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Vlasov—Maxwell equations

The non-relativistic Vlasov equation:

Ofs gs _
Ejtv-vxfer;S(EJrva)-V‘,fs_o.

Maxwell equations:

E B
%—curIB:—J, aa—thcurIE:O,
divE = p, divB = 0.

Charge density: p =Y. qs | fsdv.
Current density: J =Y"_qs [ fsvdv.

Characteristic equations:

dX . dV

— = — =E+VxB.
dt T dt TV




Conservation properties of Vlasov—Maxwell

» Energy, momentum, and charge conservation.

» Only dynamical equations need to be time advanced:
divB =0, div E = p automatically remain satisfied over time,
provided they are initially.

> The Vlasov-Maxwell equations conserve a Poisson structure:
Formulation with Poisson bracket and Hamiltonian
(Morrison-Marsden-Weinstein)




Importance of structure preservation in simulations W

» For ODEs preservation of symplectic structure well known. Exact
preservation of approximate energy enables efficient integrators over
very long times.

» In many cases keeping structure of continuous equations at discrete
level more important than order of accuracy.

» Avoid spurious eigenmodes in Maxwell's equations.

» Avoid spurious perpendicular diffusion in parallel transport.

» Stability issues when not preserving V.-B=0or V-E=pin
Maxwell or MHD

» Big success of structure preserving methods

» L-shaped domain for Maxwell's equations

» Non simply connected domains, i.e. annulus, torus. Non trivial space
of harmonic functions.




Geometric description of physics m

» Geometric objects provide a more accurate description of physics
and also a natural path for discretisation.
1. Potentials are naturally evaluated at points
2. The action of a force is measured through its circulation along a path
3. Current is the flux through a surface of current density
4. Charge is integral over volume of charge density

» Should be discretized accordingly
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» Related to discretization of differential 0-,1-,2- and 3-forms.




Integral form of Maxwell’s equations

Integral equations

Differential equations

]{H-d€=/<J—|—aD> -dS

0s s 8§t

% E-d€=/< ) -dS
s s\ Ot

D-dS= | pdV
oV \"}
B-dS =0
ov

curIH:J—i—%—?

_ _ 0B
curlE = — ot
divD =p
divB =0

» D and E as well as H and B are related by constitutive equations

dependent on material properties.

» Exact discrete version of integral form can be obtained provided
degrees of freedom for H and E are edge integrals and degrees of
freedom for D and B (and J) are face integrals.




Exact relations between degrees of freedom m

» Denote by respectively V;, Fj, &, x;, the volumes (cells), faces,
edges and points of the mesh.
> Degrees of freedom are (e.g. for B and E)

]:,.(B):/FB-dS, 5,-(E):/8E-df,

> Then integral form of Maxwell yields exact relations involving each
face and its 4 boundary edges

Fi(J) + 8]:8"5[)) =&i1(H) +&2(H) = &is(H) - &a(H) (1)
852(;3) = —&i1(E) = &i2(E) + & 3(E) +E&ia(E)  (2)

» Similar exact relations for divergence constraints.
» This depends only on mesh connectivity and remains true if mesh is
smoothly deformed (without tearing).




Reconstruction of fields from degrees of freedom m

» Discrete constitutive equations still needed to couple Ampere and
Faraday.

» Need to evaluate fields at arbitrary particle positions.

» The fields associated to different degrees of freedom (point values,
edge integrals, face integrals, volume integrals) need to be
reconstructed in a compatible manner.

» Related to geometric discretisation of various PDEs:

» Dual meshes: Mimetic Finite Differences, Compatible Operator
Discretisation, Discrete Duality Finite Volumes. Intuitive metric
association between primal and dual mesh.

» Dual operators: Finite Element formulation, mathematically more
elaborate: Primal operators (strong form) on primal complex, dual
operators (weak form) on dual complex.

» Charge conserving PIC algorithms (Villasenor-Bunemann,
Esirkepov,..) can also be understood in this framework.




Finite Element Exterior Calculus (FEEC) m

» Mathematical framework for Finite Element Maxwell solvers is
provided by Finite Element Exterior Calculus (FEEC) introduced by
Arnold, Falk and Winther.

» Continuous and discrete complexes for splines are the following

grad curl div
HY(Q) —  H(cur,Q) —  H(div,Q) — L2(Q)
1Mo 41y L1 113
grad curl div
V() — V1 — V2 — V3
Sp—1.p:p Spp—1,p—1
SppP Sp.p—1.p N Sp—Lp.p—1 —y Sp—Lp-1p-1
Sp:p:p—1 Sp—L.p=1lp

» Commuting diagram is an essential piece
Migrady = gradllpy, [lacurlA = curllli A, Tl3divA = divllA.




