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M31’s Double Nucleus: Under the Black Hole’s Spell

Nasa/ESA and T. Lauer (NOAO)



Planetary Antecedent: Uranus Epsilon Ring

Image Courtesy of C. Dumas (Caltech/
JPL) and J.-L Beuzit and F. Menard
(CFHT)




Planetary Context: The Oort Cloud

New Scientist,




Exo-Planetary Context: Proto-planetary Disks

ALMA (ESO/NAOJ/NRAO)



Exo-Planetary Context: Circum-binary Disks

NRAO/AUI/NSF/Rice University/ESO/NAQO)



Massive Central Bodies: Sphere of Influence
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* Sphere of influence of MCB: T'sphere ™ -

* Hierarchy of time scales: torbit <K tsee K trr < trelax
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iv. Two-body relaxation time: trelax ~ 27 —5lorbit ™ ﬁtw
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Averaging Principle: Gauss Wire

Star smeared into wire
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Averaging Principle: The Planetary Context

e Secular Invariance of Semi-Major Axes:
Laplace(1773), Lagrange(1774, 1776)

e Secular “Stability” of the Solar System: Laplace-
Lagrange theory

* Gauss(1818) Takes on Averaging: Wire with mass
elements proportional to time spent on the orbit



Averaging Principle: The Planetary Context

* Obstructions to Averaging: Resonances, Small
Denominators (Poincare, KAM)

 Chaos and Mean Motion Resonances (Asteroids,
Wisdom)

e Quter Solar System Chaos: Mean Motion Resonance
Overlap (Murray and Holman)

* Secular Chaos: Mercury’s escape (Laskar et al.)



Towards the Large N Limit of Orbit-
Averaged Celestial Mechanics!



Averaging Principle: Stellar Dynamical Context

Over time scales longer than Keplerian orbital period, and
shorter than two body relaxation, what is known:

Central Body Dominated, Nearly-Keplerian Motion: Orbit averaged

into (Gaussian Wires) with Constant Keplerian Energy [S. Sridhar & J.T
(1998))]

 Complete Integrability of the Planar Problem: Classification of
orbits in generic non-axisymmetric, lopsided potential; Clarification
of transition to chaos [S. Sridhar and JT 1998]

 Resonant Relaxation of Gaussian Wires Dominate Two-Body
Relaxation [Rauch and Tremaine (1996)]

* Secular Instabilities of Disks and Spheres [JT (2002), Tremaine(2005),
Polyachenko et. Al. (2007)]



Averaging Principle: Gauss Wires

Disk of wires
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Secular Dynamics and (Non-Eqg) Thermodynamics
of Nearly-Keplerian Systems around MCB

What determines observed kinematics, photometry, shape of Nearly Keplerian
Systems?

 Are these systems subject to dynamical instabilities? If so can we characterize
their saturated states, as the outcomes of a collisionless-relaxation process?
Poisson-Vlasov in this limit?

Do observed features reflect thermal equilibrium phases of a suitably defined
self-gravitating gas? Phase Diagrams? Transitions? Type?

 What about the route to thermal equilibria? Can we construct properly grounded
kinetic theory that is agile enough to handle the collisional processes at work in
these systems?

e How does all this work itself out through the tumultuous conditions in which
these systems are born, perturbed, and evolved? What does it say about origin,
initial states, potential perturbers? About the feeding of super massive black
holes? Tidal disruption events? Impact on rate of binary mergers in the sphere of
influence of a super-massive black hole?



Progress Report

* Counter-Rotating Nearly-Keplerian stellar disks are unstable: They

evolve into lopsided uniformly precessing configurations [.1. (MnRras,

2002), Sridhar and Saini(MNRAS 2009), J.T. and Sridhar (MNRAS, 2012), Kazandjian and J.T. (MNRAS,
2013)]

* Nearly-Keplerian stellar disks (whether counter-rotating or not) are
prone to violent secular instabilities: Collisionless orbit averaged

Poisson-Vlasov for Waterbags [Kaur et. al (2017, Submitted), Sridhar and J.T. (MNRAS,
2016)]

* Microcanonical Thermal Equilibria of narrow, ring like, disks are,
more often than not, lopsided p.1and Tremaine (1. Phys. A, 2014)]

* First Principles Theory of “Resonant Relaxation” lays bare the

kinetics of collisional relaxation onto thermal equilibria [sridhar and J.T.
(MNRAS, 2016-2017]



Averaging Principle: Particle in External Potential

e Hamiltonian:

v G
H=— "+
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 Action Angle Variables for Kepler: Delaunay:
(aaeaiafagvﬂ) % (IﬂLamea%h)

