30th Oct.~3rd Nov. 2017

"Collisionless Boltzmann (Vlasov) Equation and Modeling of Self-Gravitating Systems and Plasmas"

@ CIRM, Marseille

Perturbative description of Vlasov-Poisson system in cosmology : Approaching and going beyond shell-crossing

Atsushi Taruya (Yukawa Institute for Theoretical Physics, Kyoto Univ.)

In collaboration with

Stéphane Colombi (Institut d'Astrophysique de Paris) Shohei Saga (Yukawa Institute for Theoretical Physics)

Plan of talk

Perturbative description of 'shell-crossing' and beyond in nonlinear regime of cosmic structure formation

Refs. AT & Colombi, MNRAS 470, 4858 ('17), Saga, Colombi & AT (in prep.)

Introduction & motivation

- Beyond shell-crossing in ID
- Approaching shell-crossing in 3D

• Summary

Large-scale structure of the Universe

Matter inhomogeneity over Giga parsec scales 1000 Mpc = 3*10^9 light years

is dominated by hypothetical invisible matter (i.e., cold dark matter)

It has evolved from tiny fluctuations (most likely seeded by inflation) under influence of cosmic expansion and gravity

- Provide a wealth of cosmological information
- Key observable in the era of precision cosmology

Macroscopically,

self-gravitating collisionless system in an expanding universe

Cosmological Vlasov-Poisson system

Vlasov-Poisson system in a cosmological background:

$$\begin{bmatrix} \frac{\partial}{\partial t} + \frac{\mathbf{p}}{ma^2} \frac{\partial}{\partial \mathbf{x}} - m \frac{\partial \Phi}{\partial \mathbf{x}} \frac{\partial}{\partial \mathbf{p}} \end{bmatrix} f(\mathbf{x}, \mathbf{p}) = 0,$$

$$= \frac{2}{m} \int d\mathbf{x} d\mathbf{x$$

$$\nabla^2 \Phi(\boldsymbol{x}) = 4\pi \, G \, a^2 \begin{bmatrix} \frac{m}{a^3} \int d^3 \boldsymbol{p} \, f(\boldsymbol{x}, \boldsymbol{p}) - \rho_{\rm m} \end{bmatrix} \begin{array}{l} {\rm a(t): scale \ factor \ of \ the \ Universe} \end{array}$$

Cold initial flow (or single-stream flow): Dirac's delta function

$$f(\boldsymbol{x}, \boldsymbol{p}) = \overline{n} a^3 \{1 + \delta_{m}(\boldsymbol{x})\} \delta_{D} [\boldsymbol{p} - m a \boldsymbol{v}(\boldsymbol{x})]$$

Mass density field Velocity field

System at an early phase is reduced to pressureless fluid system

Cosmic fluid and perturbation theory

Assuming single-stream flow,

cosmological Vlasov-Poisson system is reduced to fluid system

Shell-crossing: inevitable feature

Fluid description of matter flow, however, breaks down at late time, followed by

Shell crossing

e.g., Shandarin & Zel'dovich ('89)

- Singular density field
- Development of multi-stream flow after shell-crossing

http://www.vlasix.org/index.php?n=Main.ColDICE

Analytic description of shell-crossing

How well one can analytically describe shell-crossing and beyond ?

Self-similar solution under a certain symmetry (spherical, planar, ...)

Filmore & Goldreich ('84); Bertschinger ('85); Ryden ('93); Zukin & Bertschinger ('10); Lithwick & Dalal ('11);Alard ('13)

In this talk,

Perturbative description of formation of shell-crossing and beyond

Key Lagrangian description of matter flow:

 $\boldsymbol{x}(\boldsymbol{q},t) = \boldsymbol{q} + \boldsymbol{\Psi}(\boldsymbol{q},t), \qquad \boldsymbol{v}(\boldsymbol{q},t) = \frac{d\boldsymbol{\Psi}(\boldsymbol{q},t)}{dt}$

q : Lagrangian coordinate Ψ : displacement field

Zel'dovich solution

Zel'dovich ('70), Novikov ('69)

Exact single-stream solution in ID:

Shandarin & Zel'dovich ('89)

$$x(q;\tau) = q + \psi(q) D_{+}(\tau) \qquad \mathbf{v}(q;\tau) = \psi(q) \frac{dD_{+}(\tau)}{d\tau}$$

 $D_+(au)$: linear growth factor $\psi(q)$: arbitrary function of q

Beyond shell-crossing, solution is no longer exact

→ exploiting new treatment with post-collapse PT in ID
 In 2D & 3D, it is no more exact even at single-stream regime
 → improved description by higher-order Lagrangian PT in 3D