The commuting projection operators W

» Commuting diagram by interpolating right degrees of freedom:
» Elements of Vj are characterized by point values
» Elements of V; are characterized by edge integrals
» Elements of V5, are characterized by surface integrals
» Elements of V3 are characterized by volume integrals

» Motp = by, € Vo defined by ¢p(x) = 3, cPA9(x), with ¢? solution of
the interpolation problem 1,(x;) = ¥(x;) Vj
> M1A = A, € V4 defined by Ap(x) = 3. ctA}(x), with ¢} solution of
/ An(x) - d¢ :/ A(x)-d0 V)
& &
> MB = By, € Vs defined by B(x) = 3. ¢?A?(x), with c? solution of
/ Bi(x) - dS :/ B(x)-dS Vj
7 7
» T3¢ = ¢y € V3 defined by pp(x) = 3, c2A3(x), with ¢ solution of

fvj on(x)dx = fvj o(x)dx V)

10



Particle mesh coupling W

» Charge and current computed on mesh using smoothed particles.
For some given smoothing function S, typically a B-spline (at least
quadratic to reduce aliasing and variance)

fn(t,x,v) Z Wi S(x — Xk (t))d(v — v (t)).

» From this expression, we can compute the charge and current
densities

PN =Y Wik S(x — xk(t)),
k

Jy = Z Wik gk S(x — xk(t)).
K

» Discrete values defined by projecting associated charge and current

Jn=T2In), pnr=T3(pn).
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Semi-discrete continuity equation m

» A direct calculation shows that

0
8ptN ZWkCIka VS(x — xk(t)) = —divIpn.
> Applying 3 we get
n3a§;" - %"t” “MNsdivdy = —divlady = —divJy,
> using the commutation property. Hence
T +divdy =0,
» Then also )
odiv E, d J 1 opn
= ——dIv — —
ot h= o ot
» Gauss is a consequence of Ampere and initial value as in continuous

case.
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Finite Element discretisation m

» One equation Faraday or Ampere discretized strongly, with no
approximation. The other weakly with integration by parts:
» Strong Ampere - Weak Faraday. Smooth Jy needed

OE,, 1
~ T el By = Xp:qp”z[VPS(x —x(O)] = _Jn

d
f/Bh'Cth—F/Eh-CUHCth:O vC, € V.

» Weak Ampere - Strong Faraday

OE

ah Frdx + c? /Bh curl Fpdx = — /Jh Fodx, VF,e W,
Q

oB

a—h +curlE, =0

No smoothing needed because of integral on Jp, but smoothing or

filtering can be added.
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GEMPIC framework m

» Discretization of fields: Compatible spline finite elements (discrete
deRham complex):

» Strong Faraday E edge elements (1-form), B face elements (2-form)

» Strong Ampere B edge elements (1-form), E face elements (2-form)

» Discretization of f with (smoothed) particles

F(t,x,v) = 32 wpS(x = xp(1))3(v = vp(t)),

S can be § for strong Faraday.

» Plug discretizations for f, E and B into Lagrangian to get
formulation of equations based on a semi-discrete Hamiltonian and
Poisson bracket.

» Time discretizations: Hamiltonian splitting or Discrete Gradient

Paper on strong Faraday without smoothing:
M. Kraus, K. Kormann, P.J. Morrison, E. Sonnendriicker - JPP 17
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Semi-discrete equations W

» Discretization obtained by plugging expressions for fy,, ¢, Ap into
Lagrangian: E, = 0:A, — Vo, B = curl Ay,
» Dynamical variables: particles positions and velocities, spline
coefficients of Ej, and By: u=(X,V,e,b)".
» Discrete Hamiltonian:
H=3iV'MV+le Me+ib Mb.

» Semi-discrete equations of motion expressed with discrete unknowns

X=V X =v,

V = MM, ( 1(X)e + B(X,b)V) v = :7 (E+v xB),
é= M1 (C"Mb(t) — 1(X)"MgV) g'f =curlB — J,

b = —Ce(t) %B = —curlE
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Semi-discrete Poisson system m

» Semi-discrete equations of motion have following structure:
u = J(u) VyH(u).

