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Vlasov–Maxwell equations

The non-relativistic Vlasov equation:

∂fs
∂t

+ v · ∇xfs +
qs
ms

(E + v × B) · ∇vfs = 0.

Maxwell equations:

∂E

∂t
− curl B = −J,

∂B

∂t
+ curl E = 0,

div E = ρ, div B = 0.

Charge density: ρ =
∑

s qs
∫

fsdv.
Current density: J =

∑
s qs

∫
fsvdv.

Characteristic equations:

dX

dt
= V,

dV

dt
= E + V × B.
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Conservation properties of Vlasov–Maxwell

I Energy, momentum, and charge conservation.

I Only dynamical equations need to be time advanced:
div B = 0, div E = ρ automatically remain satisfied over time,
provided they are initially.

I The Vlasov-Maxwell equations conserve a Poisson structure:
Formulation with Poisson bracket and Hamiltonian
(Morrison-Marsden-Weinstein)
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Importance of structure preservation in simulations

I For ODEs preservation of symplectic structure well known. Exact
preservation of approximate energy enables efficient integrators over
very long times.

I In many cases keeping structure of continuous equations at discrete
level more important than order of accuracy.

I Avoid spurious eigenmodes in Maxwell’s equations.
I Avoid spurious perpendicular diffusion in parallel transport.
I Stability issues when not preserving ∇ · B = 0 or ∇ · E = ρ in

Maxwell or MHD

I Big success of structure preserving methods
I L-shaped domain for Maxwell’s equations
I Non simply connected domains, i.e. annulus, torus. Non trivial space

of harmonic functions.
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Geometric description of physics

I Geometric objects provide a more accurate description of physics
and also a natural path for discretisation.

1. Potentials are naturally evaluated at points
2. The action of a force is measured through its circulation along a path
3. Current is the flux through a surface of current density
4. Charge is integral over volume of charge density

I Should be discretized accordingly
The Geometric Basis of Numerical Methods 25

Manifold

Cell complex

0-cells 1-cells 2-cells 3-cells

Fig. 6 Subdivision of the domain (manifold) in points (0-cells), line segments (1-cells), faces (2-
cells) and volumes (3-cells)

!.3/;i will refer to oriented volumes, all of the same type of orientation (either
inner-oriented or outer-oriented). Together these building blocks will constitute a
so-called cell complex, but in computational science we usually refer to such a
collection as a grid or a mesh, see Fig. 6. The main difference is that a grid or mesh
is usually not oriented whereas a cell complex is.

A collection of oriented k-dimensional cells will be called a k-chain, c.k/, and is
usually written as a formal sum

c.k/ D
#kX

iD1
mi!.k/;i ;

where #k denotes the number of k-cells in the complex and mi is 0, when the cell
!.k/;i is not part of the chain, is equal to 1 when the cell !.k/;i is in the chain and
mi D !1 when !.k/;i is in the chain but the orientation is opposite to its default
orientation.

In the examples given above (mass, flux and velocity) we assigned values to
geometric objects. Now we are going to assign values to the k-cells. Let ! .k/;j be
the operator which assigns the value 1 to the k-cell !.k/;j and 0 to all the other
k-cells. This will be denoted by

h! .k/;j ; !.k/;i i D ı
j
i D

8
<

:

1 if i D j

0 if i ¤ j

:

If we want to assign a different value to a k-cell, say the value cj , then we apply
cj!

.k/;j to the k-cells. We can collect all these assignments into a formal sum and
write

I Related to discretization of differential 0-,1-,2- and 3-forms.
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Integral form of Maxwell’s equations

Integral equations Differential equations∮
∂S

H · d` =

∫
S

(
J +

∂D

∂t

)
· dS curl H = J + ∂D

∂t∮
∂S

E · d` =

∫
S

(
−∂B

∂t

)
· dS curl E = −∂B

∂t∮
∂V

D · dS =

∫
V
ρdV div D = ρ∮

∂V
B · dS = 0 div B = 0

I D and E as well as H and B are related by constitutive equations
dependent on material properties.

I Exact discrete version of integral form can be obtained provided
degrees of freedom for H and E are edge integrals and degrees of
freedom for D and B (and J) are face integrals.
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Exact relations between degrees of freedom

I Denote by respectively Vi , Fi , Ei , xi , the volumes (cells), faces,
edges and points of the mesh.

I Degrees of freedom are (e.g. for B and E)

Fi (B) =

∫
Fi

B · dS, Ei (E) =

∫
Ei

E · d`, . . .

