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Large-scale structure of the Universe

Matter inhomogeneity over Giga parsec scales

1000 Mpc =3*10^9 light years

=
is dominated by hypothetical invisible matter (i.e., cold dark matter)

It has evolved from tiny fluctuations (most likely seeded by 
inflation) under influence of cosmic expansion and gravity

•Provide a wealth of cosmological information

•Key observable in the era of precision cosmology

self-gravitating collisionless system in an expanding universe
Macroscopically,



Cosmological Vlasov-Poisson system

a(t) : scale factor of 
the Universe

Cold initial flow (or single-stream flow):

Vlasov-Poisson system in a cosmological background:

System at an early phase is reduced to pressureless fluid system

Dirac’s delta function
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perturbative solution. To do this, notice that the displacement field is the vector quan-
tity whose dynamical degree of freedom is divided to two parts: longitudinal (ψk,k) and
transverse (ϵijkψj,k) parts. While Eq. (4.13) directly leads to the evolution equation for
longitudinal mode, the equation for transverse mode is obtained by taking the rotation
to Eq. (4.11) with respect to Eulerian coordinate, i.e., ∇× (ẍ+2Hẋ) = 0. A set of basic
equations then becomes [46]
( ∂2

∂t2
+ 2H

∂

∂t
− 4πG ρm

)
ψk,k =− ϵijkϵipq ψj,p

( ∂2

∂t2
+ 2H

∂

∂t
− 2πG ρm

)
ψk,q

− 1

2
ϵijkϵpqrψi,pψj,q

( ∂2

∂t2
+ 2H

∂

∂t
− 4π

3
ρm
)
ψk,r, (4.21)

( ∂2

∂t2
+ 2H

∂

∂t

)
ϵijk ψj,k =− ϵijk ψp,j

( ∂2

∂t2
+ 2H

∂

∂t

)
ψp,k, (4.22)

where ψj,k = ∂ψj/∂qk. The right-hand-side of the above equations represent the non-linear
source terms, which have to be evaluated by order-by-order calculation. Once we get the
perturbative solutions for longitudinal and transverse modes (i.e., ψk,k and ϵijkψj,k), a
final step is to explicitly construct the displacement field itself. This is not trivial at all,
but can be systematically done in Fourier space (e.g., [46]).

4.3 (Eulerian) Perturbation theory

Collisionless Boltzmann equation (Vlasov-Poisson system)

[
∂

∂t
+

p

ma2
∂

∂x
−m

∂Ψ

∂x

∂

∂p

]
f(x,p) = 0, (4.23)

supplemented with the Poisson equation:

∇2Ψ(x) = 4πGa2
[
m

a3

∫
d3p f(x,p)− ρm

]
. (4.24)

Here, m is the mass of CDM (+baryon) particle.

Single-stream approximation

Ansatz f(x,p) = n a3 {1 + δm(x)} δD
[
p−mav(x)

]
. (4.25)

With this ansatz, taking the zeroth and first velocity moments of Eq. (4.23) yields

∂δm
∂t

+
1

a
∇ [(1 + δm)v] = 0, (4.26)

∂v

∂t
+

1

a
(v ·∇)v = −1

a

∂Ψ

∂x
, (4.27)

1

a2
∇2Ψ = 4πG ρm δm. (4.28)
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Newton potential
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Cosmic fluid and perturbation theory

cosmological Vlasov-Poisson system is reduced to fluid system

Assuming single-stream flow, 

Juszkiewicz (’81), Vishniac (’83), Goroff et 
al. (’86), Suto & Sasaki (’91), Makino, Sasaki 
& Suto (’92), Jain & Bertschinger (’94), ...

Perturbative expansion: |�|� 1

� = �(1) + �(2) + �(3) + · · ·

AT, Bernardeau, Nishimichi & Codis (’12)

+ resummation 
technique

cube of the separation. The REGPT results agree with
N-body simulations almost perfectly over the plotted
scales. As it is known, the impact of nonlinear clustering
on the baryon acoustic peak is significant: the peak position
becomes slightly shifted to a smaller scale, and the
structure of the peak tends to be smeared as the redshift
decreases (e.g., Refs. [24,25,49,50]). The REGPT calcula-
tion can describe not only the behavior around the baryon
acoustic peak but also the small-scale behavior of the
correlation function. Note that similar results are also
obtained from other improved PT treatments such as
closure and LRT. Although the REGPT predictions eventu-
ally deviate from simulations at small scales—the result
at z ¼ 0:35 indeed manifests the discrepancy below
r" 30h#1 Mpc—the actual range of agreement between
REGPT and N-body results is even wider than what is
naively expected from the power spectrum results. In
fact, it has been recently advocated by several authors
that with several improved PT treatments, the one-loop
calculation is sufficient to accurately describe the two-
point correlation function (e.g., Refs. [22,48,51]). We
have checked that the REGPT treatment at one-loop order
can give a satisfactory result close to the two-loop result,
and the prediction including the two-loop corrections only
slightly improves the agreement with N-body simulations
at small scales. This is good news for practical purposes in
the sense that we do not necessarily have to evaluate the
multidimensional integrals for the accurate prediction of
two-point correlation function in the weakly nonlinear
regime. Nevertheless, in this work, we keep the two-loop
contributions in the computed contributions. The computa-
tional costs of the two-loop order will be addressed in the
following with the development of a method for acceler-
ated PT calculation at two-loop order.

V. REGPT-FAST: ACCELERATED POWER
SPECTRUM CALCULATION

In this section, we present a method that allows accel-
erated calculations of the required diagrams of the two-
loop order REGPT prescription. In principle, the power
spectra calculations in the context of REGPT require multi-
dimensional integrations that cannot be done beforehand as
they fully depend on the linear power spectra. It is however
possible to obtain the required quantities much more
rapidly provided we know the answer for a close enough
model.
The key point in this approach is to utilize the fact that

the nonlinear REGPT power spectrum is a well-defined
functional form of the linear power spectrum. Each of
the diagrams that has to be computed is of quadratic, cubic,
etc. order with respect to the linear power spectrum with a
kernel that, although complicated, can be explicitly given.
It is then easy to Taylor-expand each of these terms with
respect to the linear power spectrum. In principle one then
just needs to prepare, in advance, a set of the REGPT results
for some fiducial cosmological models, and then take the
difference between fiducial and target initial power spectra
for which we want to calculate the nonlinear power spec-
trum. These differences involve only one-dimensional in-
tegrals at the first order in the Taylor expansion.
In the following, we present the detail of the implemen-

tation of this approach illustrating it with the one-loop
calculation case.

A. Power spectrum reconstruction from fiducial model

While our final goal is to present the fast PT calculation
at two-loop order, in order to get insights into the imple-
mentation of this calculation, we consider the power

FIG. 10 (color online). Comparison of two-point correlation function between N-body and REGPT results at z ¼ 3, 2, 1, and 0.35
(from bottom to top). In each panel, magenta solid, and black dotted lines represent the prediction from REGPT and linear theory
calculations, respectively. Left panel focuses on the behavior around baryon acoustic peak in linear scales, while right panel shows the
overall behavior in a wide range of separation in logarithmic scales. Note that in right panel, the resulting correlation function is
multiplied by the cube of the separation for illustrative purpose.

DIRECT AND FAST CALCULATION OF REGULARIZED . . . PHYSICAL REVIEW D 86, 103528 (2012)

103528-11

Perturbation theory
Linear theory

Correlation function

z=3

z=2

z=1

z=0.35

r3 ⇠(r)
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Shell-crossing: inevitable feature
Fluid description of matter flow, however, breaks down at late time, 

Shell crossing
followed by

• Singular density field

• Development of multi-stream flow after shell-crossing

x

y
vx

vy is color coded

1D 2D

http://www.vlasix.org/index.php?n=Main.ColDICE

e.g., Shandarin & Zel’dovich (’89)

Density profile

Phase-spacePhase-space



Analytic description of shell-crossing
How well one can analytically describe shell-crossing and beyond ?

Perturbative description of formation of shell-crossing and beyond

Filmore & Goldreich (’84); 
Bertschinger (’85);  Ryden (’93); 
Zukin & Bertschinger (’10); 
Lithwick & Dalal (’11); Alard (’13)

Self-similar solution under a certain symmetry (spherical, planar, …)

In this talk,
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Fig. 6.—Phase-space diagram for the collisionless infall similarity solution. The nondimensional velocity of a particle is K(£) = d\/d£ + (8/9)X, where 
X is the nondimensional radius (eq. [2.9]). Each branch of the phase curve corresponds to a single orbit in Fig. 5. A particle travels along the entire curve 
after first turning around; equivalently, at a fixed time all portions of the curve are occupied by different particles. Only a small portion of the phase plane 
is shown here to avoid excessive cluttering. 

Fig. 7.—Nondimensional mass distribution in the collisionless infall 
similarity solution. For A 1, M cc X3/4. Units are provided by eqs. (2.9) 
and (3.2). 

mum Xk in the trajectory (Fig. 5), since at these turning points 
the mass is reduced by shell-crossing. It will be shown below 
that the density becomes infinite at the \k, which are thus 
caustic surfaces. The magnitude of the decrease in mass di- 
minishes the higher the order k of the caustic {k increases 
with £ in the trajectory) since, as argued above, the nondimen- 
sional mass decreases as e-(2/3)* along the trajectory. Only 
the first few caustics are evident in M(X), although they show 
up more readily in the density. 

The most important result shown in Figure 7 is probably 
not the presence of caustics, but that M approaches a power 
law for X<^1. The numerical results show that 

M*11.2X3/4, D « 2.79A.-9/4, A«:l, (4.5) 

TABLE 4 
Mass and Density Distributions in the Collisionless 

Infall Similarity Solution 

where the nondimensional density D follows from differentiat- 
ing M in equation (4.6) below. The power-law behavior agrees 
with equation (3.12), which was shown in § III to hold for a 
y > 4/3 collisional gas. Indeed, one may see by comparing 
Figures 7 and 8 with Figure 2 that, provided the caustics are 
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Fig. 8.—Nondimensional density distribution in the collisionless infall similarity solution, with units given by eqs. (2.9) and (3.2). The density becomes 
infinite at the many caustics, although it is limited here to finite values because of finite resolution in log X. (The slope of the line of peaks has no particular 
significance.) For X 1, Dec X-9/4. 

smoothed over, the collisionless and y = 5/3 collisional solu- 
tions have very similar Eulerian fluid distributions. The coeffi- 
cients in equation (4.5) agree closely with those for a y = 5/3 
gas, M(0) and Z)(0) in Table 3. One might have expected the 
collisionless solution to behave more like the y = 3 collisional 
solution, corresponding to a gas with only one translational 
degree of freedom, since the collisionless gas particles move 
only in radius and have no internal degrees of freedom. The 
y = 3 solution has shock radius Xs = 0.600, however, com- 
pared with Xs = 0.339 for y = 5/3 and Xx = 0.364 for the first 
caustic in the collisionless solution. Evidently the relaxation 
occurring in the collisionless gas is nearly as efifective in 
generating “entropy” as a y = 5/3 shock. The fact that the 
collisionless gas obeys even the same power law has important 
impheations for the physical interpretation of the similarity 
solutions, which will be discussed below. 