» Poisson matrix:

0 M, 0 0
-M,t My'MGB(X,b)M T MM T(X)M; ! 0
J(u) = 0 M- X)) TM ML 0 M-icT
;o (X)) MgM; 1
0 0 —Ccmt 0

» Defines semi-discrete Poisson bracket:

d(F(u .
(F,G} = VFTJ()VG = (d(t)) = VF T = {F(u), H(u)}.
» Some properties:
» Semi-discrete Poisson bracket satisfies Jacobi identity.
» CG=0,DC=0.
> Discrete Gauss' law: G Mie = — 9(X) Mgy, .
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Strong Faraday: relativistic W

» Same action principle with relativistic particle Lagrangian

LS(X7 P, )'(7 t) = (p + qu) "X — ((7 - 1)m5c2 + Qs¢) )
» Denoting by U = v(V)V evolution equations become

X,
dt
du . R
Mg = Mo( (X)e + By(X,b)V)
Mlj—:' =C"Myb — AY(X)" MV,
db _
dt
» Discrete Poisson structure with same Poisson matrix 7 (u) as non
relativistic but

—Ce

1 1
H=c) My + 5eT/\/lle + 5bTMgb.
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Strong Ampere m

» Use action principle (denoting by Sk = S(x — xx(t))
tr ] 1 ta ]
A= Z/ (mkvk cXg — Emkvi)dt + qk/ /Q(Ah . I‘I2[xk5k] — ¢hﬂ3$k) dxdt
k t1 ty

t>
—/ (50/ |Eh|2dx+i/ B,/ 2dx
_go/ (aaAth Eh—qs,,d.th) dx——/Ah curl B,,dx)d

» Evolution equations
dX

“ov

d

.

T = (M) 7" Mg(a*(S(X)) " Moe + R(b, X) V)
de )

T = Cb— Ma?(S(X))V

db

= —M;'CT Mse
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Strong-Ampere, Poisson structure m

» Denoting by U = (X, V,e,b)", this can be cast in the Poisson

structure dU
E = j(U)VUH

with the Poisson matrix

0 —(Mm) "t Mqg?(5(X)) 0 M-

0 (Mm)™t 0 0
_ -1 —1 —1 —1p 52 T
j(U) — (Mm) (Mm) ™" MgR(X, b))(Mm) (Mm) ™" Mqa®(S(X)) o |
0 0 —mtcT 0

» Smoothing function S appears in current assignment and Force
term.

19



Time discretization

20



Time-discretization of Poisson structure m

» Poisson form %—Lt/ = J(U)VyH generalizes symplectic structure

» Thm(Ge, Marsden) Only exact flow preserves both symplectic
structure and energy. = need to choose.

> 2 options:
1. Hamiltonian splitting preserves Poisson structure including Casimirs
(div B = 0, weak Gauss), but only modified energy.
2. Energy conserving discretisations can be derived based on Discrete
Gradient or Average Vector Field methods.
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Time advance via Hamiltonian splitting

>

Following the prescription of Crouseilles-Einkemmer-Faou (JCP 15)
a Hamiltonian splitting can be performed, treating the three terms
of the Hamiltonian separately

1 1 1
H= EVT/\//,,V + 5eT/\/lle + 5bTMzb = Hp + He + Hp.
Split and solve successively
d
d—;l =Q(u)VH;, i=p,eb

Lie-Trotter splitting (first order), Strang splitting (second order) or
even higher order.

Exact solution possible for He and Hp.

For H, split further between the three components. Other
possibility: use variational integrator
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Discrete solution of H,

» The equations read

%, =0,

Vp = (N (1)) "e(t),
é=0,

b= —Re(t).

» and its exact solution on one time step

Xp(h) = Xp(0)7

vo(h) = vp(0) + (A}(x(0))) " e(0),
e(h) = €(0),

b(h) = b(0) — Re(0)
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Discrete solution of H,

» The equations read

X, =0,
v, =0,

Mié = RT Myb(t),
b=0.