I Then integral form of Maxwell yields exact relations involving each
face and its 4 boundary edges

Fi (J) +
∂Fi (D)

∂t
= Ei ,1(H) + Ei ,2(H)− Ei ,3(H)− Ei ,4(H) (1)

∂Fi (B)

∂t
= −Ei ,1(E)− Ei ,2(E) + Ei ,3(E) + Ei ,4(E) (2)

I Similar exact relations for divergence constraints.
I This depends only on mesh connectivity and remains true if mesh is

smoothly deformed (without tearing).
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Reconstruction of fields from degrees of freedom

I Discrete constitutive equations still needed to couple Ampere and
Faraday.

I Need to evaluate fields at arbitrary particle positions.

I The fields associated to different degrees of freedom (point values,
edge integrals, face integrals, volume integrals) need to be
reconstructed in a compatible manner.

I Related to geometric discretisation of various PDEs:
I Dual meshes: Mimetic Finite Differences, Compatible Operator

Discretisation, Discrete Duality Finite Volumes. Intuitive metric
association between primal and dual mesh.

I Dual operators: Finite Element formulation, mathematically more
elaborate: Primal operators (strong form) on primal complex, dual
operators (weak form) on dual complex.

I Charge conserving PIC algorithms (Villasenor-Bunemann,
Esirkepov,..) can also be understood in this framework.
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Finite Element Exterior Calculus (FEEC)

I Mathematical framework for Finite Element Maxwell solvers is
provided by Finite Element Exterior Calculus (FEEC) introduced by
Arnold, Falk and Winther.

I Continuous and discrete complexes for splines are the following

grad curl div
H1(Ω) −→ H(curl,Ω) −→ H(div,Ω) −→ L2(Ω)
↓ Π0 ↓ Π1 ↓ Π2 ↓ Π3

grad curl div
V0 −→ V1 −→ V2 −→ V3

= = =

Sp,p,p −→

Sp−1,p,p

Sp,p−1,p

Sp,p,p−1

 −→

Sp,p−1,p−1

Sp−1,p,p−1

Sp−1,p−1,p

 −→ Sp−1,p−1,p−1

I Commuting diagram is an essential piece

Π1gradψ = gradΠ0ψ, Π2curlA = curlΠ1A, Π3divA = divΠ2A.
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The commuting projection operators

I Commuting diagram by interpolating right degrees of freedom:
I Elements of V0 are characterized by point values
I Elements of V1 are characterized by edge integrals
I Elements of V2 are characterized by surface integrals
I Elements of V3 are characterized by volume integrals

I Π0ψ = ψh ∈ V0 defined by ψh(x) =
∑

i c
0
i Λ0

i (x), with c0
i solution of

the interpolation problem ψh(xj) = ψ(xj) ∀j
I Π1A = Ah ∈ V1 defined by Ah(x) =

∑
i c

1
i Λ1

i (x), with c1
i solution of∫

Ej
Ah(x) · d` =

∫
Ej

A(x) · d` ∀j

I Π2B = Bh ∈ V2 defined by Bh(x) =
∑

i c
2
i Λ2

i (x), with c2
i solution of∫

Fj

Bh(x) · dS =

∫
Fj

B(x) · dS ∀j

I Π3ϕ = ϕh ∈ V3 defined by ϕh(x) =
∑

i c
3
i Λ3

i (x), with c3
i solution of∫

Vj ϕh(x)dx =
∫
Vj ϕ(x)dx ∀j
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Particle mesh coupling

I Charge and current computed on mesh using smoothed particles.
For some given smoothing function S , typically a B-spline (at least
quadratic to reduce aliasing and variance)

fN(t, x, v) =
∑
k

wkS(x− xk(t))δ(v − vk(t)).

I From this expression, we can compute the charge and current
densities

ρN =
∑
k

wkqkS(x− xk(t)),

JN =
∑
k

wkqkvkS(x− xk(t)).

I Discrete values defined by projecting associated charge and current

Jh = Π2(JN), ρh = Π3(ρN).
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Semi-discrete continuity equation

I A direct calculation shows that

∂ρN
∂t

= −
∑
k

wkqkvk · ∇S(x− xk(t)) = − div JN .

I Applying Π3 we get

Π3
∂ρN
∂t

=
∂ρh
∂t

= −Π3 div JN = − div Π2JN = − div Jh,

I using the commutation property. Hence

∂ρh
∂t

+ div Jh = 0.