The nondimensional density D(X) defined in equation (3.2) 
follows from equation (4.3): 

ta / \ \ 1 dM 2 -^ta XT' / i \ * 
(-H 

d\ 
dè 

(4.6) 

TABLE 5 
Parameters of the Caustics in the Collisionless 

Infall Similarity Solution 

~ ïk K (d2x/de)k 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

0.988 
1.46 
1.76 
1.98 
2.15 
2.30 
2.43 
2.54 
2.64 
2.73 

0.364 
0.236 
0.179 
0.145 
0.123 
0.108 
0.096 
0.086 
0.079 
0.073 

-6.35 
-11.6 
-16.9 
-22.4 
-28.1 
-33.8 
-39.6 
-45.6 
-51.5 
-57.6 

density is given approximately by 

£(A) * 9-^- exP 
‘ -1/2 

k _ 

x^-A)-172. (4.7) 

The density is graphed in Figure 8 and is tabulated in Table 4. 
Equation (4.6) shows that D is singular at the caustics X = Xk, 
k=l,2,---, etc., where dX/di; = 0. Physically the density 
becomes infinite at these points because adjacent mass shells 
catch up with each other when dX /dÇ = 0, compressing the 
matter between them. The abscissae Ük, ordinates Xk, and 
second derivatives (d2X/d£2)k evaluated at the maxima of 
\(£) are listed in Table 5 for k <10. From equation (4.5) it 
follows that just interior to a caustic, 0<X^ —\cl, the 

Notice from Figure 8 that for X « 1 the caustics are scarcely 
noticeable and the power-law behavior D cc X-9/4 (eq. [4.5]) 
dominates. 

A secondary density maximum occurs in the envelopes of 
many clusters of galaxies (Oemler 1974). Several theoretical 
explanations have been advanced for this feature (e.g., Dekel 
and Shaham 1980, and references therein). Recently, Farouki, 
Hoffman, and Salpeter (1983) showed that the secondary 
density maximum can move outward. They showed kinemati- 
cally from velocity gradients how this feature propagates but 
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Then, Eqs. (7)–(9) are rewritten with

dx
dτ

= v, (13)

dv
dτ

= −∇xΦ, (14)

∇2
xΦ = 4πGρm a4 δ =

3
2

Ωm,0H
2
0 a δ, (15)

With the new expressions above, the solution is formally
written as:

x(q; τ) = x(q; τ0) +

Z τ

τ0

dτ ′ v(q; τ ′), (16)

v(q; τ) = v(q; τ0) −
Z τ

τ0

dτ ′ ∇xΦ(x(q; τ ′); τ ′), (17)

where the x(q; τ0) and v(q; τ0) are the initial condition given
at an initial time τ0, which will be specified below.

In what follows, we consider the dynamics of the cosmo-
logical system given above in a finite-size box of 0 ≤ x ≤ L,
imposing the periodic boundary condition. From Eq. (15),
the potential Φ satisfying the periodic boundary condition
is expressed in an integral form as:

Φ(x) =
3
2

Ωm,0H
2
0 a

×
Z L

0

dx′

"
−L

2

(„
|x − x′|

L
− 1

2

«2

− 1
12

)#
δ(x′). (18)

The derivation of this integral expression is presented in Ap-
pendix A. Then, the force exerted on a mass element at the
position x is given by:

F (x) ≡ −∇xΦ(x)

= −3
2

Ωm,0H
2
0 a
hZ L

0

dx′ δ(x
′)

2

˘
Θ(x − x′) − Θ(x′ − x)

¯

+
1
L

Z L

0

dx′ x′ δ(x′)
i
, (19)

where the function Θ(x) represents the Heaviside step func-
tion. In the above, we used the fact that the fluctuation aver-
aged over the space becomes vanishing, i.e.,

R L

0
dx′ δ(x′) =

0. Taking the limit L → ∞, the above expression recovers
the well-known result in the case with the infinite space.

2.2 Initial condition and pre-collapse dynamics

In one-dimensional case, the so-called Zel’dovich approxima-
tion gives an exact solution for the dynamics of mass sheet
before shell-crossing. The Zel’dovich solution also provides
a natural basis for the cold initial condition. The solution is
given by

x(q; τ) = q + ψ(q) D+(τ), v(q; τ) = ψ(q)
dD+(τ)

dτ
. (20)

Here, the function D+ is the linear growth factor satisfying
the following equation:
»

d2

dτ2
− 3

2
Ωm,0H

2
0 a(τ)

–
D+(τ) = 0. (21)

Note that in terms of the cosmic time t, Eq. (21) is reduced
to the standard form of the linear evolution equation:
»

d2

dt2
+ 2H(t)

d
dt

− 3
2

Ωm,0H
2
0

a3(t)

–
D+(t) = 0. (22)

The Zel’dovich solution in Eq. (20) contains an arbitrary
function called displacement field, ψ(q), which is related
to the linear density field δL(q) given at a very early time
(τini → −∞ or tini → 0):

dψ(q)
dq

D+(τini) = −δL(q; τini) = −δL(q) D+(τini) (23)

Since the Zel’dovich solution is exact before the shell-
crossing, we do not necessarily assume that the evolved den-
sity field δ(x) is small. One may thus consider the situa-
tion that at the region around a Lagrangian coordinate q0,
the density field becomes large, and the region will undergo
the shell-crossing at the time τ0. The conditions for shell-
crossing are generally described by1

∂x
∂q

˛̨
˛̨
q0

= 0,
∂2x
∂q2

˛̨
˛̨
q0

= 0,
∂3x
∂q3

˛̨
˛̨
q0

> 0. (24)

Denoting the time of shell-crossing by τ0, we may expand the
solution (20) at τ0 around the shell-crossing region below:

x(q; τ0) ≃ q0 + ψ(q0)D+(τ0) +

ȷ
1 +

dψ(q0)
dq0

D+(τ0)

ff
(q − q0)

+
X

n=2

1
n!

dnψ(q0)
dqn

0

D+(τ0) (q − q0)
n. (25)

Using Eq. (23), the conditions for shell-crossing [Eq. (24)]
imply that

δL(q0) =
1

D+(τ0)
,

dδL(q)
dq

˛̨
˛̨
q0

= 0,
d2δL(q)

dq2

˛̨
˛̨
q0

< 0. (26)

That is, the region where the shell-crossing takes place cor-
responds to the local density peak, and the conditions for
the shell-crossing are equivalent to the peak constraints.

3 PERTURBATIVE TREATMENT OF
POST-COLLAPSE DYNAMICS

We are interested in the dynamics of mass sheet after the
shell-crossing, when the Zel’dovich solution is no longer valid
and the dynamics is governed by the the multi-stream flow.
In this section, extending the work by Colombi (2015), we
develop the perturbative calculations to deal with the multi-
stream motion around the shell-crossing.

3.1 Post-collapse perturbation theory

The basic formalism to treat post-collapse dynamics is as
follows. Starting with the cold initial conditions in Sec. 2.2,
we first follow the pre-collapse dynamics with the exact
Zel’dovich solution. Then, at the regions undergoing the
shell-crossing, we switch to a perturbative treatment, and
compute the backreaction to the Zel’dovich flow, based on
an explicit functional form of the displacement field around
the shell-crossing region. To be precise, we compute the force
exerted at each position, extrapolating the Zel’dovich flow
from Eq. (19). Integrating the force over the time, we ob-
tain the correction of the velocity to the Zel’dovich motion
from Eq. (16). Further integrating the corrected velocity over

1 The shell-crossing point is the inflection point for the mapping
from Lagrangian to Eulerian frame.
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v(q; τ) = v(q; τ0) −
Z τ
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dτ ′ ∇xΦ(x(q; τ ′); τ ′), (17)

where the x(q; τ0) and v(q; τ0) are the initial condition given
at an initial time τ0, which will be specified below.

In what follows, we consider the dynamics of the cosmo-
logical system given above in a finite-size box of 0 ≤ x ≤ L,
imposing the periodic boundary condition. From Eq. (15),
the potential Φ satisfying the periodic boundary condition
is expressed in an integral form as:

Φ(x) =
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The derivation of this integral expression is presented in Ap-
pendix A. Then, the force exerted on a mass element at the
position x is given by:

F (x) ≡ −∇xΦ(x)

= −3
2

Ωm,0H
2
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hZ L

0

dx′ δ(x
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˘
Θ(x − x′) − Θ(x′ − x)

¯

+
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Z L
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dx′ x′ δ(x′)
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where the function Θ(x) represents the Heaviside step func-
tion. In the above, we used the fact that the fluctuation aver-
aged over the space becomes vanishing, i.e.,

R L

0
dx′ δ(x′) =

0. Taking the limit L → ∞, the above expression recovers
the well-known result in the case with the infinite space.

2.2 Initial condition and pre-collapse dynamics

In one-dimensional case, the so-called Zel’dovich approxima-
tion gives an exact solution for the dynamics of mass sheet
before shell-crossing. The Zel’dovich solution also provides
a natural basis for the cold initial condition. The solution is
given by

x(q; τ) = q + ψ(q) D+(τ), v(q; τ) = ψ(q)
dD+(τ)

dτ
. (20)

Here, the function D+ is the linear growth factor satisfying
the following equation:
»

d2

dτ2
− 3

2
Ωm,0H

2
0 a(τ)

–
D+(τ) = 0. (21)

Note that in terms of the cosmic time t, Eq. (21) is reduced
to the standard form of the linear evolution equation:
»

d2

dt2
+ 2H(t)

d
dt

− 3
2

Ωm,0H
2
0

a3(t)