» and its exact solution on one time step

xp(h) = x(0),

vp(h) = vp(0),
Mye(h) = Mye(0) + RT M,b(0),

b(h) = b(0).
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Discrete solution of H,

» The equations read
Xp = Vp,
Vo = vp X b(t) N*(xp),
Myé = —A1(x,) - Moy,

b=0,

» For general magnetic field coefficients b, this system cannot be
exactly integrated
» As each component of the equation for v, does not depend on v,
we can split this system once more into
Hp = Hp1+ Hp2+ Hp3 for i€{1,2,3},
with
_ 1(,i\T i
Hpi =3 (V,')) MPV;Ir
Then an exact solution can be obtained.
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Energy conserving time discretization
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The Discrete gradient method m

(Mc Lachland, Quispel, Robidoux 1999)

» For a skew-symmetric matrix J(u), consider an ODE of the form

du
E = j(U)VH

> Discrete gradient methods conserve exactly a discrete Hamiltonian.
They are based on a discrete gradient such that

(un+1 _ un)T@,_l(un’ un+1) — H(un+1) _ H(Un),

» Then the scheme “"z;“" = JVH(u",u"1) conserves H, indeed

H(un+1) — H(u") = (un+1 _ u”)T?H(un, u"+1) = AtVHTJTVH =0

provided 7 is a skew-symmetric approximation of J(u).

27



Examples of discrete gradient schemes m

» Straightforward discrete gradients for quadratic hamiltonians,

\Vii +Vn+l e’ +en+1 b" + bn+1
2 ) Ml 2 ’ M2 5 )

VH@u",u™ = (M,
» General method: Average-vector-field?:
1
VHU", U™ = / VH((1 - &)U+ U™ Y)de
0

» J(u) can also be averaged or approximated differently

> Yields implicit energy conserving time discretization

» Since the Poisson matrix is antisymmetric, we can apply this method
to our semi-discrete equations: fully nonlinear coupled system.

» Our solution: apply Discrete Gradient method to antisymmetric
splitting of the Poisson matrix.

Celledoni et al., J. Comput. Phys. 231, 2012
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Splitting Poisson matrix, keeping antisymmetry m

0 M;l 0 0
T(u) = -M;t o MJIMGB(X, b)M, T MM Y(X)M 0
1 o =Mt H(X)TMgM,! 0 mtcT
0 0 —Ccmt 0
» Split J(u) keeping antisymmetric matrices. Keep full Hamiltonian
» The split steps become
du du du du
a = Jl(u)VH, E - j2(U)VH, E = j3(U)VH, E = J4(U)V/H
» Successive application = Lie splitting of order 1, symmetric
application = Strang-splitting of order 2.
» Higher order also possible by appropriate combination.
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The reduced systems m

v

v

v

v

v

Split J(u) keeping antisymmetric matrices. Keep full Hamiltonian
1. X=V, (V=0e=0b=0)
2. V=M, MB(X,b)V, (X=0,6=0b=0).
3. V=M;M, Y(X)e, é=—-M; " H(X)"MeV, (X=0,b=0).
4. é=M'C"Mob,b=—-Ce, (X=0,V=0).
Steps 1 and 2 can be solved explicitly.

Steps 3 and 4 linearly implicit. Use Schur complement in 3 to
reduce implicit parts to the field equations.

Summary: implicit in field coefficients only, conserves energy but not
discrete Gauss.

Splitting in only 3 parts (2 and 3 are kept together) one recovers the
ECSIM time discretisation proposed by Lapenta and can define a
higher-order version.
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Modification to conserve Gauss' law m

» Observation: Current part of Ampere's law
tm+1
Mie™ = Mie™ — / L(X(7)) "MgV(7) dr,
tm

needs to be solved exactly, i.e. satisfying % =V.
» Modify the splitting: Keep together 1 (X push) and 3 (V+e push).
» New discrete gradient scheme for 1+3:

Energy and Gauss conserving scheme:

Xm+1 —_Xm vm Vm+1

At - 2
Vm+1 —ym . 1 tm+1 1 em 1 em+1
—ar = Mo Moy /tm i(X(7))dr <2>

emtl — em 1 [t V74 ymil
- = M XN damm, [ ———
At 1 /t i ( (T)) dr q 2
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Subcycling m

» New splitting conserving energy and Gauss law is nonlinearly implicit
on fields. Picard iterations are used. Anderson acceleration reduces
number of iterations.

» Time discretisation similar to method proposed by Chen, Chacon
and Barnes (JCP 2011) and more recent Vlasov-Darwin versions by
Chen, Chacon (CPC 2016)

» Subcycling of particle push can be introduced, taking care to
conserved symmetry between push and current deposition for exact
energy conservation.
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Subcycling: new update W

> Keeping the electric field constant over all the substeps, push the
particles according to X% = X™, VO = V™ and then for v = 0 to

N, —1
Xl,;7+1 _ XIIJTI _ qu + Vz;i’l
AT, 2
Vit vy L1y, L[ e 4 emt!
7" = M,"M,— (X d D
e Moa [ i ar (5

with X (7) = ((1y41 = 7)X}p, + (7 — )X 1) /AT,
» Corresponding electric field updated over the full time step:

entl_em 1 L T Vi, + Vit
T o an ([ o) ()
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Numerical results
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Test case 1: Weibel instability 1d2v m

Electron distribution (neutralizing ion background):

1 1 V12 v22 2m
f(X7V7t:0): exp<—2 <0’2+O'2 7X€[077)a

TO102 1 5
Bs(x,t = 0) = 3 cos(kx),
Ex(x,t =0) =0,

and Ej(x,t = 0) is computed from Poisson's equation.