* Orbit Averaging
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Gauss Wire in 3D: Vectorial Formulation

* Lenz and “Angular Momentum” Vectors:

L=rxv=+/(GMa)]j
1 r

e = G—va(rxv)—;

* In Terms of Orbit Normal/Periapse:

j= (1—62)1/211, e = eu



Equations of Motion

dj 1
— = e X VoH +31x ViH
de 1
— = ] X Ve +e x Vi H

j-e=0,j°+e’=1



Gauss Wires at Work

Planetary theory to first order in the masses and all
orders in eccentricity and inclination

Secular evolution of hot nearly-keplerian systems
Collisionless relaxation of secularly unstable clusters

Collisional resonant relaxation of triaxial clusters around
central massive bodies



Counter-Rotating Disks: Instability onto Saturation
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Counter-Rotating Disks: Instability onto Saturation
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Counter-Rotating Disks: Instability onto Saturation

2.64Myr 4.53Myr
180, re T T 180 LS ¥ CoN Q0. ®
{_)i EOE %§Og o@coggé;o Og)of Q?)
(o]
1351 R 135+ 1
— 90- J — 90- J
451 1 451 i
0.2 Firn . OL_e i 1
0 0.25 05 0.75 1 0 025 0.5 0.75 1
e e
6.53Myr 7.94Myr
1801 5 7 1801 T T T
1354 1 1354 8
ks
— 90 S — 90+ 1
o]
® ©
&5 oo%o%@‘
o
. %O@go 9
A " % % *Q
- L]
0 025 05 0.75 1 0 0.25 0.5 0.75 1
€ €
9.53Myr 10.88Myr
180 00 T [ee) 180 T T )
°© o0& 05’%’ 5 c&g 8 0% @f@o
o oo o o0 o % o
135 W& 135 =
o o
o oc ol %% o ©
— 90 0o A — 90 ° 4
Ooo 4 o
@®
@ o
45 ° & 45t e g
e® o °
0 S aredalett o o § oL *® K so °
0 0.25 0.5 0.75 1 0 0.25 05 0.75 1



Collisionless Boltzmann-Poisson for Particles

Single Particle DF in 6D:
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From Kepler to Delaunay

* Non-canonical, Osculating, Keplerian Orbital Elements:

(a’767i7f7g7Q)

e Canonical, Action-Angle like, Delaunay Variables:

D = {IaLsz;wagah}v

Actions = [I = VGMea L = I\/1—¢€2,L, = Lcosi] , Angles = |wg, h]

E(I) = —-1/2(GM/I)*, (1) = % = (G]I\g‘) .




Poisson-Vlasov in Delaunay

* Poisson Brackets in Delaunay Variables:

0g OL OL Og

 (Ox10x2  Ox10x2 Ox10x2  Ox1 Ox2 Ox1 0x2  Ox1 Oxe2
X10 X2 ) = + + - .

ow oI oI Ow Oh OL. OL. Oh

 Mean Field and Non-Inertial contribution in Delaunay Variables:
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Orbit Averaged Potential: Wire-Wire Kernel

The Orbit-Averaged Mean Field of Cluster:

B(R.7) — / AR’ F(R'.7) U(R.R).

where

/
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Reduced Phase Space of Wires

From Delaunay to Gauss (from 6D to [4+1]D]:

DE {‘[7L7LZ;w7g7h} %RE {I7L7LZ;'7g7h}7

Conserved Action (semi-major axis), and resulting EOM:

I = \/GMsa = constant,
dL  0H dg ~ 0H dL.,  OH dh  OH
dr  9g’ dr  OL’ dr  Ohn’ dr 0L,



Orbit-Averaged Poisson-Vlasov

Fourier in fast Keplerian Motion:
1
f(D,t, 1) = 2—F (R, T) Z fn(R,t,7)exp [inw] + O(e?)