–
D+(t) = 0. (22)

The Zel’dovich solution in Eq. (20) contains an arbitrary
function called displacement field, ψ(q), which is related
to the linear density field δL(q) given at a very early time
(τini → −∞ or tini → 0):

dψ(q)
dq

D+(τini) = −δL(q; τini) = −δL(q) D+(τini) (23)

Since the Zel’dovich solution is exact before the shell-
crossing, we do not necessarily assume that the evolved den-
sity field δ(x) is small. One may thus consider the situa-
tion that at the region around a Lagrangian coordinate q0,
the density field becomes large, and the region will undergo
the shell-crossing at the time τ0. The conditions for shell-
crossing are generally described by1

∂x
∂q

˛̨
˛̨
q0

= 0,
∂2x
∂q2

˛̨
˛̨
q0

= 0,
∂3x
∂q3

˛̨
˛̨
q0

> 0. (24)

Denoting the time of shell-crossing by τ0, we may expand the
solution (20) at τ0 around the shell-crossing region below:

x(q; τ0) ≃ q0 + ψ(q0)D+(τ0) +

ȷ
1 +

dψ(q0)
dq0

D+(τ0)

ff
(q − q0)

+
X

n=2

1
n!

dnψ(q0)
dqn

0

D+(τ0) (q − q0)
n. (25)

Using Eq. (23), the conditions for shell-crossing [Eq. (24)]
imply that

δL(q0) =
1

D+(τ0)
,

dδL(q)
dq

˛̨
˛̨
q0

= 0,
d2δL(q)

dq2

˛̨
˛̨
q0

< 0. (26)

That is, the region where the shell-crossing takes place cor-
responds to the local density peak, and the conditions for
the shell-crossing are equivalent to the peak constraints.

3 PERTURBATIVE TREATMENT OF
POST-COLLAPSE DYNAMICS

We are interested in the dynamics of mass sheet after the
shell-crossing, when the Zel’dovich solution is no longer valid
and the dynamics is governed by the the multi-stream flow.
In this section, extending the work by Colombi (2015), we
develop the perturbative calculations to deal with the multi-
stream motion around the shell-crossing.

3.1 Post-collapse perturbation theory

The basic formalism to treat post-collapse dynamics is as
follows. Starting with the cold initial conditions in Sec. 2.2,
we first follow the pre-collapse dynamics with the exact
Zel’dovich solution. Then, at the regions undergoing the
shell-crossing, we switch to a perturbative treatment, and
compute the backreaction to the Zel’dovich flow, based on
an explicit functional form of the displacement field around
the shell-crossing region. To be precise, we compute the force
exerted at each position, extrapolating the Zel’dovich flow
from Eq. (19). Integrating the force over the time, we ob-
tain the correction of the velocity to the Zel’dovich motion
from Eq. (16). Further integrating the corrected velocity over

1 The shell-crossing point is the inflection point for the mapping
from Lagrangian to Eulerian frame.
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where the x(q; τ0) and v(q; τ0) are the initial condition given
at an initial time τ0, which will be specified below.

In what follows, we consider the dynamics of the cosmo-
logical system given above in a finite-size box of 0 ≤ x ≤ L,
imposing the periodic boundary condition. From Eq. (15),
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is expressed in an integral form as:
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The derivation of this integral expression is presented in Ap-
pendix A. Then, the force exerted on a mass element at the
position x is given by:

F (x) ≡ −∇xΦ(x)
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Ωm,0H
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0 a
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dx′ δ(x
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˘
Θ(x − x′) − Θ(x′ − x)

¯

+
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L

Z L
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dx′ x′ δ(x′)
i
, (19)

where the function Θ(x) represents the Heaviside step func-
tion. In the above, we used the fact that the fluctuation aver-
aged over the space becomes vanishing, i.e.,

R L

0
dx′ δ(x′) =

0. Taking the limit L → ∞, the above expression recovers
the well-known result in the case with the infinite space.

2.2 Initial condition and pre-collapse dynamics

In one-dimensional case, the so-called Zel’dovich approxima-
tion gives an exact solution for the dynamics of mass sheet
before shell-crossing. The Zel’dovich solution also provides
a natural basis for the cold initial condition. The solution is
given by

x(q; τ) = q + ψ(q) D+(τ), v(q; τ) = ψ(q)
dD+(τ)

dτ
. (20)

Here, the function D+ is the linear growth factor satisfying
the following equation:
»
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dτ2
− 3
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Ωm,0H

2
0 a(τ)

–
D+(τ) = 0. (21)

Note that in terms of the cosmic time t, Eq. (21) is reduced
to the standard form of the linear evolution equation:
»
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dt2
+ 2H(t)

d
dt

− 3
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Ωm,0H
2
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a3(t)
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D+(t) = 0. (22)

The Zel’dovich solution in Eq. (20) contains an arbitrary
function called displacement field, ψ(q), which is related
to the linear density field δL(q) given at a very early time
(τini → −∞ or tini → 0):

dψ(q)
dq

D+(τini) = −δL(q; τini) = −δL(q) D+(τini) (23)

Since the Zel’dovich solution is exact before the shell-
crossing, we do not necessarily assume that the evolved den-
sity field δ(x) is small. One may thus consider the situa-
tion that at the region around a Lagrangian coordinate q0,
the density field becomes large, and the region will undergo
the shell-crossing at the time τ0. The conditions for shell-
crossing are generally described by1

∂x
∂q

˛̨
˛̨
q0

= 0,
∂2x
∂q2

˛̨
˛̨
q0

= 0,
∂3x
∂q3

˛̨
˛̨
q0

> 0. (24)

Denoting the time of shell-crossing by τ0, we may expand the
solution (20) at τ0 around the shell-crossing region below:

x(q; τ0) ≃ q0 + ψ(q0)D+(τ0) +

ȷ
1 +

dψ(q0)
dq0

D+(τ0)

ff
(q − q0)

+
X

n=2

1
n!

dnψ(q0)
dqn

0

D+(τ0) (q − q0)
n. (25)

Using Eq. (23), the conditions for shell-crossing [Eq. (24)]
imply that

δL(q0) =
1

D+(τ0)
,

dδL(q)
dq

˛̨
˛̨
q0

= 0,
d2δL(q)

dq2

˛̨
˛̨
q0

< 0. (26)

That is, the region where the shell-crossing takes place cor-
responds to the local density peak, and the conditions for
the shell-crossing are equivalent to the peak constraints.

3 PERTURBATIVE TREATMENT OF
POST-COLLAPSE DYNAMICS

We are interested in the dynamics of mass sheet after the
shell-crossing, when the Zel’dovich solution is no longer valid
and the dynamics is governed by the the multi-stream flow.
In this section, extending the work by Colombi (2015), we
develop the perturbative calculations to deal with the multi-
stream motion around the shell-crossing.

3.1 Post-collapse perturbation theory

The basic formalism to treat post-collapse dynamics is as
follows. Starting with the cold initial conditions in Sec. 2.2,
we first follow the pre-collapse dynamics with the exact
Zel’dovich solution. Then, at the regions undergoing the
shell-crossing, we switch to a perturbative treatment, and
compute the backreaction to the Zel’dovich flow, based on
an explicit functional form of the displacement field around
the shell-crossing region. To be precise, we compute the force
exerted at each position, extrapolating the Zel’dovich flow
from Eq. (19). Integrating the force over the time, we ob-
tain the correction of the velocity to the Zel’dovich motion
from Eq. (16). Further integrating the corrected velocity over

1 The shell-crossing point is the inflection point for the mapping
from Lagrangian to Eulerian frame.
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tion gives an exact solution for the dynamics of mass sheet
before shell-crossing. The Zel’dovich solution also provides
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Here, the function D+ is the linear growth factor satisfying
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The Zel’dovich solution in Eq. (20) contains an arbitrary
function called displacement field, ψ(q), which is related
to the linear density field δL(q) given at a very early time
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Since the Zel’dovich solution is exact before the shell-
crossing, we do not necessarily assume that the evolved den-
sity field δ(x) is small. One may thus consider the situa-
tion that at the region around a Lagrangian coordinate q0,
the density field becomes large, and the region will undergo
the shell-crossing at the time τ0. The conditions for shell-
crossing are generally described by1
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Denoting the time of shell-crossing by τ0, we may expand the
solution (20) at τ0 around the shell-crossing region below:
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Using Eq. (23), the conditions for shell-crossing [Eq. (24)]
imply that
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˛̨
˛̨
q0

= 0,
d2δL(q)

dq2

˛̨
˛̨
q0

< 0. (26)

That is, the region where the shell-crossing takes place cor-
responds to the local density peak, and the conditions for
the shell-crossing are equivalent to the peak constraints.

3 PERTURBATIVE TREATMENT OF
POST-COLLAPSE DYNAMICS

We are interested in the dynamics of mass sheet after the
shell-crossing, when the Zel’dovich solution is no longer valid
and the dynamics is governed by the the multi-stream flow.
In this section, extending the work by Colombi (2015), we
develop the perturbative calculations to deal with the multi-
stream motion around the shell-crossing.