Parameters: o7 = 0.02/v/2, 02 = V1201, k = 1.25, a = 0, and
p=—-10"*%

Test case from Crouseilles, Einkemmer, Faou, J. Comput. Phys. 283,
2015.

35



Weibel instability: Potential energies and analytic W
growth rate.

:
10°
— SlE?

1

000 — LEy?

-1
10 — IBsl? :
1073 growth rate |-
10 :
107
10°

i i i i
0 100 200 300 400 500

time

Figure: Weibel instablity: The two electric and the magnetic energies together
with the analytic growth rate.
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Weibel instability: Conservation properties.

Table: Weibel instability: Maximum error in the total energy, Gauss’' law, and
total momentum until time 500 for simulation with various integrators (Strang

splitting At = 0.05).

Propagator | total energy | Gauss law
Hamiltonian 6.9E-7 2.1E-13
Boris 1.3E-9 4 8E-4
AVF 2.1E-16 1.1E-6
DiscGrad 5.9E-11 2.2E-15
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Weibel instability: Error in magnetic energy ||B]|°. W

At | Hamiltonian Boris AVF DiscGrad
0.025 5.13E-06 4.48E-06 | 3.73E-06 | 3.90E-06 (4.9)
0.05 1.29E-05 1.41E-05 | 1.83E-05 | 1.85E-05 (5.9)

0.1 — — 4.05E-05 | 3.98E-05 (6.8)
0.2 — — 1.20E-04 | 1.13E-04 (8.6)
0.4 — — 1.60E-04 | 1.60E-04 (12.0)
0.8 — — 1.81E-04 | 1.80E-04 (21.6)

5 — — 4 41E-04 -

Reference: Solution with 4th, 10 Lie and At = 0.025.

Conclusions: Error about 1st order for ||B||? (i.e. 2nd order for B).

Time step restrictions for explicit methods.
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Test case 2: lon acoustic wave

Electron and ion distribution:

2 2
me Vi + V5

t: = —
Jelbx vt =10) 7 Te exp< 2Te/me)7

ﬁ(vaatZO):rTieXp 2Ti/mi

Electrostatic test case (without magnetic field).

Parameters: % =10* M =200, a = 0.2, L = 10.

Numerical parameters: N, = 32, N, = 128,000 per species.

, 2, 2
i (— Vi + V3> <1 + acos(2L7Tx)> .
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Comparison between Hamiltonian splitting and dis- W
crete gradient method

10°

10!

102

(218

107 H HS, 0.025
HS, 0.05
HS, 0.25
DisGrad, 0.05

DisGrad, 0.25

10 b

10°

0 500 1000 1500 2000
time

Figure: lon acoustic wave: Comparison of Hamiltonian splitting (HS) and
discrete gradient method (DisGrad).
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Discrete gradient method with substepping m

Improvement of discrete gradient method: Introduce substepping in
(X, V) to capture electron dynamics.?

— At=0.05
— At=0.25
—  At=0.25, 4 substeps
. n

0 500 1000

time

T
1500 2000

Figure: lon acoustic wave: Discrete gradient method with and without
substepping.

2Chen, Chacon, Barnes: An energy- and charge-conserving, implicit, electrostatic
particle-in-cell algorithm, J. Comput. Phys. 230, 2014.
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Summary and Outlook m

Summary
» GEMPIC framework based on discrete Poisson bracket and FEEC.

» Semi-discrete Poisson structure, with conservation of energy and
Gauss law.

» AVF-based time splitting conserves energy, not Gauss' law.

» Nonlinear discrete gradient method that conserves energy and
Gauss’ law. Can easily acomodate particle subcycling, keeping these
conservation properties

Outlook
» Version on curvilinear mesh under development.
» Optimize implementation of 2d3v and 3d3v codes.

> Solve low frequency problems in tokamaks. Numerical gyrokinetics!
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