I Then also
∂ div Eh

∂t
= − 1

ε0
div Jh =

1

ε0

∂ρh
∂t

,

I Gauss is a consequence of Ampere and initial value as in continuous
case.
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Finite Element discretisation

I One equation Faraday or Ampere discretized strongly, with no
approximation. The other weakly with integration by parts:

I Strong Ampere - Weak Faraday. Smooth JN needed

− ∂Eh

∂t
+ c2 curl Bh =

1

ε0

∑
p

qpΠ2[vpS(x− xk(t))] =
1

ε0
Jh,

d

dt

∫
Ω

Bh · Chdx +

∫
Ω

Eh · curl Chdx = 0 ∀Ch ∈ V1.

I Weak Ampere - Strong Faraday

−
∫

Ω

∂Eh

∂t
· Fhdx + c2

∫
Ω

Bh · curl Fhdx =
1

ε0

∫
Jh · Fhdx, ∀Fh ∈ V1,

∂Bh

∂t
+ curl Eh = 0

No smoothing needed because of integral on Jh, but smoothing or
filtering can be added.
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GEMPIC framework

I Discretization of fields: Compatible spline finite elements (discrete
deRham complex):

I Strong Faraday E edge elements (1-form), B face elements (2-form)
I Strong Ampere B edge elements (1-form), E face elements (2-form)

I Discretization of f with (smoothed) particles
f (t, x , v) =

∑
wpS(x − xp(t))δ(v − vp(t)),

S can be δ for strong Faraday.

I Plug discretizations for f , E and B into Lagrangian to get
formulation of equations based on a semi-discrete Hamiltonian and
Poisson bracket.

I Time discretizations: Hamiltonian splitting or Discrete Gradient

Paper on strong Faraday without smoothing:
M. Kraus, K. Kormann, P.J. Morrison, E. Sonnendrücker - JPP 17
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Semi-discrete equations

I Discretization obtained by plugging expressions for fh, φh,Ah into
Lagrangian: Eh = ∂tAh −∇φh, Bh = curl Ah.

I Dynamical variables: particles positions and velocities, spline
coefficients of Eh and Bh: u = (X,V, e,b)>.

I Discrete Hamiltonian:

Ĥ = 1
2 V>MpV + 1

2 e>M1e + 1
2 b>M2b.

I Semi-discrete equations of motion expressed with discrete unknowns

Ẋ = V ẋ = v,

V̇ = M−1
p Mq

(
�1(X)e + B(X,b)V

)
v̇ =

qs
ms

(E + v × B) ,

ė = M−1
1

(
C>M2b(t)− �1(X)>MqV

) ∂E

∂t
= curl B− J,

ḃ = −Ce(t)
∂B

∂t
= − curl E.
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Semi-discrete Poisson system

I Semi-discrete equations of motion have following structure:

u̇ = J (u)∇uĤ(u).

I Poisson matrix:

J (u) =


0 M−1

p 0 0
−M−1

p M−1
p MqB(X, b)M−1

p M−1
p Mq�1(X)M−1

1 0
0 −M−1

1 �1(X)>MqM−1
p 0 M−1

1 C>

0 0 −CM−1
1 0

 .

I Defines semi-discrete Poisson bracket:

{F ,G} = ∇F>J (u)∇G ⇒ d(F (u))

dt
= ∇F>u̇ = {F (u),H(u)}.

I Some properties:
I Semi-discrete Poisson bracket satisfies Jacobi identity.
I CG = 0, DC = 0.
I Discrete Gauss’ law: G>M1e = −�0(X)>Mq1Np .
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Strong Faraday: relativistic

I Same action principle with relativistic particle Lagrangian

Ls(x,p, ẋ, t) = (p + qsA) · ẋ−
(
(γ − 1)msc

2 + qsφ
)
,

I Denoting by U = γ(V )V evolution equations become

dX

dt
= V

Mm
dU

dt
= Mq(�1(X)e + B̂h(X,b)V)

M1
de

dt
= C>M2b− Λ1(X)>MqV,

db

dt
= −Ce

I Discrete Poisson structure with same Poisson matrix J (u) as non
relativistic but

H = c>2 Mmγ +
1

2
e>M1e +

1

2
b>M2b.
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Strong Ampere

I Use action principle (denoting by Sk = S(x− xk(t))

A =
∑
k

∫ t2

t1

(mkvk · ẋk −
1

2
mkv2

k)dt + qk

∫ t2

t1

∫
Ω

(Ah · Π2[ẋkSk ]− φhΠ3Sk) dxdt

−
∫ t2

t1

(
ε0

2

∫
Ω

|Eh|2dx +
1

2µ0

∫
Ω

|Bh|2dx

−ε0

∫
Ω

(
∂Ah

∂t
· Eh − φh div Eh

)
dx− 1

µ0

∫
Ω

Ah · curl Bhdx

)
dt.