3.1 Post-collapse perturbation theory

The basic formalism to treat post-collapse dynamics is as
follows. Starting with the cold initial conditions in Sec. 2.2,
we first follow the pre-collapse dynamics with the exact
Zel’dovich solution. Then, at the regions undergoing the
shell-crossing, we switch to a perturbative treatment, and
compute the backreaction to the Zel’dovich flow, based on
an explicit functional form of the displacement field around
the shell-crossing region. To be precise, we compute the force
exerted at each position, extrapolating the Zel’dovich flow
from Eq. (19). Integrating the force over the time, we ob-
tain the correction of the velocity to the Zel’dovich motion
from Eq. (16). Further integrating the corrected velocity over

1 The shell-crossing point is the inflection point for the mapping
from Lagrangian to Eulerian frame.
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3.2 Computing force in multi-valued region

To derive the corrections to the motion, we first compute the
force exerted on the mass element inside the multi-valued
region, − bQc ≤ Q ≤ bQc, shown in Fig. 1. Note that the
regions outside the shell-crossing, given at x < x(− bQc) and

x > x( bQc), are described by the Zel’dovich solution.
The force in the multi-valued region is computed with

Eq. (19), dividing each integral at the right-hand-side into
three contributions:
Z L

0

dx −→
“Z x(− bQc)

0

+

Z x( bQc)

x(− bQc)

+

Z L

x( bQc)

”
dx. (38)

Assuming that the collapse region, |Q| ≤ bQc, is small
enough, the contributions to the integrals from each do-
main can be computed analytically, based on the geomet-
rical setup in Fig. 1. The detailed calculations are presented
in Appendix B. Summing up all the contributions given in
Eqs. (B4), (B5), (B8), and (B12), the force exerted on the
mass element at x = x(Q) inside the multi-valued region
becomes

F (x(Q; τ)) = −3
2
H2

0Ωm,0 a(τ)
h
J (Q; q0, τ) + F(q0, τ)

i

(39)

with the functions J and F respectively defined by

J (Q; q0, τ) =

8
>>>>>>>>><

>>>>>>>>>:

n
1 + B(q0; τ)

o
Q − C(q0; τ) Q3

−sgn(Q)
q

3(Q̂2
c − Q2)

; Qc < |Q| < bQc,

n
−2 + B(q0; τ)

o
Q − C(q0; τ) Q3

; |Q| < Qc,

(40)

and

F(q0, τ) = −ψ(q0) D+(τ), (41)

where the quantities A, B, and C are defined by Eqs. (28)–
(30). Note that in deriving Eq. (39), we have assumed that

the system follows Zel’dovich solution at |Q| > bQc. Since
the resultant expressions are written in terms of the local
quantities characterizing the density peak at position q0 and
the shell-crossing time τ0, Eq. (39) is still applicable to the
cases in which there appear other shell-crossing regions at
|Q| > bQc.

3.3 Corrections to the Zel’dovich flow

Provided the explicit expression for the force in multi-stream
region, we now compute the corrections to the Zel’dovich
flow based on the formal solution in Eqs. (16) and (17),
which give the approximate expression relevant at the multi-
valued region:

∆v(Q; τ, τq) =

Z τ

τq

dτ ′ F (x(Q, τ ′)), (42)

∆x(Q; τ, τq) =

Z τ

τq

dτ ′ ∆v(Q; τ ′, τq). (43)

Notice that depending on the position in Lagrangian space
of our interest, the expression of the force is different [see
Eq. (39)]. Thus, we have to divide the domain of the integrals
in Eqs. (42) and (43) into several pieces:

(i) τ0 ≤ τ < bτc(Q) : The position Q is located at the
single-valued region (i.e., |Q| > Qc), and the motion is still
described by the Zel’dovich solution. We have

x(Q; τ) = xZel(Q; τ) ≡ q + ψ(q)D+(τ), (44)

v(Q; τ) = vZel(Q; τ) ≡ ψ(q)
dD+(τ)

dτ
. (45)

(ii) bτc(Q) ≤ τ < τc(Q) : The position Q lies at multi-

valued region, and it satisfies Qc < |Q| ≤ bQc. Thus, in
addition to the Zel’dovich flow, the corrections arising from
the multi-stream flow needs to be added:

x(Q; τ) = xZel(Q; bτc(Q)) + ∆xout(Q; τ, bτc(Q)), (46)

v(Q; τ) = vZel(Q; bτc(Q)) + ∆vout(Q; τ, bτc(Q)). (47)

(iii) τc(Q) ≤ τ : This corresponds to |Q| ≤ Qc, and the
position Q now lies at inner part of the multi-valued region.
Similar to the above case, the backreacion to the Zel’dovich
flow needs to be computed, including both the multi-stream
dynamics at inner part and the incoming flow from the outer
part. We may write

x(Q; τ) = xZel(Q; bτc(Q)) + ∆xin(Q; τ, bτc(Q)), (48)

v(Q; τ) = vZel(Q; bτc(Q)) + ∆vin(Q; τ, bτc(Q)). (49)

In what follows, we shall compute the backreaction to
the Zel’dovich flow, and derive the expressions for ∆x and
∆v at each domain. The calculation of the corrections is
rather straightforward, but needs several step. Readers who
are not interested in the detailed derivation may skip the
subsequent section, but just check the final results summa-
rized in Eqs. (53) and (57) for outer part, and Eqs. (61) and
(65) for inner part, together with the coefficients in Table 1
and 2.

3.3.1 Velocity and position at outer part: Qc < |Q| ≤ bQc

Let us first consider the outer part of the multi-valued region
(ii). In this case, the correction to the velocity becomes

∆vout(Q; τ, bτc) = −3
2
H2

0 Ωm,0

Z τ

bτc(Q)

dτ ′ a(τ ′)

×
n
J (Q; q0, τ

′) + F(q0, τ
′)
o

(50)

Recalling the fact that bτc − τ0 ≃ (κ/8) Q2 [see Eq. (36)], the
above integrals are performed with a help of the formulae in
Appendix D [see Eqs. (D4) and (D5)]. For the integration of
the first term, we obtain the approximate expression valid
for the short period after the shell-crossing time τ0:

Z τ

bτc(Q)

dτ ′ a(τ ′)J (Q; q0, τ
′)

≃ a(τ0)

"
T Q +

ȷ
−κ

8
+

1
6
δ′′L(q0)D+(τ0) T

ff
Q3

− sgn(Q)
κ

4
√

3

“
bQc(τ)

2 − Q2
”3/2

− κ
48
δ′′L(q0)D+(τ0) Q5

#
,

(51)

MNRAS 000, 1–21 (2015)

Short title, max. 45 characters 5

3.2 Computing force in multi-valued region

To derive the corrections to the motion, we first compute the
force exerted on the mass element inside the multi-valued
region, − bQc ≤ Q ≤ bQc, shown in Fig. 1. Note that the
regions outside the shell-crossing, given at x < x(− bQc) and

x > x( bQc), are described by the Zel’dovich solution.
The force in the multi-valued region is computed with

Eq. (19), dividing each integral at the right-hand-side into
three contributions:
Z L

0

dx −→
“Z x(− bQc)

0

+

Z x( bQc)

x(− bQc)

+

Z L

x( bQc)

”
dx. (38)

Assuming that the collapse region, |Q| ≤ bQc, is small
enough, the contributions to the integrals from each do-
main can be computed analytically, based on the geomet-
rical setup in Fig. 1. The detailed calculations are presented
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the shell-crossing time τ0, Eq. (39) is still applicable to the
cases in which there appear other shell-crossing regions at
|Q| > bQc.
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Provided the explicit expression for the force in multi-stream
region, we now compute the corrections to the Zel’dovich
flow based on the formal solution in Eqs. (16) and (17),
which give the approximate expression relevant at the multi-
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of our interest, the expression of the force is different [see
Eq. (39)]. Thus, we have to divide the domain of the integrals
in Eqs. (42) and (43) into several pieces:

(i) τ0 ≤ τ < bτc(Q) : The position Q is located at the
single-valued region (i.e., |Q| > Qc), and the motion is still
described by the Zel’dovich solution. We have
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(ii) bτc(Q) ≤ τ < τc(Q) : The position Q lies at multi-

valued region, and it satisfies Qc < |Q| ≤ bQc. Thus, in
addition to the Zel’dovich flow, the corrections arising from
the multi-stream flow needs to be added:
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(iii) τc(Q) ≤ τ : This corresponds to |Q| ≤ Qc, and the
position Q now lies at inner part of the multi-valued region.
Similar to the above case, the backreacion to the Zel’dovich
flow needs to be computed, including both the multi-stream
dynamics at inner part and the incoming flow from the outer
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x(Q; τ) = xZel(Q; bτc(Q)) + ∆xin(Q; τ, bτc(Q)), (48)

v(Q; τ) = vZel(Q; bτc(Q)) + ∆vin(Q; τ, bτc(Q)). (49)

In what follows, we shall compute the backreaction to
the Zel’dovich flow, and derive the expressions for ∆x and
∆v at each domain. The calculation of the corrections is
rather straightforward, but needs several step. Readers who
are not interested in the detailed derivation may skip the
subsequent section, but just check the final results summa-
rized in Eqs. (53) and (57) for outer part, and Eqs. (61) and
(65) for inner part, together with the coefficients in Table 1
and 2.

3.3.1 Velocity and position at outer part: Qc < |Q| ≤ bQc

Let us first consider the outer part of the multi-valued region
(ii). In this case, the correction to the velocity becomes
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Recalling the fact that bτc − τ0 ≃ (κ/8) Q2 [see Eq. (36)], the
above integrals are performed with a help of the formulae in
Appendix D [see Eqs. (D4) and (D5)]. For the integration of
the first term, we obtain the approximate expression valid
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Post-collapse PT: single cluster

10 A. Taruya and S. Colombi

Figure 2. Snapshots of phase-space structure (upper inset) and density profile (lower inset) for the single-cluster formation in Einstein-
de Sitter universe. For the initial density contrast given in Eq. (68), results of N -body simulations are depicted as red lines, while the
analytic results with Zel’dovich solution are shown in green dotted lines. The blue solid lines are the prediction with basic post-collapse
PT treatment.

Figure 3. Same as in Fig. 2, but the variants of the post-collapse PT calculation including the higher-order corrections are compared
with N -body simulations (red): higher-order continuous (cyan dot-dashed), higher-order (black dotted), and higher-order spline (dashed
magenta).
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the development of phase-space structure. In each figure, the
upper and lower panels show the results without and with
adaptive smoothing, respectively. The free parameter of the
adaptivie smoothing, fcross, is set here to 1 for post-collapse
PT and 0.5 for Zel’dovich solution.

In general, as the clusters dynamically gets closer, both
the post-collapse PT and Zel’dovich solution fail to describe
the real dynamics in N -body simulations. While the post-
collapse PT can only give the perturbative correction to the
motion of clusters based on the initial density fields, the
actual motion of clusters is significantly affected by the in-
teraction with one other cluster. As a result, the location
of multi-valued regions predipcted by the post-collapse PT
becomes largely deviates from the actual position, and the
outcome of phase-space structure in N -body simulation sub-
stantially differ from what is expected from post-collapse PT
and Zel’dovich solution.