* Vlasov for orbit averaged DF:

dF _ OF QHOF 0OHOF QHOF  OHOF _
dr _ 9or 99 OL ' 0L dg  OhOL. ' OL,0h

With Hamiltonian:

H(R,7) = ®(R,7) + H™(I,L,L,) + ®"4(R, 1)



Collisionless Boltzmann for Wires: A Cheat Sheet

_ Ox10x2  Ox10x2 Ox1 0x2  Ox1 Oxe
(X1, X2] = +

dg OL  OL dg Oh OL, OL, Oh

HR,7) = ®(R,7) + H*(I,L,L,) + ®"YR,7)

dF OF OH OF OH OF OH OF OH OF

dr ~ 9r  9g0L T 9L 9y ~ ohoL. « oL.on

= 0

P(I) = /dedegth(I, L, L, g, h, )



Collisionless Gauss-Wire Equilibria

Secular Jeans Theorem: Any stationary solution is a function of time-
independent integrals of the secular dynamics, and any such function is a
stationary solution

General stationary spherical DF must be of the form: F(l, L, Lz); general
stationary axisymmetric DF must of the form F(l, L, H) (Jacobi Hamiltonian
replaces Hamiltonian for rotating equilibria)

Spherical Equilibria with F(I, L) monotonic in L and no loss cone are stable to I=1
modes, and a have a neutral I=1 mode when F(l, 0)=0 (Tremaine (2005);
Spherical equilibria with negative nodal precession, and F(l, L) non-monotonic in
L, can be unstable to I>= 3 modes (Polyachenko et al. (2007).

Axisymmetric razor thin disks with F(I, L) monotonic in L are neutrally stable to
all secular perturbations (Sridhar and JT, 2016).



The Road to Thermal Equilibrium: Kinetic Theory
of Resonant Relaxation

Generalize Gilbert (1968) to the realm of Gaussian Wires [Sridhar and J.T
(MNRAS, 2016-2017)]

First principles theory of Resonant Relaxation: The first formally
grounded approach to Rauch and Tremaine (1996)

Interactions between (apse/node)-resonant populations feeding 2-
wire wakes which then feed the orbit-averaged Boltzmann equation

with collisional flux

Recover a Fokker-Planck equation with explicit expressions for
dissipative and fluctuating components

The Fun Begins!



Razor Thin Disks: 6 to (4+1) to (2+1) D

* Collapse onto a Disk:

R=(I,L,g)
e Vlasov for orbit averaged DF:
dL OH dg OH
I = \/GMea = tant , _— = - —, — = —.
‘ cotistat dr dg dr oL

AF _OF _OHOF OHOF _OF ...
dr  Or dg OL OL 0g Ot ’ B

with Hamiltonian:

H(R,7) = ®(R,7) + H*'(I,L) + ®"(R,7)



Razor Thin, Mono-energetic Disks:
6 to (4+1) to (2+1) to 2D !

* Thin and Mono-energetic [same semi-major axis !]:

R=(U,L,g) = Ra=(49)

where

{=+1—e2 L=+/GMqa ¥

* Wire-Wire Kernel, Hamiltonian, EOM...etc:
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Compact Phase Space: The Lenz-Vector Sphere

Kaur et. al. (Submitted, 2017)



Compact Phase Space: Lenz-Vector Dynamics

4log2 1
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Waterbags on the Lenz-Vector Sphere: Prograde Equilibria

Kaur et. al. (Submitted, 2017)



Waterbags on the Lenz-Vector Sphere: Perturbations




Waterbags on the Disk: Edge Modes

H@V



Mono-Energetic Waterbags: Linear Stability of Edge Modes
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Mono-Energetic Waterbags: N-Wire Simulations

Kaur et. al (2017, Submitted)



From N-Wire to PM: Lenz-Vecotr vortex (m=3 mode)!

Movie: Colombi and Touma, In Preparation



From N-Wire to Mean Field: m=4 Instability

Movie: Colombi and Touma, In Preparation



From N-Wire to Mean Field: Equatorial Band

Movie: Colombi and Touma, In Preparation



From N-Wire to Mean Field: Counter-Rotating Wires

Movie: Colombi and Touma, In Preparation



Marbleized L-Sphere: Stephane’s Magic

Movie: Colombi and Touma, In Preparation



Conclusions (Once Again!)

* Counter-Rotating Nearly-Keplerian stellar disks are unstable: They

evolve into lopsided uniformly precessing configurations [.1. (MnRras,

2002), Sridhar and Saini(MNRAS 2009), J.T. and Sridhar (MNRAS, 2012), Kazandjian and J.T. (MNRAS,
2013)]

* Nearly-Keplerian stellar disks (whether counter-rotating or not) are
prone to violent secular instabilities: Collisionless orbit averaged

Poisson-Vlasov for Waterbags [Kaur et. al (2017, Submitted), Sridhar and J.T. (MNRAS,
2016)]

* Microcanonical Thermal Equilibria of narrow, ring like, disks are,
more often than not, lopsided p.1and Tremaine (1. Phys. A, 2014)]

* First Principles Theory of “Resonant Relaxation” lays bare the

kinetics of collisional relaxation onto thermal equilibria [sridhar and J.T.
(MNRAS, 2016-2017]



