈ Ω2Q

We have the same information in ~E and in ( ~E × dq).dq or in
~E.dq but the differential form is coordinate free.
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We will restrict B as being a closed 2-form:

dB = 0 i.e. B ∈ Ω2
0Q

since this is the usual “divergence free” constraint (no magnetic
monopoles), and it will be essential.
Likewise instead of considering f as a (positive) scalar function
(a 0-form), we will choose it as a positive “volume form” (here a
6-form):

f ∈ Ω6
+T
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Hence our (infinite dimensional) phase space is:

Φ := {(f, E,B) ∈ Ω6
+T × Ω2Q× Ω2

0Q}

The set of “observables” is the vector space:

Ω0Φ := C∞(Φ→ R)

of “smooth” functions (“functionals”, or 0-forms) from this phase
space Φ to R.

We will endow it with a Poisson structure.
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Some important examples of observables are the “elementary” ones.
For any α ∈ Ω1Q independent of E,B, f (a fixed parameter):

Eα = Eα(f, E,B) := α ∧ E =

∫
Q

α ∧ E

The exterior product α∧E ∈ Ω3Q is a volume form (dependent on
q) and so may be integrated on the whole configuration manifold
Q. This integration is understood above: we omit the summation
index q.
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Likewise:

Bα = Bα(f, E,B) := α ∧B =

∫
Q

α ∧B

and for any fixed parameter β ∈ Ω0T :

fβ = fβ(f, E,B) := β ∧ f =

∫
T
β f

Remark :
∂Bα
∂B

b := lim
ε→0

Bα(B + εb)− Bα(B)

ε
= α ∧ b

=⇒ ∂B Bα :=
∂Bα
∂B

= α ∈ Ω1Q ∂f fβ :=
∂fβ
∂f

= β ∈ Ω0T

On any observable: ∂B , ∂E ∈ Ω1Q and ∂f ∈ Ω0T
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Another important example of observable will be our Hamiltonian:

H = H(f, E,B) :=
1

2
(E∗ ∧ E +B∗ ∧B) + f mγ

This Hamiltonian uses the Hodge star duality ∗, build from the
Riemanian metric g on Q, and a chosen volume form on Q. For
instance E∗, B∗ ∈ Ω1Q. So that the exterior product E∗ ∧ E +
B∗∧B ∈ Ω3Q may again be integrated on the whole configuration
manifold Q. This integration is again understood above.
The metric only occurs in the Hamiltonian, not in the Poisson
structure.
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Likewise the Vlasov 6-form f is integrated over T after
multiplication by the 0-form mγ which is the usual (relativistic)
kinetic energy:

mγ =
√
m2 + p p̄

The metric g is used via:

p̄ := p g = p g(q) ∈ TQ
where we use the action of g : T ∗Q→ TQ on its left. More precisely
g(q) : T ∗q Q→ TqQ

And we use the contraction p p̄ between T ∗Q and TQ.
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Here we take as units: c = ε0 = µ0 = 1 (permitivity, susceptibility)
and the mass m of the particules is a given parameter.

Let us recall that f(q, p) is the density of particules of mass m and
charge e, at the point q ∈ Q with momentum p ∈ T ∗q Q.

To describe another type of particule (another “specie”, with mass
m′ and charge e′) we just have to introduce another Vlasov function
fe′,m′ and the above Hamiltonian will be modified by summing over
the different species.
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The coupling (via the electric charge e) between the matter and
the fields, is not introduced in the Hamiltonian, but in the Poisson
bracket.

First the Poisson bracket on the “label space” T = T ∗Q :

π0 := σ−1
0

∀α ∈ Ω1T σ0(απ0) = α ∀X ∈ χ1T (σ0X) π0 = X
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Then the coupling (via e) between the matter and the fields, is
introduced in the symplectic form, so in the Poisson bracket:

σB := σ0 − eB0 ∈ Ω2
0T πB := σ−1

B = (1 + eB̂) π0

with B0 := q̂∗B the pullback of B by the projection q̂ : T →
Q. This is a 2-form on T , which may be added to σ0.

B̂ := B0 (...π0) i.e. ∀α ∈ Ω1T α B̂ := B0(α π0)

i.e. B̂ : Ω1T → Ω1T (acts on its left). So B̂ π0 : Ω1T → χ1T
Indeed: σB := σ0 (1− eB̂∗) with B̂∗ := (B0...) π0 : χ1T → χ1T
(acts on its right) and B̂ is nilpotent: B̂2 = 0 so that (1−eB̂∗)−1 =
(1 + eB̂).