I Evolution equations
dX

dt
= V

dV

dt
= (Mm)−1Mq(σ2(S(X ))>M2e +R(b,X )V )

de

dt
= Cb−Mqσ

2(S(X ))V

db

dt
= −M−1

1 C>M2e
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Strong-Ampere, Poisson structure

I Denoting by U = (X ,V , e,b)>, this can be cast in the Poisson
structure

dU

dt
= J (U)∇UH

with the Poisson matrix

J (U) =

(
0 (Mm)−1 0 0

−(Mm)−1 (Mm)−1MqR(X , b))(Mm)−1 (Mm)−1Mqσ
2(S(X ))> 0

0 −(Mm)−1Mqσ
2(S(X )) 0 CM−1

1
0 0 −M−1

1 C> 0

)
.

I Smoothing function S appears in current assignment and Force
term.

19



Structure preserving semi-discretisation of Vlasov–Maxwell

Time discretization

Energy conserving time discretization

Numerical results

Conclusions

20



Time-discretization of Poisson structure

I Poisson form dU
dt = J (U)∇UH generalizes symplectic structure

I Thm(Ge, Marsden) Only exact flow preserves both symplectic
structure and energy. ⇒ need to choose.

I 2 options:

1. Hamiltonian splitting preserves Poisson structure including Casimirs
(div B = 0, weak Gauss), but only modified energy.

2. Energy conserving discretisations can be derived based on Discrete
Gradient or Average Vector Field methods.
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Time advance via Hamiltonian splitting

I Following the prescription of Crouseilles-Einkemmer-Faou (JCP 15)
a Hamiltonian splitting can be performed, treating the three terms
of the Hamiltonian separately

H =
1

2
v>Mpv +

1

2
e>M1e +

1

2
b>M2b = Hp + He + Hb.

I Split and solve successively

du

dt
= Ω(u)∇Hi , i = p, e, b

I Lie-Trotter splitting (first order), Strang splitting (second order) or
even higher order.

I Exact solution possible for He and Hb.

I For Hp split further between the three components. Other
possibility: use variational integrator
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Discrete solution of He

I The equations read

ẋp = 0,

v̇p =
(
Λ1(xp(t))

)>
e(t),

ė = 0,

ḃ = −Re(t).

I and its exact solution on one time step

xp(h) = xp(0),

vp(h) = vp(0) +
(
Λ1(xp(0))

)T
e(0),

e(h) = e(0),

b(h) = b(0)− Re(0).
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Discrete solution of Hb

I The equations read

ẋp = 0,

v̇p = 0,

M1ė = RTM2b(t),

ḃ = 0.

I and its exact solution on one time step

xp(h) = xp(0),

vp(h) = vp(0),

M1e(h) = M1e(0) + RTM2b(0),

b(h) = b(0).
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Discrete solution of Hp

I The equations read
ẋp = vp,

v̇p = vp × b(t) Λ2(xp),

M1ė = −Λ1(xp) ·Mpvp,

ḃ = 0,

I For general magnetic field coefficients b, this system cannot be
exactly integrated

I As each component of the equation for v̇p does not depend on vp,
we can split this system once more into

Hp = Hp,1 + Hp,2 + Hp,3 for i ∈ {1, 2, 3},
with

Hp,i = 1
2 (v ip)TMpv

i
p.

Then an exact solution can be obtained.
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The Discrete gradient method

(Mc Lachland, Quispel, Robidoux 1999)

I For a skew-symmetric matrix J (u), consider an ODE of the form

du

dt
= J (u)∇H

I Discrete gradient methods conserve exactly a discrete Hamiltonian.
They are based on a discrete gradient such that

(un+1 − un)>∇̄H(un,un+1) = H(un+1)− H(un),

I Then the scheme un+1−un

∆t = J̄ ∇̄H(un,un+1) conserves H, indeed

H(un+1)−H(un) = (un+1− un)>∇̄H(un,un+1) = ∆t∇̄H>J̄ >∇̄H = 0

provided J̄ is a skew-symmetric approximation of J (u).
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Examples of discrete gradient schemes

I Straightforward discrete gradients for quadratic hamiltonians,

∇̄H(un,un+1) = (Mm
Vn + Vn+1

2
,M1

en + en+1

2
,M2

bn + bn+1

2
)

I General method: Average-vector-field1:

∇̄H(Un,Un+1) =

∫ 1

0
∇H((1− ξ)Un + ξUn+1)dξ

I J (u) can also be averaged or approximated differently

I Yields implicit energy conserving time discretization

I Since the Poisson matrix is antisymmetric, we can apply this method
to our semi-discrete equations: fully nonlinear coupled system.