This generic trend does not change at all even if we in-
troduce the adaptive smoothing, but at the time after the
merger happens (i.e., a = 0.32), the visual impression is
rather changed. The dynamics at central part is now de-
scribed by the smoothed displacement field, with which the
predicted phase-space structure is just like those of a sin-
gle cluster. While this is totally a wrong prediction to the
merging dynamics, the substantial improvement is found
for the description at the outer part, where without adap-
tive smoothing, we still see the elongated two clusters, and
the disagreement between prediction and simulation is much
more pronounced. Introducing both adaptive smoothing and
the higher-order corrections to the post-collapse PT further
gives a better description to the merging clusters (Fig. 5 ).

The results seen in the merging clusters demonstrate
that the adaptive smoothing is indeed powerful and effec-
tive in describing the global trend of the phase-space struc-
ture. While this cannot capture the detailed inner structure
of the high-density region, it can give a better description
to a large-scale dynamics, keeping the location and size of
halos reasonably accurate. As we will see later, the adap-
tive smoothing can also give a drastic improvement on the
prediction of power spectrum in random initial conditions.
Further, the introduction of adaptive smoothing makes the
analytic calculations insensitive to the small-scale cutoff in
the initial condition, thus giving us a robust prediction. In
these respects, the criterion (iii) in Sec. 4.2 is the essen-
tial part of the adaptive smoothing procedure, and a choice
of fcross is crucial. Our various examinations suggest that
fcross = 1 and 0.5 are respectively the most optimal choice
for the post-collapse PT and Zel’dovich solution, and we
shall adopt these values in subsequent section.

5.4 Random initial condition: CDM-like spectrum

Let us now consider a more relevant cosmological set up
with random initial conditions. Although there is no realistic
setup in 1D, a relevant initial condition to be compared with
3D case may be given by the Gaussian random condisition
with the initial power spectrum:

P1D(k) =
k2

2π
P3D(k) (70)

with P3D being the matter power spectrum in 3D, which
we computed with the transfer function by Eisenstein & Hu

(1998). We set the cosmological parameters to those of
the base ΛCDM model determined by Planck Ade et al.
(2015): Ωm,0 = 0.3121, ΩΛ = 0.6879, Ωb = 0.04884,
H0 = 67.51 km s−1 Mpc−1, ns = 0.9653, σ8 = 0815. The
simulations were performed with the boxsize L = 1, 000Mpc
and initial redshift, zi = 99. The convergence of the simula-
tion results has been tested by varying the number of par-
ticles Nparticle

2, number of PM grid Ngrid and cutoff scales
of the initial power spectrum, kcut. Here, we mainly present
the results with Nparticle = 200, 000, Ngrid = 20, 000, and
kcut = 12.6Mpc−1. For the power spectrum measurement,
we ran the 50 simulations.

Fig. 6 shows the evolved results of the power spectra ob-
tained from the simulations (red) and the predictions. In left
panel, the predictions are plotted for the basic post-collapse
PT (blue solid) and Zel’dovich solution (green dotted), while
the variants of the prediction for post-collapse PT are sum-
marized in right panel, with the same color codes and line
types as in previous figures. Note that these predictions are
the measurement results. That is, based on the Zel’dovich
solution or post-collapse PT, we create the phase-space por-
trait with particles for each random initial condition, and
collecting the 50 independent realizations, the power spec-
trum is measured at each redshift from those phase-space
data. For comparison, in left panel, we also plot the analytic
power spectrum of the Zel’dovich solution, PZA(k) (black
solid line) (color code and line type for analytic power spec-
trum may have to be changed):

PZA(k; z) =

Z ∞

0

dq cos(k q)
h
e−k2{I(0)−I(q)}D+(z)2 − 1

i
;

I(q) =

Z ∞

0

dp
π

cos(p q)
P1D(p)

p2
(71)

In contrast to the 3D case, the amplitude of power spec-
trum at small scales is not strongly enhanced in 1D, and
the dimensionless power asymptotically becomes flat, i.e.,
k P (k) ≃const., as it has been predicted by a simple argu-
ment (e.g., Gouda & Nakamura 1989). Still, the deviation
from linear theory predictions is significant, and a proper
account of nonlinearity is essential for theoretical prediction.

Without the adaptive smoothing (depcited as thin
lines), the prediction with Zel’dovich solution starts to de-
viate from simulations at very early time (z = 15.3). The
post-collapse PT can capture the nonlinear growth associ-
ated with formation of halos, and it reproduces the sim-
ulation results to some extent. As decreasing the redshift,
however, the structure of halos is well-developed via the
merging and accretion processes, and the predictions de-
picted as thin lines significantly underestimate the power
spectrum even if the higher-order corrections are included
(left panel). Fig. 7 shows the phase-space structure clipped
from a particular realization data. As we see in left pan-
els, both the Zel’dovich solution and post-collapse PT fail
to reproduce the halo structures in simulation, and predict
the spurious elongated structure, leading to the underesti-
mation of the power spectrum. Note that the predictions

2 To be precise, sheets rather than particles may be more ap-
propriate terminology, as we have used in previous section. But
here, we shall follow the conventions in N -body simulation and
interchangebly use both.
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in 2D case. Here, the differential operator, T̂ , is defined as
T̂ f(t) ≡ f̈(t) + 2Hḟ(t).

Noting that Jij is expressed as Jij = δij + Ψi,j , the
evolution equations derived above are further recast as those
of longitudinal and transverse parts of displacement field,
i.e., ∇q · Ψ and ∇q × Ψ. The resultant equations become
summarized below:
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)
Ψk,k

= −ϵijkϵipq Ψj,p
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)
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(16)

ϵijk T̂ Ψj,k = −ϵijk Ψp,j T̂ Ψp,k. (17)✒ ✑
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)
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= −ϵilϵjk Ψl,k

(
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)
ψi,j (18)

ϵpq T̂ Ψq,p = −ϵpq Ψk,qT̂ Ψk,p. (19)✒ ✑
Note that Eqs. (16) and (17) correspond to Eqs. (19)

and (31) of Matsubara (2015).

2 LAGRANGIAN PERTURBATION THEORY

Eqs. (16)–(19) are the basis to perturbatively solve displace-
ment field in 3D and 2D. In this section, we develop a per-
turbative expansion of Ψ, and present analytic expressions
for perturbative solutions in a specific initial condition:

Ψ(q, t) = Ψ(1)(q, t) +Ψ(2)(q, t) +Ψ(3)(q, t) + · · · (20)

To derive the analytic expressions relevant for standard
ΛCDM model, we employ the Einstein-de Sitter approxi-
mation. In this approximation, all the time-dependent func-
tions obtained in the Einstein de-Sitter Universe, which are
expressed in terms of the scale factor a(t), are recast as the
function of linear growth factor D1 by simply replacing a
with D1. Let us introduce the new time variable η:

η ≡ lnD1(t). (21)

Substituting Eq. (20) into Eqs. (16)–(19), in the Einstein-de

Sitter approximation, the following recurrence relations for
displacement field are obtained:
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∂
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✒ ✑
Eqs. (22) and (23) exactly coincide with Eqs. (60) and

(61) of Matsubara (2015). The longitudinal- and transverse-
mode of the displacement field have different linear differen-
tial operators (at left-hand-side). To derive the higher-order
growth functions, the following Green functions are useful:

GL(η1, η2) =
2
5

(
eη1−η2 − e−(3/2)(η1−η2)

)
Θ(η1 − η2). (26)

for longitudinal mode, and

GT(η1, η2) = 2
(
1− e−(1/2)(η1−η2)

)
Θ(η1 − η2). (27)

for transverse mode. It is easy to check that these functions
satisfy G(η, η) = 0 and d

dηG(η1, η2)|η1=η2 = 1.
Below, we first give a linear-order displacement field

as initial condition. Then explicit forms of the higher-order
displacement fields are derived up to third order.

2.1 Initial condition (first order)

We consider the initial condition set at t = t0. For an an-
alytically tractable initial condition, the displacement field
is assumed to have a simple sinusoidal form with periodic
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in 2D case. Here, the differential operator, T̂ , is defined as
T̂ f(t) ≡ f̈(t) + 2Hḟ(t).

Noting that Jij is expressed as Jij = δij + Ψi,j , the
evolution equations derived above are further recast as those
of longitudinal and transverse parts of displacement field,
i.e., ∇q · Ψ and ∇q × Ψ. The resultant equations become
summarized below:
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)
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ϵpq T̂ Ψq,p = −ϵpq Ψk,qT̂ Ψk,p. (19)✒ ✑
Note that Eqs. (16) and (17) correspond to Eqs. (19)

and (31) of Matsubara (2015).

2 LAGRANGIAN PERTURBATION THEORY

Eqs. (16)–(19) are the basis to perturbatively solve displace-
ment field in 3D and 2D. In this section, we develop a per-
turbative expansion of Ψ, and present analytic expressions
for perturbative solutions in a specific initial condition:

Ψ(q, t) = Ψ(1)(q, t) +Ψ(2)(q, t) +Ψ(3)(q, t) + · · · (20)

To derive the analytic expressions relevant for standard
ΛCDM model, we employ the Einstein-de Sitter approxi-
mation. In this approximation, all the time-dependent func-
tions obtained in the Einstein de-Sitter Universe, which are
expressed in terms of the scale factor a(t), are recast as the
function of linear growth factor D1 by simply replacing a
with D1. Let us introduce the new time variable η:

η ≡ lnD1(t). (21)

Substituting Eq. (20) into Eqs. (16)–(19), in the Einstein-de

Sitter approximation, the following recurrence relations for
displacement field are obtained:
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Eqs. (22) and (23) exactly coincide with Eqs. (60) and

(61) of Matsubara (2015). The longitudinal- and transverse-
mode of the displacement field have different linear differen-
tial operators (at left-hand-side). To derive the higher-order
growth functions, the following Green functions are useful:

GL(η1, η2) =
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for longitudinal mode, and

GT(η1, η2) = 2
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1− e−(1/2)(η1−η2)

)
Θ(η1 − η2). (27)

for transverse mode. It is easy to check that these functions
satisfy G(η, η) = 0 and d

dηG(η1, η2)|η1=η2 = 1.
Below, we first give a linear-order displacement field

as initial condition. Then explicit forms of the higher-order
displacement fields are derived up to third order.

2.1 Initial condition (first order)

We consider the initial condition set at t = t0. For an an-
alytically tractable initial condition, the displacement field
is assumed to have a simple sinusoidal form with periodic
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in 2D case. Here, the differential operator, T̂ , is defined as
T̂ f(t) ≡ f̈(t) + 2Hḟ(t).