Remind: σB = σ0− e( ~B × dq).dq and πB = π0 + e( ~B × ∂p).∂p
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Since dB = 0 we get dB0 = 0 and so d σB = 0 .
Hence its inverse πB = (1 + eB̂) π0 satisfies the Jacobi identity.

Theorem:
The Maxwell-Vlasov Poisson 2-vector π ∈ χ2Φ is:

π := d ∂B ∧ ∂E + f .[(d ∂f ∧ d ∂f).(1 + eB̂) + e ∂E ∧ d ∂f ]. π0

The first term is a 3-form on Q and the bracketed term is a 2-form
on T , which is converted into a 0-form after contraction with π0 .

The second part of π satisfies the Jacobi identity, by the Lie-Poisson
theorem.
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The first term (“Born-Infeld”) also satisfies the Jacobi identity, as
easily seen.
The third term is the coupling term.

π satisfies the Jacobi identity since it is a translation of the similar
2-vector (of Morrison, Marsden-Weinstein) by the diffeomorphism
~E → E, ~B → B and similarly for f . The direct proof (done
by Morrison) is long...

The Poisson structure is independent of the metric g but the
Hamiltonian depends on it!
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More extensively we have ∀ H,G ∈ Ω0Φ :

{H,G} := dH ∧ dG π = d ∂EH ∧ ∂B G − ∂BH ∧ d ∂E G

+ ∂f H .L∆Gπ0.f − L∆H π0.f . ∂f G

where:

∆G :=
1

2
(d ∂f G)(1 + e B̂) + e.∂E G ∈ Ω1T ⊗ Ω0Φ

The tensor product is over Ω0T
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The flow generated by the Hamiltonian H is the exponential of the
vector field dH π where:

dH = E∗ ∧ dE + B∗ ∧ dB + mγ df ∈ Ω1Φ

The evolution of any observable V ∈ Ω0Φ by this flow is given by:

V̇ := {H,V } = dH ∧ dV π

E.g: Ḃα = dH ∧ dBα π (= Ḃ ∧ α) where dBα = α ∧ dB
dB 6= dB (= 0) dB ∂B = 1 dB ∂E = 0

=⇒ dBα π = α ∧ d ∂E ∈ χ1Φ

=⇒ Ḃ = dE∗
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Likewise:

Ė = dB∗ + J where J := e

∫
T ∗q Q

iWπ0 f

(“the current”) and:

W := p d p̄/(mγ) ∈ Ω1T

is the “velocity” 1-form. Hence:

=⇒ Wπ0 ∈ χ1T =⇒ iWπ0 f ∈ Ω5T

W is the fiber-derivative of the energy mγ =
√
m2 + p p̄

So we get a 2-form on Q after integration over the 3-d domain
T ∗q Q (this is permitted here!)
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The Vlasov equation is a Lie dragging:

ḟ = LZπ0 f where Z := v.(1 + e B̂) + e E∗ ∈ Ω1T

Indeed the derivative of the energy is a 1-form, the “velocity”:
v := d(mγ) ∈ Ω1T
We recognize the advection term, associated to “1” (like ~v .∇),

and the Lorentz force: e (~v × ~B + ~E)

In a curved “configuration space” Q we recover the extra terms
due to the curvature:

v =
1

mγ
[p d p̄ +

1

2
p (g′(q) dq) p]
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Finally we also reget the last Maxwell equation as a Casimir
invariant:

For all α ∈ Ω0Q :

Kα = Kα(f, E,B) :=

∫
Q

α

[
dE + e

∫
T ∗q Q

f

]
verifies dKα π = 0

In particular it is a constant of the motion generated by H. If we
start with:

dE + e

∫
T ∗q Q

f = 0

then this quantity will remain 0 for any t.

The same is true for
∫
T f f ∗n (∀ n ∈ N)

where we use the symplectic Hodge dual f ∗ := iπ0∧π0∧π0 f
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Remarks
This model is gauge invariant: no potentials, only fields.

The Poincaré group is included in the Poisson-isomorphisms of this
Maxwell-Vlasov algebra. So this model has relativistic covariance.

Viewing the fields as independent variables (rather than generated
by the matter) removes the need of the “retarded fields”.

The constraint dB = 0 is actually more fondamental than a Casimir
invariant: it is needed to insure the Jacobi identity.
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Perturbation theory in the strong B region
(as in Tokamaks)

We split the Hamiltonian into:

H = H0 + V H0 :=
1

2
B∗ ∧B + f mγ V :=

1

2
E∗ ∧ E

This splitting of H induces our perturbation method: finding
some actions variables for the simple H0 (the “guiding-center”
gyro-momentum, and another constant of motion: the “bounce
averaging”) and then try to perturb them under the “retro-action”
of the matter on the fields when adding V (the “gyro-center”), by
a KAM-like method.
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