I Our solution: apply Discrete Gradient method to antisymmetric
splitting of the Poisson matrix.

1Celledoni et al., J. Comput. Phys. 231, 2012
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Splitting Poisson matrix, keeping antisymmetry

J (u) =


0 M−1

p 0 0

−M−1
p M−1

p MqB(X,b)M−1
p M−1

p Mq�1(X)M−1
1 0

0 −M−1
1 �1(X)>MqM−1

p 0 M−1
1 C>

0 0 −CM−1
1 0

 .

I Split J (u) keeping antisymmetric matrices. Keep full Hamiltonian

I The split steps become

du

dt
= J1(u)∇H, du

dt
= J2(u)∇H, du

dt
= J3(u)∇H, du

dt
= J4(u)∇H

I Successive application = Lie splitting of order 1, symmetric
application = Strang-splitting of order 2.

I Higher order also possible by appropriate combination.
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The reduced systems

I Split J (u) keeping antisymmetric matrices. Keep full Hamiltonian

1. Ẋ = V, (V̇ = 0, ė = 0, ḃ = 0 ),
2. V̇ = M−1

p MqB(X,b)V, (Ẋ = 0, ė = 0, ḃ = 0 ).

3. V̇ = M−1
p Mq�1(X)e, ė = −M−1

1 �1(X)>MqV, (Ẋ = 0, ḃ = 0 ).

4. ė = M−1
1 C>M2b, ḃ = −Ce, (Ẋ = 0, V̇ = 0).

I Steps 1 and 2 can be solved explicitly.

I Steps 3 and 4 linearly implicit. Use Schur complement in 3 to
reduce implicit parts to the field equations.

I Summary: implicit in field coefficients only, conserves energy but not
discrete Gauss.

I Splitting in only 3 parts (2 and 3 are kept together) one recovers the
ECSIM time discretisation proposed by Lapenta and can define a
higher-order version.
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Modification to conserve Gauss’ law

I Observation: Current part of Ampere’s law

M1em+1 = M1em −
∫ tm+1

tm

�1(X(τ))>MqV(τ)dτ,

needs to be solved exactly, i.e. satisfying dX
dt = V .

I Modify the splitting: Keep together 1 (X push) and 3 (V+e push).
I New discrete gradient scheme for 1+3:

Energy and Gauss conserving scheme:

Xm+1 − Xm

∆t
=

Vm + Vm+1

2
Vm+1 − Vm

∆t
= M−1

p Mq
1

∆t

∫ tm+1

tm

�1
i (X(τ))dτ

(
em + em+1

2

)
em+1 − em

∆t
= −M−1

1

1

∆t

∫ tm+1

tm

�1
i (X(τ))> dτMq

(
Vm + Vm+1

2

)
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Subcycling

I New splitting conserving energy and Gauss law is nonlinearly implicit
on fields. Picard iterations are used. Anderson acceleration reduces
number of iterations.

I Time discretisation similar to method proposed by Chen, Chacon
and Barnes (JCP 2011) and more recent Vlasov-Darwin versions by
Chen, Chacon (CPC 2016)

I Subcycling of particle push can be introduced, taking care to
conserved symmetry between push and current deposition for exact
energy conservation.
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Subcycling: new update

I Keeping the electric field constant over all the substeps, push the
particles according to X0

m = Xm, V0
m = Vm and then for ν = 0 to

Nν − 1

Xν+1
m − Xν

m

∆τν
=

Vν
m + Vν+1

m

2

Vν+1
m − Vν

m

∆τν
= M−1

p Mq
1

∆τν

∫ τν+1

τν

�1
i (Xm(τ))dτ

(
em + em+1

2

)
with Xm(τ) = ((τν+1 − τ)Xν

m + (τ − τν)Xν+1
m )/∆τν .