Noting that Jij is expressed as Jij = δij + Ψi,j , the
evolution equations derived above are further recast as those
of longitudinal and transverse parts of displacement field,
i.e., ∇q · Ψ and ∇q × Ψ. The resultant equations become
summarized below:
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2 LAGRANGIAN PERTURBATION THEORY

Eqs. (16)–(19) are the basis to perturbatively solve displace-
ment field in 3D and 2D. In this section, we develop a per-
turbative expansion of Ψ, and present analytic expressions
for perturbative solutions in a specific initial condition:

Ψ(q, t) = Ψ(1)(q, t) +Ψ(2)(q, t) +Ψ(3)(q, t) + · · · (20)

To derive the analytic expressions relevant for standard
ΛCDM model, we employ the Einstein-de Sitter approxi-
mation. In this approximation, all the time-dependent func-
tions obtained in the Einstein de-Sitter Universe, which are
expressed in terms of the scale factor a(t), are recast as the
function of linear growth factor D1 by simply replacing a
with D1. Let us introduce the new time variable η:

η ≡ lnD1(t). (21)

Substituting Eq. (20) into Eqs. (16)–(19), in the Einstein-de

Sitter approximation, the following recurrence relations for
displacement field are obtained:
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Eqs. (22) and (23) exactly coincide with Eqs. (60) and

(61) of Matsubara (2015). The longitudinal- and transverse-
mode of the displacement field have different linear differen-
tial operators (at left-hand-side). To derive the higher-order
growth functions, the following Green functions are useful:
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for transverse mode. It is easy to check that these functions
satisfy G(η, η) = 0 and d

dηG(η1, η2)|η1=η2 = 1.
Below, we first give a linear-order displacement field

as initial condition. Then explicit forms of the higher-order
displacement fields are derived up to third order.

2.1 Initial condition (first order)

We consider the initial condition set at t = t0. For an an-
alytically tractable initial condition, the displacement field
is assumed to have a simple sinusoidal form with periodic
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in 2D case. Here, the differential operator, T̂ , is defined as
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Noting that Jij is expressed as Jij = δij + Ψi,j , the
evolution equations derived above are further recast as those
of longitudinal and transverse parts of displacement field,
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tions obtained in the Einstein de-Sitter Universe, which are
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Below, we first give a linear-order displacement field

as initial condition. Then explicit forms of the higher-order
displacement fields are derived up to third order.

2.1 Initial condition (first order)

We consider the initial condition set at t = t0. For an an-
alytically tractable initial condition, the displacement field
is assumed to have a simple sinusoidal form with periodic
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in 2D case. Here, the differential operator, T̂ , is defined as
T̂ f(t) ≡ f̈(t) + 2Hḟ(t).

Noting that Jij is expressed as Jij = δij + Ψi,j , the
evolution equations derived above are further recast as those
of longitudinal and transverse parts of displacement field,
i.e., ∇q · Ψ and ∇q × Ψ. The resultant equations become
summarized below:
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Note that Eqs. (16) and (17) correspond to Eqs. (19)

and (31) of Matsubara (2015).

2 LAGRANGIAN PERTURBATION THEORY

Eqs. (16)–(19) are the basis to perturbatively solve displace-
ment field in 3D and 2D. In this section, we develop a per-
turbative expansion of Ψ, and present analytic expressions
for perturbative solutions in a specific initial condition:

Ψ(q, t) = Ψ(1)(q, t) +Ψ(2)(q, t) +Ψ(3)(q, t) + · · · (20)

To derive the analytic expressions relevant for standard
ΛCDM model, we employ the Einstein-de Sitter approxi-
mation. In this approximation, all the time-dependent func-
tions obtained in the Einstein de-Sitter Universe, which are
expressed in terms of the scale factor a(t), are recast as the
function of linear growth factor D1 by simply replacing a
with D1. Let us introduce the new time variable η:

η ≡ lnD1(t). (21)

Substituting Eq. (20) into Eqs. (16)–(19), in the Einstein-de

Sitter approximation, the following recurrence relations for
displacement field are obtained:
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Eqs. (22) and (23) exactly coincide with Eqs. (60) and

(61) of Matsubara (2015). The longitudinal- and transverse-
mode of the displacement field have different linear differen-
tial operators (at left-hand-side). To derive the higher-order
growth functions, the following Green functions are useful:
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for transverse mode. It is easy to check that these functions
satisfy G(η, η) = 0 and d

dηG(η1, η2)|η1=η2 = 1.
Below, we first give a linear-order displacement field

as initial condition. Then explicit forms of the higher-order
displacement fields are derived up to third order.

2.1 Initial condition (first order)

We consider the initial condition set at t = t0. For an an-
alytically tractable initial condition, the displacement field
is assumed to have a simple sinusoidal form with periodic
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in 2D case. Here, the differential operator, T̂ , is defined as
T̂ f(t) ≡ f̈(t) + 2Hḟ(t).

Noting that Jij is expressed as Jij = δij + Ψi,j , the
evolution equations derived above are further recast as those
of longitudinal and transverse parts of displacement field,
i.e., ∇q · Ψ and ∇q × Ψ. The resultant equations become
summarized below:
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Note that Eqs. (16) and (17) correspond to Eqs. (19)

and (31) of Matsubara (2015).

2 LAGRANGIAN PERTURBATION THEORY

Eqs. (16)–(19) are the basis to perturbatively solve displace-
ment field in 3D and 2D. In this section, we develop a per-
turbative expansion of Ψ, and present analytic expressions
for perturbative solutions in a specific initial condition:

Ψ(q, t) = Ψ(1)(q, t) +Ψ(2)(q, t) +Ψ(3)(q, t) + · · · (20)

To derive the analytic expressions relevant for standard
ΛCDM model, we employ the Einstein-de Sitter approxi-
mation. In this approximation, all the time-dependent func-
tions obtained in the Einstein de-Sitter Universe, which are
expressed in terms of the scale factor a(t), are recast as the
function of linear growth factor D1 by simply replacing a
with D1. Let us introduce the new time variable η:

η ≡ lnD1(t). (21)

Substituting Eq. (20) into Eqs. (16)–(19), in the Einstein-de

Sitter approximation, the following recurrence relations for
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Eqs. (22) and (23) exactly coincide with Eqs. (60) and

(61) of Matsubara (2015). The longitudinal- and transverse-
mode of the displacement field have different linear differen-
tial operators (at left-hand-side). To derive the higher-order
growth functions, the following Green functions are useful:

GL(η1, η2) =
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for longitudinal mode, and
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for transverse mode. It is easy to check that these functions
satisfy G(η, η) = 0 and d

dηG(η1, η2)|η1=η2 = 1.
Below, we first give a linear-order displacement field

as initial condition. Then explicit forms of the higher-order
displacement fields are derived up to third order.

2.1 Initial condition (first order)

We consider the initial condition set at t = t0. For an an-
alytically tractable initial condition, the displacement field
is assumed to have a simple sinusoidal form with periodic
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in 2D case. Here, the differential operator, T̂ , is defined as
T̂ f(t) ≡ f̈(t) + 2Hḟ(t).

Noting that Jij is expressed as Jij = δij + Ψi,j , the
evolution equations derived above are further recast as those
of longitudinal and transverse parts of displacement field,
i.e., ∇q · Ψ and ∇q × Ψ. The resultant equations become
summarized below:
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and (31) of Matsubara (2015).

2 LAGRANGIAN PERTURBATION THEORY

Eqs. (16)–(19) are the basis to perturbatively solve displace-
ment field in 3D and 2D. In this section, we develop a per-
turbative expansion of Ψ, and present analytic expressions
for perturbative solutions in a specific initial condition:

Ψ(q, t) = Ψ(1)(q, t) +Ψ(2)(q, t) +Ψ(3)(q, t) + · · · (20)

To derive the analytic expressions relevant for standard
ΛCDM model, we employ the Einstein-de Sitter approxi-
mation. In this approximation, all the time-dependent func-
tions obtained in the Einstein de-Sitter Universe, which are
expressed in terms of the scale factor a(t), are recast as the
function of linear growth factor D1 by simply replacing a
with D1. Let us introduce the new time variable η:

η ≡ lnD1(t). (21)

Substituting Eq. (20) into Eqs. (16)–(19), in the Einstein-de

Sitter approximation, the following recurrence relations for
displacement field are obtained:
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Eqs. (22) and (23) exactly coincide with Eqs. (60) and

(61) of Matsubara (2015). The longitudinal- and transverse-
mode of the displacement field have different linear differen-
tial operators (at left-hand-side). To derive the higher-order
growth functions, the following Green functions are useful:
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for transverse mode. It is easy to check that these functions
satisfy G(η, η) = 0 and d

dηG(η1, η2)|η1=η2 = 1.
Below, we first give a linear-order displacement field

as initial condition. Then explicit forms of the higher-order
displacement fields are derived up to third order.

2.1 Initial condition (first order)

We consider the initial condition set at t = t0. For an an-
alytically tractable initial condition, the displacement field
is assumed to have a simple sinusoidal form with periodic
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in 2D case. Here, the differential operator, T̂ , is defined as
T̂ f(t) ≡ f̈(t) + 2Hḟ(t).

Noting that Jij is expressed as Jij = δij + Ψi,j , the
evolution equations derived above are further recast as those
of longitudinal and transverse parts of displacement field,
i.e., ∇q · Ψ and ∇q × Ψ. The resultant equations become
summarized below:
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2 LAGRANGIAN PERTURBATION THEORY

Eqs. (16)–(19) are the basis to perturbatively solve displace-
ment field in 3D and 2D. In this section, we develop a per-
turbative expansion of Ψ, and present analytic expressions
for perturbative solutions in a specific initial condition:

Ψ(q, t) = Ψ(1)(q, t) +Ψ(2)(q, t) +Ψ(3)(q, t) + · · · (20)

To derive the analytic expressions relevant for standard
ΛCDM model, we employ the Einstein-de Sitter approxi-
mation. In this approximation, all the time-dependent func-
tions obtained in the Einstein de-Sitter Universe, which are
expressed in terms of the scale factor a(t), are recast as the
function of linear growth factor D1 by simply replacing a
with D1. Let us introduce the new time variable η:

η ≡ lnD1(t). (21)

Substituting Eq. (20) into Eqs. (16)–(19), in the Einstein-de

Sitter approximation, the following recurrence relations for
displacement field are obtained:
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Eqs. (22) and (23) exactly coincide with Eqs. (60) and

(61) of Matsubara (2015). The longitudinal- and transverse-
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for transverse mode. It is easy to check that these functions
satisfy G(η, η) = 0 and d

dηG(η1, η2)|η1=η2 = 1.
Below, we first give a linear-order displacement field

as initial condition. Then explicit forms of the higher-order
displacement fields are derived up to third order.