Beyond shell-crossing in I

AT & Colombi, MNRAS 470, 4858('17) see also, Colombi, ibid. 446, 2902 ('15)

Post-collapse perturbation theory (PT) formalism

Computing back-reaction to the Zel'dovich flow:

New

I. Expand the displacement field around shell-crossing (Lagrangian) point, **q**o:

 $x(q;\tau) \simeq A(q_0;\tau) - B(q_0;\tau)(q-q_0) + C(q_0;\tau)(q-q_0)^3$

2. Compute force $F(x(q;\tau)) = -\nabla_x \Phi(x(q;\tau))$ at multi-valued region Newton potential

 $\Delta \mathbf{v}(Q;\tau,\,\tau_{\mathbf{q}}) = \int_{\tau}^{\tau} d\tau' F(x(Q,\tau')), \quad \Delta x(Q;\tau,\,\tau_{\mathbf{q}}) = \int_{\tau}^{\tau} d\tau' \,\Delta \mathbf{v}(Q;\tau',\tau_{\mathbf{q}})$ **Backreaction** ••••• polynomial function of $Q=q-q_0$ up to 7th order

Post-collapse PT: single cluster

AT & Colombi ('17)

Simulation

Post-collapse PT basically can capture the postcollapse dynamics until 2nd shell-crossing happens

Even after 2nd crossing,

it still gives a reasonable description for density profiles

Post-collapse PT: random initial condition

Initial condition

Planck

AT & Colombi ('17)

Approaching shell-crossing in 3D

Improved description of shell-crossing by Poster by Shohei Saga

higher-order Lagrangian perturbation theory (LPT)

Lagrangian $\Psi({\bm q},t) = \Psi^{(1)}({\bm q},t) + \Psi^{(2)}({\bm q},t) + \Psi^{(3)}({\bm q},t) + \cdots$ displacement field

Eq. of motion for displacement field assuming single-stream flow

Longitudinal: $(\hat{\mathcal{T}} - 4\pi G \bar{\rho}_{m}) \Psi_{k,k} = -\epsilon_{ijk} \epsilon_{ipq} \Psi_{j,p} (\hat{\mathcal{T}} - 2\pi G \bar{\rho}_{m}) \psi_{k,q}$ $-\frac{1}{2} \epsilon_{ijk} \epsilon_{pqr} \Psi_{i,p} \Psi_{j,q} (\hat{\mathcal{T}} - \frac{4\pi G}{3} \bar{\rho}_{m}) \Psi_{k,r}$ Transverse: $\epsilon_{ijk} \hat{\mathcal{T}} \Psi_{j,k} = -\epsilon_{ijk} \Psi_{p,j} \hat{\mathcal{T}} \Psi_{p,k}$ $\hat{\mathcal{T}} f(t) \equiv \ddot{f}(t) + 2H\dot{f}(t)$

Moutarde et al. ('91); Bouchet et al. ('92); Buchert ('92); Buchert & Ehlers ('93); Bouchet et al. ('95), ..., Matsubara ('15), Rampf & Frisch ('17)

Approaching shell-crossing in 3D

Improved description of shell-crossing by

higher-order Lagrangian perturbation theory (LPT)

Simulation: ColDICE (Sousbie & Colombi '16)

sine-wave initial condition (Moutarde et al. '91)

Poster by Shohei Saga

Approaching shell-crossing in 3D

Improved description of shell-crossing by

higher-order Lagrangian perturbation theory (LPT)

Simulation: ColDICE (Sousbie & Colombi '16)

(Moutarde et al. '91)

Poster by Shohei Saga

Beyond shell-crossing in 3D (in progress)

Matching higher-order LPT with post-collapse PT (in ID)

ignoring interactions along y-/z-directions

Vlasov simulation LPT+post-collapse PT

Multi-dimensional effect significantly alters multi-stream flow. Naive prediction with ID post-collapse PT fails \rightarrow need further progress

Summary

Analytical description of shell-crossing and beyond with perturbation theory (PT) calculations in cosmic structure formation

	Single-stream	Multi-stream
ID	Zel'dovich solution	Post-collapse PT
2D & 3D	Higher-order Lagrangian PT	Work in progress

- Combining with adaptive smoothing, Post-collapse PT gives an accurate statistical prediction of random density field
- Higher-order Lagrangian PT

precisely matches results of the state-of-the-art Vlasov simulation

Extension to 3D case is still challenging, but worth for investigation