I Corresponding electric field updated over the full time step:

em+1 − em

∆t
= −M−1

1

1

∆t

Nν−1∑
ν=0

(∫ τν+1

τν

�1
i (Xm(τ))> dτ

)
Mq

(
Vν

m + Vν+1
m

2

)
.
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Test case 1: Weibel instability 1d2v

Electron distribution (neutralizing ion background):

f (x , v, t = 0) =
1

πσ1σ2
exp

(
−1

2

(
v2

1

σ2
1

+
v2

2

σ2
2

))
, x ∈ [0,

2π

k
),

B3(x , t = 0) = β cos(kx),

E2(x , t = 0) = 0,

and E1(x , t = 0) is computed from Poisson’s equation.

Parameters: σ1 = 0.02/
√

2, σ2 =
√

12σ1, k = 1.25, α = 0, and
β = −10−4.
Test case from Crouseilles, Einkemmer, Faou, J. Comput. Phys. 283,
2015.
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Weibel instability: Potential energies and analytic
growth rate.

0 100 200 300 400 500
time

10-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

101

103
1
2
‖E1‖2

1
2
‖E2‖2

1
2
‖B3‖2

growth rate

Figure: Weibel instablity: The two electric and the magnetic energies together
with the analytic growth rate.

Numerical parameters: 100,000 particles, 32 grid points.
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Weibel instability: Conservation properties.

Table: Weibel instability: Maximum error in the total energy, Gauss’ law, and
total momentum until time 500 for simulation with various integrators (Strang
splitting ∆t = 0.05).

Propagator total energy Gauss law

Hamiltonian 6.9E-7 2.1E-13

Boris 1.3E-9 4.8E-4

AVF 2.1E-16 1.1E-6

DiscGrad 5.9E-11 2.2E-15
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Weibel instability: Error in magnetic energy ‖B‖2.

∆t Hamiltonian Boris AVF DiscGrad

0.025 5.13E-06 4.48E-06 3.73E-06 3.90E-06 (4.9)
0.05 1.29E-05 1.41E-05 1.83E-05 1.85E-05 (5.9)
0.1 − − 4.05E-05 3.98E-05 (6.8)
0.2 − − 1.20E-04 1.13E-04 (8.6)
0.4 − − 1.60E-04 1.60E-04 (12.0)
0.8 − − 1.81E-04 1.80E-04 (21.6)
5 − − 4.41E-04 −

Reference: Solution with 4th, 10 Lie and ∆t = 0.025.
Conclusions: Error about 1st order for ‖B‖2 (i.e. 2nd order for B).
Time step restrictions for explicit methods.

38



Test case 2: Ion acoustic wave

Electron and ion distribution:

fe(x , v, t = 0) =
me

πTe
exp

(
− v2

1 + v2
2

2Te/me

)
,

fi (x , v, t = 0) =
mi

πTi
exp

(
−v2

2 + v2
3

2Ti/mi

)(
1 + α cos(

2π

L
x)

)
.

Electrostatic test case (without magnetic field).

Parameters: Ti
Te

= 104, mi
me

= 200, α = 0.2, L = 10.

Numerical parameters: Nx = 32, Np = 128, 000 per species.
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Comparison between Hamiltonian splitting and dis-
crete gradient method

0 500 1000 1500 2000

time

10-5

10-4

10-3

10-2

10-1

100

‖E
1
‖2

HS, 0.025

HS, 0.05

HS, 0.25

DisGrad, 0.05

DisGrad, 0.25

Figure: Ion acoustic wave: Comparison of Hamiltonian splitting (HS) and
discrete gradient method (DisGrad).
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Discrete gradient method with substepping

Improvement of discrete gradient method: Introduce substepping in
(X ,V ) to capture electron dynamics.2

0 500 1000 1500 2000

time

10-5

10-4

10-3

10-2

10-1

100

‖E
1
‖2

∆t=0. 05

∆t=0. 25

∆t=0. 25, 4 substeps

Figure: Ion acoustic wave: Discrete gradient method with and without
substepping.

2Chen, Chacon, Barnes: An energy- and charge-conserving, implicit, electrostatic
particle-in-cell algorithm, J. Comput. Phys. 230, 2014.
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Summary and Outlook

Summary

I GEMPIC framework based on discrete Poisson bracket and FEEC.

I Semi-discrete Poisson structure, with conservation of energy and
Gauss law.

I AVF-based time splitting conserves energy, not Gauss’ law.

I Nonlinear discrete gradient method that conserves energy and
Gauss’ law. Can easily acomodate particle subcycling, keeping these
conservation properties

Outlook

I Version on curvilinear mesh under development.

I Optimize implementation of 2d3v and 3d3v codes.

I Solve low frequency problems in tokamaks. Numerical gyrokinetics!
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