2.1 Initial condition (first order)

We consider the initial condition set at t = t0. For an an-
alytically tractable initial condition, the displacement field
is assumed to have a simple sinusoidal form with periodic
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in 2D case. Here, the differential operator, T̂ , is defined as
T̂ f(t) ≡ f̈(t) + 2Hḟ(t).

Noting that Jij is expressed as Jij = δij + Ψi,j , the
evolution equations derived above are further recast as those
of longitudinal and transverse parts of displacement field,
i.e., ∇q · Ψ and ∇q × Ψ. The resultant equations become
summarized below:
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for perturbative solutions in a specific initial condition:

Ψ(q, t) = Ψ(1)(q, t) +Ψ(2)(q, t) +Ψ(3)(q, t) + · · · (20)

To derive the analytic expressions relevant for standard
ΛCDM model, we employ the Einstein-de Sitter approxi-
mation. In this approximation, all the time-dependent func-
tions obtained in the Einstein de-Sitter Universe, which are
expressed in terms of the scale factor a(t), are recast as the
function of linear growth factor D1 by simply replacing a
with D1. Let us introduce the new time variable η:

η ≡ lnD1(t). (21)

Substituting Eq. (20) into Eqs. (16)–(19), in the Einstein-de

Sitter approximation, the following recurrence relations for
displacement field are obtained:

3D✓ ✏
( ∂2

∂η2
+

1
2
∂
∂η

− 3
2

)
Ψ(n)

k,k

= −
∑

m1+m2=n

ϵijkϵipq Ψ
(m1)
j,p

( ∂2

∂η2
+

1
2
∂
∂η

− 3
4

)
ψ(m2)

k,q

− 1
2

∑

m1+m2+m3=n

ϵijkϵpqr Ψ
(m1)
i,p Ψ(m2)

j,q

×
( ∂2

∂η2
+

1
2
∂
∂η

− 1
2

)
Ψ(m3)

k,r , (22)

ϵijk
( ∂2

∂η2
+

1
2
∂
∂η

)
Ψ(n)

j,k

= −
∑

m1+m2=n

ϵijk Ψ
(m1)
p,j

( ∂2

∂η2
+

1
2
∂
∂η

)
Ψ(m2)

p,k . (23)

✒ ✑
2D✓ ✏

( ∂2

∂η2
+

1
2
∂
∂η

− 3
2

)
Ψ(n)

k,k

= −
∑

m1+m2=n

ϵilϵjk Ψ
(m1)
l,k

( ∂2

∂η2
+

1
2
∂
∂η

− 3
4

)
ψ(m2)

i,j

(24)

ϵpq
( ∂2

∂η2
+

1
2
∂
∂η

)
Ψ(n)

q,p

= −
∑

m1+m2=n

ϵpq Ψ
(m1)
k,q

( ∂2

∂η2
+

1
2
∂
∂η

)
Ψ(m2)

k,p . (25)

✒ ✑
Eqs. (22) and (23) exactly coincide with Eqs. (60) and

(61) of Matsubara (2015). The longitudinal- and transverse-
mode of the displacement field have different linear differen-
tial operators (at left-hand-side). To derive the higher-order
growth functions, the following Green functions are useful:

GL(η1, η2) =
2
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)
Θ(η1 − η2). (26)
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)
Θ(η1 − η2). (27)

for transverse mode. It is easy to check that these functions
satisfy G(η, η) = 0 and d

dηG(η1, η2)|η1=η2 = 1.
Below, we first give a linear-order displacement field

as initial condition. Then explicit forms of the higher-order
displacement fields are derived up to third order.

2.1 Initial condition (first order)

We consider the initial condition set at t = t0. For an an-
alytically tractable initial condition, the displacement field
is assumed to have a simple sinusoidal form with periodic
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in 2D case. Here, the differential operator, T̂ , is defined as
T̂ f(t) ≡ f̈(t) + 2Hḟ(t).

Noting that Jij is expressed as Jij = δij + Ψi,j , the
evolution equations derived above are further recast as those
of longitudinal and transverse parts of displacement field,
i.e., ∇q · Ψ and ∇q × Ψ. The resultant equations become
summarized below:
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Note that Eqs. (16) and (17) correspond to Eqs. (19)

and (31) of Matsubara (2015).

2 LAGRANGIAN PERTURBATION THEORY

Eqs. (16)–(19) are the basis to perturbatively solve displace-
ment field in 3D and 2D. In this section, we develop a per-
turbative expansion of Ψ, and present analytic expressions
for perturbative solutions in a specific initial condition:

Ψ(q, t) = Ψ(1)(q, t) +Ψ(2)(q, t) +Ψ(3)(q, t) + · · · (20)

To derive the analytic expressions relevant for standard
ΛCDM model, we employ the Einstein-de Sitter approxi-
mation. In this approximation, all the time-dependent func-
tions obtained in the Einstein de-Sitter Universe, which are
expressed in terms of the scale factor a(t), are recast as the
function of linear growth factor D1 by simply replacing a
with D1. Let us introduce the new time variable η:

η ≡ lnD1(t). (21)

Substituting Eq. (20) into Eqs. (16)–(19), in the Einstein-de

Sitter approximation, the following recurrence relations for
displacement field are obtained:
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Eqs. (22) and (23) exactly coincide with Eqs. (60) and

(61) of Matsubara (2015). The longitudinal- and transverse-
mode of the displacement field have different linear differen-
tial operators (at left-hand-side). To derive the higher-order
growth functions, the following Green functions are useful:

GL(η1, η2) =
2
5

(
eη1−η2 − e−(3/2)(η1−η2)

)
Θ(η1 − η2). (26)

for longitudinal mode, and

GT(η1, η2) = 2
(
1− e−(1/2)(η1−η2)

)
Θ(η1 − η2). (27)

for transverse mode. It is easy to check that these functions
satisfy G(η, η) = 0 and d

dηG(η1, η2)|η1=η2 = 1.
Below, we first give a linear-order displacement field

as initial condition. Then explicit forms of the higher-order
displacement fields are derived up to third order.

2.1 Initial condition (first order)

We consider the initial condition set at t = t0. For an an-
alytically tractable initial condition, the displacement field
is assumed to have a simple sinusoidal form with periodic
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in 2D case. Here, the differential operator, T̂ , is defined as
T̂ f(t) ≡ f̈(t) + 2Hḟ(t).

Noting that Jij is expressed as Jij = δij + Ψi,j , the
evolution equations derived above are further recast as those
of longitudinal and transverse parts of displacement field,
i.e., ∇q · Ψ and ∇q × Ψ. The resultant equations become
summarized below:
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ϵpq T̂ Ψq,p = −ϵpq Ψk,qT̂ Ψk,p. (19)✒ ✑
Note that Eqs. (16) and (17) correspond to Eqs. (19)

and (31) of Matsubara (2015).

2 LAGRANGIAN PERTURBATION THEORY

Eqs. (16)–(19) are the basis to perturbatively solve displace-
ment field in 3D and 2D. In this section, we develop a per-
turbative expansion of Ψ, and present analytic expressions
for perturbative solutions in a specific initial condition:

Ψ(q, t) = Ψ(1)(q, t) +Ψ(2)(q, t) +Ψ(3)(q, t) + · · · (20)

To derive the analytic expressions relevant for standard
ΛCDM model, we employ the Einstein-de Sitter approxi-
mation. In this approximation, all the time-dependent func-
tions obtained in the Einstein de-Sitter Universe, which are
expressed in terms of the scale factor a(t), are recast as the
function of linear growth factor D1 by simply replacing a
with D1. Let us introduce the new time variable η:

η ≡ lnD1(t). (21)

Substituting Eq. (20) into Eqs. (16)–(19), in the Einstein-de

Sitter approximation, the following recurrence relations for
displacement field are obtained:
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Eqs. (22) and (23) exactly coincide with Eqs. (60) and

(61) of Matsubara (2015). The longitudinal- and transverse-
mode of the displacement field have different linear differen-
tial operators (at left-hand-side). To derive the higher-order
growth functions, the following Green functions are useful:

GL(η1, η2) =
2
5

(
eη1−η2 − e−(3/2)(η1−η2)

)
Θ(η1 − η2). (26)

for longitudinal mode, and

GT(η1, η2) = 2
(
1− e−(1/2)(η1−η2)

)
Θ(η1 − η2). (27)

for transverse mode. It is easy to check that these functions
satisfy G(η, η) = 0 and d

dηG(η1, η2)|η1=η2 = 1.
Below, we first give a linear-order displacement field

as initial condition. Then explicit forms of the higher-order
displacement fields are derived up to third order.

2.1 Initial condition (first order)

We consider the initial condition set at t = t0. For an an-
alytically tractable initial condition, the displacement field
is assumed to have a simple sinusoidal form with periodic
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in 2D case. Here, the differential operator, T̂ , is defined as
T̂ f(t) ≡ f̈(t) + 2Hḟ(t).

Noting that Jij is expressed as Jij = δij + Ψi,j , the
evolution equations derived above are further recast as those
of longitudinal and transverse parts of displacement field,
i.e., ∇q · Ψ and ∇q × Ψ. The resultant equations become
summarized below:
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ϵpq T̂ Ψq,p = −ϵpq Ψk,qT̂ Ψk,p. (19)✒ ✑
Note that Eqs. (16) and (17) correspond to Eqs. (19)

and (31) of Matsubara (2015).

2 LAGRANGIAN PERTURBATION THEORY

Eqs. (16)–(19) are the basis to perturbatively solve displace-
ment field in 3D and 2D. In this section, we develop a per-
turbative expansion of Ψ, and present analytic expressions
for perturbative solutions in a specific initial condition:

Ψ(q, t) = Ψ(1)(q, t) +Ψ(2)(q, t) +Ψ(3)(q, t) + · · · (20)

To derive the analytic expressions relevant for standard
ΛCDM model, we employ the Einstein-de Sitter approxi-
mation. In this approximation, all the time-dependent func-
tions obtained in the Einstein de-Sitter Universe, which are
expressed in terms of the scale factor a(t), are recast as the
function of linear growth factor D1 by simply replacing a
with D1. Let us introduce the new time variable η:

η ≡ lnD1(t). (21)

Substituting Eq. (20) into Eqs. (16)–(19), in the Einstein-de

Sitter approximation, the following recurrence relations for
displacement field are obtained:
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Eqs. (22) and (23) exactly coincide with Eqs. (60) and

(61) of Matsubara (2015). The longitudinal- and transverse-
mode of the displacement field have different linear differen-
tial operators (at left-hand-side). To derive the higher-order
growth functions, the following Green functions are useful:
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for longitudinal mode, and

GT(η1, η2) = 2
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)
Θ(η1 − η2). (27)

for transverse mode. It is easy to check that these functions
satisfy G(η, η) = 0 and d

dηG(η1, η2)|η1=η2 = 1.
Below, we first give a linear-order displacement field

as initial condition. Then explicit forms of the higher-order
displacement fields are derived up to third order.

2.1 Initial condition (first order)

We consider the initial condition set at t = t0. For an an-
alytically tractable initial condition, the displacement field
is assumed to have a simple sinusoidal form with periodic
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in 2D case. Here, the differential operator, T̂ , is defined as
T̂ f(t) ≡ f̈(t) + 2Hḟ(t).

Noting that Jij is expressed as Jij = δij + Ψi,j , the
evolution equations derived above are further recast as those
of longitudinal and transverse parts of displacement field,
i.e., ∇q · Ψ and ∇q × Ψ. The resultant equations become
summarized below:
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Note that Eqs. (16) and (17) correspond to Eqs. (19)

and (31) of Matsubara (2015).

2 LAGRANGIAN PERTURBATION THEORY

Eqs. (16)–(19) are the basis to perturbatively solve displace-
ment field in 3D and 2D. In this section, we develop a per-
turbative expansion of Ψ, and present analytic expressions
for perturbative solutions in a specific initial condition:

Ψ(q, t) = Ψ(1)(q, t) +Ψ(2)(q, t) +Ψ(3)(q, t) + · · · (20)

To derive the analytic expressions relevant for standard
ΛCDM model, we employ the Einstein-de Sitter approxi-
mation. In this approximation, all the time-dependent func-
tions obtained in the Einstein de-Sitter Universe, which are
expressed in terms of the scale factor a(t), are recast as the
function of linear growth factor D1 by simply replacing a
with D1. Let us introduce the new time variable η:

η ≡ lnD1(t). (21)

Substituting Eq. (20) into Eqs. (16)–(19), in the Einstein-de

Sitter approximation, the following recurrence relations for
displacement field are obtained:

3D✓ ✏
( ∂2

∂η2
+

1
2
∂
∂η

− 3
2

)
Ψ(n)

k,k

= −
∑

m1+m2=n

ϵijkϵipq Ψ
(m1)
j,p

( ∂2

∂η2
+

1
2
∂
∂η

− 3
4

)
ψ(m2)

k,q

− 1
2

∑

m1+m2+m3=n

ϵijkϵpqr Ψ
(m1)
i,p Ψ(m2)

j,q

×
( ∂2

∂η2
+

1
2
∂
∂η

− 1
2

)
Ψ(m3)

k,r , (22)

ϵijk
( ∂2

∂η2
+

1
2
∂
∂η

)
Ψ(n)

j,k

= −
∑

m1+m2=n

ϵijk Ψ
(m1)
p,j

( ∂2

∂η2
+

1
2
∂
∂η

)
Ψ(m2)

p,k . (23)

✒ ✑
2D✓ ✏

( ∂2

∂η2
+

1
2
∂
∂η

− 3
2

)
Ψ(n)

k,k

= −
∑

m1+m2=n

ϵilϵjk Ψ
(m1)
l,k

( ∂2

∂η2
+

1
2
∂
∂η

− 3
4

)
ψ(m2)

i,j

(24)

ϵpq
( ∂2

∂η2
+

1
2
∂
∂η

)
Ψ(n)

q,p

= −
∑

m1+m2=n

ϵpq Ψ
(m1)
k,q

( ∂2

∂η2
+

1
2
∂
∂η

)
Ψ(m2)

k,p . (25)

✒ ✑
Eqs. (22) and (23) exactly coincide with Eqs. (60) and

(61) of Matsubara (2015). The longitudinal- and transverse-
mode of the displacement field have different linear differen-
tial operators (at left-hand-side). To derive the higher-order
growth functions, the following Green functions are useful:
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for longitudinal mode, and

GT(η1, η2) = 2
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)
Θ(η1 − η2). (27)

for transverse mode. It is easy to check that these functions
satisfy G(η, η) = 0 and d

dηG(η1, η2)|η1=η2 = 1.
Below, we first give a linear-order displacement field

as initial condition. Then explicit forms of the higher-order
displacement fields are derived up to third order.

2.1 Initial condition (first order)

We consider the initial condition set at t = t0. For an an-
alytically tractable initial condition, the displacement field
is assumed to have a simple sinusoidal form with periodic
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in 2D case. Here, the differential operator, T̂ , is defined as
T̂ f(t) ≡ f̈(t) + 2Hḟ(t).

Noting that Jij is expressed as Jij = δij + Ψi,j , the
evolution equations derived above are further recast as those
of longitudinal and transverse parts of displacement field,
i.e., ∇q · Ψ and ∇q × Ψ. The resultant equations become
summarized below:

3D✓ ✏
(
T̂ − 4πG ρm

)
Ψk,k

= −ϵijkϵipq Ψj,p
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T̂ − 2πG ρm

)
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ϵijkϵpqr Ψi,pΨj,q
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(16)

ϵijk T̂ Ψj,k = −ϵijk Ψp,j T̂ Ψp,k. (17)✒ ✑
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)
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)
ψi,j (18)

ϵpq T̂ Ψq,p = −ϵpq Ψk,qT̂ Ψk,p. (19)✒ ✑
Note that Eqs. (16) and (17) correspond to Eqs. (19)

and (31) of Matsubara (2015).

2 LAGRANGIAN PERTURBATION THEORY

Eqs. (16)–(19) are the basis to perturbatively solve displace-
ment field in 3D and 2D. In this section, we develop a per-
turbative expansion of Ψ, and present analytic expressions
for perturbative solutions in a specific initial condition:

Ψ(q, t) = Ψ(1)(q, t) +Ψ(2)(q, t) +Ψ(3)(q, t) + · · · (20)

To derive the analytic expressions relevant for standard
ΛCDM model, we employ the Einstein-de Sitter approxi-
mation. In this approximation, all the time-dependent func-
tions obtained in the Einstein de-Sitter Universe, which are
expressed in terms of the scale factor a(t), are recast as the
function of linear growth factor D1 by simply replacing a
with D1. Let us introduce the new time variable η:

η ≡ lnD1(t). (21)

Substituting Eq. (20) into Eqs. (16)–(19), in the Einstein-de

Sitter approximation, the following recurrence relations for
displacement field are obtained:
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✒ ✑
Eqs. (22) and (23) exactly coincide with Eqs. (60) and

(61) of Matsubara (2015). The longitudinal- and transverse-
mode of the displacement field have different linear differen-
tial operators (at left-hand-side). To derive the higher-order
growth functions, the following Green functions are useful:

GL(η1, η2) =
2
5

(
eη1−η2 − e−(3/2)(η1−η2)

)
Θ(η1 − η2). (26)

for longitudinal mode, and

GT(η1, η2) = 2
(
1− e−(1/2)(η1−η2)

)
Θ(η1 − η2). (27)

for transverse mode. It is easy to check that these functions
satisfy G(η, η) = 0 and d

dηG(η1, η2)|η1=η2 = 1.
Below, we first give a linear-order displacement field

as initial condition. Then explicit forms of the higher-order
displacement fields are derived up to third order.

2.1 Initial condition (first order)

We consider the initial condition set at t = t0. For an an-
alytically tractable initial condition, the displacement field
is assumed to have a simple sinusoidal form with periodic
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in 2D case. Here, the differential operator, T̂ , is defined as
T̂ f(t) ≡ f̈(t) + 2Hḟ(t).

Noting that Jij is expressed as Jij = δij + Ψi,j , the
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of longitudinal and transverse parts of displacement field,
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2 LAGRANGIAN PERTURBATION THEORY
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expressed in terms of the scale factor a(t), are recast as the
function of linear growth factor D1 by simply replacing a
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Eqs. (22) and (23) exactly coincide with Eqs. (60) and
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mode of the displacement field have different linear differen-
tial operators (at left-hand-side). To derive the higher-order
growth functions, the following Green functions are useful:
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Below, we first give a linear-order displacement field

as initial condition. Then explicit forms of the higher-order
displacement fields are derived up to third order.

2.1 Initial condition (first order)

We consider the initial condition set at t = t0. For an an-
alytically tractable initial condition, the displacement field
is assumed to have a simple sinusoidal form with periodic
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 (q, t) =  (1)(q, t) + (2)(q, t) + (3)(q, t) + · · ·

Moutarde et al. (’91); Bouchet et al. (’92); Buchert (’92); Buchert & Ehlers 
(’93); Bouchet et al. (’95), …, Matsubara (’15), Rampf & Frisch (’17)

Lagrangian 
displacement field

Simulation: ColDICE  (Sousbie & Colombi ’16)
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Beyond shell-crossing in 3D

a=0.045 a=0.060 a=0.080

Matching higher-order LPT with post-collapse PT (in 1D)

Multi-dimensional effect significantly alters multi-stream flow. Naive 
prediction with 1D post-collapse PT fails → need further progress

x

vx

x x

ignoring interactions along y-/z-directions

quasi-1D collapse

Preliminary

Vlasov simulation
LPT+post-collapse PT

y=z=0

(in progress)



Summary
Analytical description of shell-crossing and beyond with 

perturbation theory (PT) calculations in cosmic structure formation

Single-stream Multi-stream

1D Zel’dovich solution Post-collapse PT

2D & 3D Higher-order 
Lagrangian PT

Work in progress

Post-collapse PT 

precisely matches results of the state-of-the-art  Vlasov simulation

• Combining with adaptive smoothing,

• Higher-order Lagrangian PT

gives an accurate statistical prediction of random 
density field

Extension to 3D case is still challenging, but worth for investigation


